Hierarchical Identity-Based Encryption with Constant-Size Private Keys

Leyou Zhang, Qing Wu, and Yupu Hu

The main challenge at present in constructing hierarchical identity-based encryption (HIBE) is to solve the trade-off between private-key size and ciphertext size. At least one private-key size or ciphertext size in the existing schemes must rely on the hierarchy depth. In this letter, a new hierarchical computing technique is introduced to HIBE. Unlike others, the proposed scheme, which consists of only two group elements, achieves constant-size private keys. In addition, the ciphertext consists of just three group elements, regardless of the hierarchy depth. To the best of our knowledge, it is the first efficient scheme where both ciphertexts and private keys achieve $O(1)$-size, which is the best trade-off between private-key size and ciphertext size at present. We also give the security proof in the selective-identity model.

Keywords: HIBE, large-scale network, identity-based encryption, standard model, selective-identity security.

I. Introduction

Identity-based encryption (IBE), introduced by Shamir [1], allows for a party to encrypt a message using the recipient’s identity as a public key. The ability to use identities as public keys eliminates the need for certificates as used in a traditional public-key infrastructure. The first efficient IBE was provided in [2]. Although the advantages of IBE are compelling, having a single private-key generator (PKG) would completely eliminate online lookup of public keys or public parameters.

However, it is undesirable for a large network because the single PKG becomes a bottleneck: (i) private-key generation is computationally expensive, (ii) the single PKG must verify proofs of identities, and (iii) the single PKG must establish secure channels to transmit private keys. Hence, a hierarchical structure for IBE is needed. Hierarchical IBE (HIBE) is a generalization of IBE. It allows a root PKG to distribute the workload by delegating private-key generation and identity authentication to lower-level PKGs. In a HIBE scheme, a root PKG needs only to generate private keys for domain-level PKGs, which in turn generates private keys for users in their domains in the next level. Authentication and private-key transmission can be done locally. Another advantage of HIBE schemes is damage control as disclosure of domain PKG secrets do not compromise the secrets of higher-level PKGs.

In this letter, we focus on HIBE. Interest in HIBE is spurred by its applications. It is especially useful in large companies or e-government systems where there are hierarchical administrative issues. HIBE provides one of the most direct and practical solutions to the key exposure problem for public-key infrastructure applications that occur in daily life. Recently, Sun and Fang [3] applied it to the Electronic Health Record system. In [4], the authors also used it to strengthen the cloud computing security. More recently, Smart and Warinschi proposed a new construction of group signature from HIBE [5].

The first efficient construction for HIBE was due to Gentry and Silverberg [6], where security was based on the bilinear Diffie-Hellman (BDH) assumption in the random oracle model. The first construction without random oracles was given by Boneh and Boyen [7] based on decision BDH. Many schemes without random oracles were proposed [8]-[16] based on the bilinear pairing. The most recent constructions were introduced based on hard problems on lattices [17], [18]. In these schemes, the secret key is a “short” basis B of a certain integer lattice L. To
delegate the key to a child, the parent creates a new lattice \(L_0 \) derived from \(L \) and uses \(B \) to generate a random short basis for this lattice \(L_0 \). In all previous constructions, the dimension of the child lattice \(L_0 \) is larger than the dimension of the parent lattice \(L \). As a result, private keys or ciphertexts become longer as one descends into the hierarchy.

However, the drawbacks of the previous works are obvious. In [7]-[11], [13]-[18], the private keys all depend on the hierarchy and maximum hierarchy. In [7], [13], [17], [18], the ciphertext size as well as the private-key size is independent of construction which is different from the previous schemes. The ciphertexts also depend on hierarchy or maximum hierarchy. These drawbacks directly increase the computation cost of the senders and storage cost of the users.

As a natural extension of the efforts to improve schemes, we present a new efficient HIBE. As a new technique, we change the master private keys to two parts: main master private keys and shared private keys created by the PKGs. It results a new construction which is different from the previous schemes. The ciphertext size as well as the private-key size is independent of the hierarchy depth. Ciphertexts in our scheme are always just three group elements, and decryption requires two bilinear pairings. Private keys in our scheme only contain two group elements. It is a desirable feature since it is the first scheme whose private keys and ciphertexts achieve \(O(1) \)-size. However, our scheme only achieves selective-identity security, which is a weak security for identity-based cryptography.

II. Preliminaries

1. Selective-Identity Security Model

The selective-identity security model for HIBE (chosen plaintext secure (IND-sID-CPA)) is defined as the following game between an adversary and a simulator.

- **Init.** The adversary outputs an identity challenge \(ID^* \).

- **Setup.** The simulator sets up the HIBE protocol and provides the public parameters to the adversary and keeps the master key to itself.

- **Key Generation.** The simulator generates the private key \(d_i \) corresponding to the public key \(ID_i \). It sends \(d_i \) to the adversary.

- **Challenge.** Once the adversary decides that phase 1 is over, it outputs two equal length plaintexts, \(M_0 \) and \(M_1 \), on which it wishes to be challenged. The simulator picks a random bit \(b \in \{0, 1\} \) and sets the challenge ciphertext to \(C = \text{Encryption}(\text{param}, ID^*, M_b) \). It sends \(C \) as the challenge to adversary.

- **Phase 1.** The adversary issues additional queries as phase 1 with constraint \(ID_i \neq ID^* \) and \(ID_i \) is not a prefix of \(ID^* \).

- **Guess.** Finally, the adversary outputs a guess \(b' \in \{0, 1\} \) and wins if \(b = b' \).

2. Decisional BDH Exponent Problem (\(n+1 \)-BDHE).

Given a tuple \((g, y_0, y_1, \ldots, y_m, y_{m+2}, y_{2m+2}, T)\), where \(y_i = g^{x_i} \) and \(y_0 = g^{e} \), decide \(T = e(g, g)^{x_0^{m+2}} \) or random in \(G_1 \). The \((t, e)\)-decisional \(n+1 \)-BDHE assumption holds if no \(t \)-time algorithm has a non-negligible advantage \(\epsilon \) in solving the above game.

III. New Construction

1. Our Scheme

Let \(G \) be a group of prime order \(p \), \(g \) be a random generator of \(G \), and \(l \) denote the maximum depth of HIBE.

- **Setup.** Pick \(\alpha, \alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n \) in \(Z_p \) at random for \(1 \leq i \leq l \). Set \(g = g^{\alpha} \), then choose \(g_i \) randomly in \(G \). The public key is \(PK = \{g, g_1, g_2\} \). The master key is \(g_2^\alpha \). At hierarchy depth \(i \), \(PK_i \) is given the shared master key \(Msk_i = \{\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n\} \).

- **Key Generation.**

For the first level \(ID = (v_i) \) with \(v_i = (v_{i1}, \ldots, v_{in}) \), \(v_i \in \{0, 1\} \), \(PK_i \) first computes \(h_i = (h_{i1}^{v_{i1}}, \ldots, h_{in}^{v_{in}}) \), \(1 \leq i \leq n \), where \(h_{i1}^{v_{i1}} = g^{v_{i1} \alpha} \).

Then, the private key for \(ID \) is generated by

\[
d_i = (d_i, d_i') = (g_i^r h_i^{v_i}, g^{r}) \quad \text{for} \quad r \in Z_p.
\]

For the \(k \)-th level \(ID = (v_i_{k-1}^{v_{i1}}, v_i_{k-1}^{v_{i2}}, \ldots, v_i_{k-2}^{v_{ik}}) \) with \(v_i \in \{0, 1\} \), by using the parent \((k-1)\)th level ID \((v_i^{v_{i1}}, \ldots, v_i_{k-1}) \) and the corresponding private key

\[
d_i = (d_i, d_i') = (g_i^{v_i} h_i^{v_i}, g^{r}) \quad \text{for} \quad r \in Z_p.
\]

- **Encryption.** Let \(M \) be an encrypted message. Then, the ciphertexts can be computed by

\[
C = (C_0, C_1, C_2) = (e(g_i, g_2)^{v_i} M, g^{r}(\prod_{v_{ik}^{v_{i1}}} h_i^{v_i})),
\]

where \(s \) is selected randomly in \(Z_p \).

- **Decryption.** Let \(C \) be valid ciphertexts. Then, the message \(M \) can be recovered by the private key \(d_i = d_i' \) as follows:

\[
M = C_0^{d_i} C_1^{d_i'} C_2
\]

Correctness. For a valid ciphertext, we have
\[\frac{e(d, C_j)}{e(d, C_i)} = \frac{e(g', (\prod_h h_i')_y)}{e(g_1'^{\ast}, g') e(g_2, g_i')} = 1 \]

2. Efficiency

Based on the new technique, the private keys in our scheme achieve \(O(1) \)-size. However, in previous HIBE systems, private-key size depends on the identity depth. In addition, the ciphertext of the proposed scheme contains only 3 elements, and decryption takes only 2 pairings. It is worth noting that \(e(g_1, g_2) \) used for encryption can be precomputed. Hence, encryption does not require any pairings. Table 1 gives the comparison between our scheme and the available. In Table 1, \(k \) denotes the hierarchy depth, \(k \leq l \), and \(pk \) is the private key.

3. Security Analysis

Theorem. Suppose the decisional \(n+1 \)-BDHE assumption holds in \(G \), then the proposed scheme is secure in the selective-identity model.

Proof. Assume that there is an adversary \(A \) that breaks the proposed scheme with advantage \(\epsilon \). We show how to build an adversary \(B \) that solves the decisional \(n+1 \)-BDHE problem with advantage \(\epsilon/2^{ln} \). For a generator \(g \in G \) and \(\alpha, \beta \in \mathbb{Z}_p \), we set \(y_i = g^{\alpha_i} \) and \(y_0 = g' \). Algorithm \(B \) is given a random tuple \(\langle g, y_0, y_1, \ldots, y_m, y_{m+2}, y_{m+3}, T \rangle \). Algorithm \(B \)'s goal is to output 1 when \(T = e(g,g)^{y_i} = 0 \) otherwise.

Init. The adversary \(A \) first outputs an identity \(ID = (v_1, \ldots, v_i) \) of depth \(k \leq l \) that it wants to attack.

Setup. To generate the system parameters, \(B \) sets \(g_i = y_i \). Then, it selects randomly \(\gamma; \alpha_g, \beta_g \) and sets \(g_2 = y_0 g' = g^{\gamma \alpha_i} \), where \(1 \leq i \leq l \), \(1 \leq j \leq n \). The master key is set as \(g_2^\alpha \). For any level \(i \), the master keys \(Msk_i \) are set as

\[
Msk_i = (\alpha_g^i, \beta_g^i, \alpha_i^{-1}) \quad 1 \leq i \leq l, 1 \leq j \leq n.
\]

The public key is \(PK = \{g, g_1, g_2\} \).

Finally, \(B \) sends the \(PK \) to \(A \). The corresponding master keys are unknown to \(B \).

Phase 1. The adversary \(A \) issues up to \(q_v \) private-key queries. Each query \(q_v \) is described as follows. Let \(ID = (v_1, \ldots, v_i) \) denote the corresponding identity. The restriction is that \(ID \) is not \(ID' \) or a prefix of \(ID' \). This restriction shows that there exists a \(j \) such that \(v_j \neq v' \). To respond to the query, \(B \) first derives the auxiliary information parameters as

\[
h_i = \begin{cases}
 g_i^\alpha & \text{if } v_i = v_j \\
 g_i^\beta & \text{if } v_i \neq v_j
\end{cases}
\]

\[
h_j = \begin{cases}
 h_j^\alpha & \text{if } v_j \neq v' \\
 h_j^\beta & \text{if } v_j = v'
\end{cases}
\]

where \(1 \leq i \leq k \). Then, all auxiliary information parameters can be obtained.

Next, \(B \) first generates the private keys for \(ID = (v_1, \ldots, v_i) \) where \(j \) denotes the first element such that \(v_j \neq v' \). To simplify, we suppose that \(t \) denotes the number of positions such that \(v_j = v' \). Then, one can obtain

\[
\begin{align*}
 h_{11} &= y_{11}^{r_{11}}, h_{12} = y_{12}^{r_{12}}, \ldots, h_{1n} = y_{1n}^{r_{1n}} \\
 h_{11} &= y_{11}^{r_{11}}, h_{12} = y_{12}^{r_{12}}, \ldots, h_{1n} = y_{1n}^{r_{1n}}
\end{align*}
\]

where \(1 \leq i \leq j \), \(1 \leq j \leq n \).

B chooses randomly \(r' \in \mathbb{Z}_p \). Then, the private key is simulated as \(d_{ID} = (d_{11}, d_{12}) = (g_2^\alpha \prod h_{1i} y_{1i}^r, g') \), where \(r = r' - r_{1i} \). In fact, one can verify the following holds:

\[
\begin{align*}
 g_2^\alpha \prod h_{1i} y_{1i}^r &= y_{1i}^{r_{1i}} \prod h_{1i} y_{1i}^{r_{1i}} \\
 &= y_{1i}^{r_{1i}} \prod h_{1i} y_{1i}^{r_{1i}}
\end{align*}
\]

Since \(y_{1i} \) is cancelled out, all the terms in this expression are known to \(B \). Thus, \(B \) can compute the first private-key component. The second component, \(g' \), is \(y_{1i}^{r_{1i}} g' \) (since \(r' \in \mathbb{Z}_p \), \(y_{1i} \) is known to \(B \)), which \(B \) can compute. So the simulation is perfect. Using the private keys of \(ID \), \(B \) can generate the private keys of \(ID = (v_1, \ldots, v_i) \).

Table 1. Comparison of efficiency.

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Ciphertext size</th>
<th>pk size</th>
<th>PK size</th>
</tr>
</thead>
<tbody>
<tr>
<td>[7]</td>
<td>(O(k))</td>
<td>(O(k))</td>
<td>(O(l))</td>
</tr>
<tr>
<td>[8]</td>
<td>(O(1))</td>
<td>(O(l-k))</td>
<td>(O(l))</td>
</tr>
<tr>
<td>[13]</td>
<td>(O(k))</td>
<td>(O(k))</td>
<td>(O(l))</td>
</tr>
<tr>
<td>[14]</td>
<td>(O(k))</td>
<td>(O(l-k))</td>
<td>(O(l))</td>
</tr>
<tr>
<td>[15]</td>
<td>(O(k))</td>
<td>(O(k))</td>
<td>(O(l))</td>
</tr>
<tr>
<td>[17]</td>
<td>(O(kn))</td>
<td>(O(kn))</td>
<td>(O(kn))</td>
</tr>
<tr>
<td>[18]</td>
<td>(O(kn))</td>
<td>(O(kn))</td>
<td>(O(kn))</td>
</tr>
<tr>
<td>Proposed</td>
<td>(O(1))</td>
<td>(O(1))</td>
<td>(O(k))</td>
</tr>
</tbody>
</table>
The adversary is given a challenger and can adaptively make a bounded number of key extraction queries. After answering a query, the challenger outputs a valid ciphertext for a random bit in the query. The challenge is that the adversary must distinguish between these two messages, and it is claimed to be secure if the advantage is negligible. Thus, the adversary’s view is all about the encryption of the challenge identity.

The challenge consists of a random bit \(b \in \{0, 1\} \) and a valid challenge ciphertext \(C^* \) = \((M_y, T_e(y^*_1, y^*_2), y_0, y_0^\sum_i T_{1<i}^*) \).

If \(T = e(g, g)^{y^*_0} \), then the challenge ciphertext is valid.

\[
C^*_0 = M_y T_e(y^*_1, y^*_0) = M_y e(g, g)^{y^*_0} e(y^*_1, y^*_0) = M_y e(g^a, g^c) e(y^*_1, y^*_0) = M_y e(y^*_1, y^*_0)^c = M_y e(g^a, g^c) y^*_0 = M_y e(g_2, g_1)^c,
\]

\[
C^*_1 = y_0^\sum_i T_{1<i}^* = (g^\sum_i T_{1<i}^*)^c = (\prod_{1<i} h_{y_i})^c.
\]

On the other hand, when \(T \) is uniform, \(C^* \) is independent of \(b \) in the adversary’s view.

Note that from the received inputs, A gets no information at all about the IDs chosen by B, thus such a choice will be identical to the challenge identity with probability \(1/2^{|n|} \).

Phase 2. A continues to issue queries as phase 1. B responds as before.

Guess. Finally, A outputs a guess \(b' \in \{0, 1\} \). B concludes its own game by outputting a guess as follows. If \(b=b' \), then B outputs 1 meaning \(T = e(g, g)^{y^*_0} \). Otherwise, it outputs 0 meaning \(T \) is random in \(G_1 \).

Therefore, if A breaks the proposed scheme with advantage \(\varepsilon \), B solves the decisional \(n+1 \)-BDHE problem with advantage \(\varepsilon/2^{|n|} \).

IV. Conclusion

In this letter, we introduced a new method to construct HIBE. Our new scheme achieves constant-size private keys and ciphertexts, which is the best trade-off at present. Unfortunately, our scheme only achieves selective-identity security. A natural question left open by this letter is to construct a HIBE system that is secure under a more standard assumption or achieves a stronger security notion.

References

