In this paper, a novel unequal broadband out-of-phase power divider (PD) is presented. Double-sided parallel-strip lines (DSPSLs) are employed to achieve an out-of-phase response. Also, an asymmetric dual-band matching structure with two external isolation resistors is utilized to obtain arbitrary unequal power division, in which the resistors are directly grounded for heat sinking. A through ground via (TGV), connecting the top and bottom sides of the DSPSLs, is used to short the isolation components. Additionally, this property can efficiently improve the broadband matching and isolation bandwidths. To investigate the proposed divider in detail, a set of design equations are derived based on the circuit theory and transmission line theory. The theoretical analysis shows that broadband responses can be obtained as proper frequency ratios are adopted. To verify the proposed concept, a sample divider with a power division of 2:1 is demonstrated. The measured results exhibit a broad bandwidth from 1.19 GHz to 2.19 GHz (59.2%) with a return loss better than 10 dB and port isolation of 18 dB.

Keywords: Power divider, unequal, out-of-phase, external isolation resistor, high power-handling capability.

I. Introduction

Power dividers (PDs) are key components extensively used in microwave and communications systems. Wilkinson [1] and Gysel [2] PDs are the most popular types. Wilkinson PDs have been extensively investigated and widely used in many applications. For instance, equal/unequal single-band [3], [4] and dual-band [5], [6] Wilkinson PDs with various topologies have been developed. They, however, have difficulty diffusing the heat to the outside because their isolation resistors are always located inside of the circuit topologies, resulting in low power-handling capability. Gysel PDs, on the other hand, employ external isolation resistors for heat sinking to obtain high power-handling capability [7]-[11].

Unfortunately, neither the Wilkinson PD nor the Gysel PD is suitable for balanced circuits, such as balanced mixers, multipliers, and push-pull amplifiers, due to their IN-PHASE responses. To meet the demand, several balanced transmission lines, such as microstrip-slot lines [12] and asymmetrical coplanar strip lines (ACPSs) [13] are used to achieve out-of-phase responses. Recently, the double-sided parallel-strip line (DSPSL) became very popular in out-of-phase PD designs [14]-[17]. Herein, the authors employ DSPSLs to design novel high power out-of-phase PDs with equal power division and narrow bandwidth.

Based on our further investigation, in this paper, we present a novel unequal broadband out-of-phase PD using DSPSLs for balanced high-power applications. The proposed divider still utilizes DSPSLs to obtain out-of-phase responses, whereas a newly asymmetric structure is realized for unequal power division. Two external isolation resistors, on the top and bottom sides of the device, are grounded directly for heat sinking so that the PD is very significant in high-power applications.
through ground via (TGV), connecting both sides of the DSPSLs, is employed. The special via is realized to make the isolation resistors shorted at the full-frequency band when the excitation is odd mode. Meanwhile, it can be ignored when the excitation is even mode. This property can be used to improve the bandwidth characteristic. To investigate the proposed divider in detail, a set of design equations is derived based on the circuit theory and transmission line theory. Theoretical analysis shows that the proposed PD can operate at two frequencies, \(f_1 \) and \(mf_1 \), with a frequency ratio range of \(1 < m < 1.6 \). Additionally, broadband responses can be obtained as proper frequency ratios are adopted.

We employ the odd and even mode methods to obtain the design equations derived from the matching conditions in the next section.

III. Even and Odd Mode Excitations for Proposed PD

1. Odd Mode Excitation

For the odd mode excitation, Port 1 is excited. The voltages on the top layer and bottom layer have identical amplitudes but opposite phases. On the other hand, the TGV connects the DSPSLs together so that the voltage is zero. In this case, the isolation resistors are shorted and the odd mode equivalent circuit of the proposed PD excluding the dual-band transformers can be simplified as shown in Fig. 2.

As the output power at Port 3’ is \(k^2 \) times that at Port 2’, the impedances at Ports 1, 2’, and 3’ must satisfy the following expressions:

\[
Z_i = k^2 Z_i’, \quad (i = 1, 2, 3, 4) \quad R_i’ = k^2 R_i, \quad (1.1)
\]

Fig. 1. Layout of proposed PD: (a) configuration, (b) dimension.

Fig. 2. Equivalent circuit of PD for odd mode excitation.
$Z_{m1} = k^2Z_{m1}, \quad Z_{p3} = k^2Z_{p2}$, \hspace{1cm} (1.2)

where the input impedance from Port 1 looking into the top layer and bottom layer is Z_{m1} and Z'_{m1}, respectively, and the termination of Port 3’ and Port 2’ is Z_{p3} and Z_{p2}, respectively.

To achieve perfect matching at Port 1, the following is applied:

$$Z_{m1} + Z'_{m1} = Z_0.$$ \hspace{1cm} (2)

Using (1.2) as a substitute in (2) results in the following:

$$Z_{m1} = \frac{Z_0}{1 + k^2}, \quad (3)$$

$$Z'_{m1} = \frac{k^2Z_0}{1 + k^2}. \quad (4)

Mathematically, for the top layer, the ABCD matrix of the two-port network can be calculated as follows [15]:

$$
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix} = \begin{bmatrix}
\cos \theta & jZ_1 \sin \theta \\
\frac{1}{Z_1} \sin \theta & \cos \theta
\end{bmatrix}
\begin{bmatrix}
\cos \theta & jZ_2 \sin \theta \\
\frac{1}{Z_2} \sin \theta & \cos \theta
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
\frac{1}{jZ_3 \tan \theta} & 1
\end{bmatrix},
$$

where

$$A = \cos^2 \theta - \frac{Z_1}{Z_2} \sin^2 \theta + \frac{Z_1 + Z_2}{Z_3} \cos^2 \theta, \quad (6.1)$$

$$B = j(\frac{1}{Z_1} + \frac{1}{Z_2}) \sin \theta \cos \theta, \quad (6.2)$$

$$C = j(\frac{1}{Z_1} + \frac{1}{Z_2}) \sin \theta \cos \theta + \frac{Z_2}{Z_1Z_3} \sin \theta \cos \theta - j \frac{1}{Z_3} \cos^2 \theta \tan \theta, \quad (6.3)$$

$$D = -\frac{Z_1}{Z_3} \sin^2 \theta + \cos^2 \theta. \quad (6.4)$$

Subsequently, the input impedance can be expressed as

$$Z_{m1} = \frac{AZ_{p2} + B}{CZ_{p2} + D}. \quad (7)$$

To achieve reasonable results, Z_{p2} and Z_{p3} are defined as

$$Z_{p3} = kZ_{p0}, \quad Z_{p2} = \frac{Z_{p0}}{k}. \quad (8)

By combining (3), (6), and (8), we obtain

$$Z_2 = -\frac{b + \sqrt{b^2 - 4ac}}{2a}, \quad (9.1)$$

To fulfill the dual-band impedance matching condition, the electrical length (θ) of the transmission lines at f_1 should be satisfied as follows [19]:

$$\theta = \frac{\pi}{1 + m}, \quad (11)$$

where m is the frequency ratio of the dual-band operation. For the bottom layer, the impedances of the transmission lines can be calculated by using (1). Consequently, the impedances of Z_2 and Z_3 can be uniquely determined for a selected Z_1 once the designed frequency ratio m is fixed.

2. Even Mode Excitation

Figure 3 shows the even mode equivalent circuit of the proposed PD excluding the dual-band transformers. Assume current sources of I_2 and I_3 ($I_2 = kI_3$) to Ports 2’ and 3’, respectively, so that the voltage distribution on the top layer is identical to that on the bottom layer when measured at an equal distance from Port 2’ and Port 3’. Therefore, the TGV can be ignored since it has no effect on the DSPSL. Also, the in-phase excitations at Ports 2’ and 3’ do not enable the signals to be combined at the interface, and the input port can be regarded as an open circuit.

Based on the transmission line theory, the input impedances of the top layer can be expressed as

$$Z_{m2} = \frac{Z_1}{j \tan \theta}, \quad (12.1)$$

$$Z_{m3} = \frac{Z_2}{Z_3 + jZ_2 \tan \theta}, \quad (12.2)$$

$$Z_{m3} = \frac{Z_2Z_{m2} + jZ_2 \tan \theta}{Z_2 + jZ_{m2} \tan \theta}, \quad (12.3)$$
The matching condition becomes

\[Z_{in4} = Z_1 \frac{Z_{pin} + jZ_1 \tan \theta}{Z_1 + jZ_{pin} \tan \theta}. \]

(12.4)

The matching condition becomes

\[\left(\frac{1}{R_1} + \frac{1}{Z_4 \tan \theta} \right)^* = Z_{in4}. \]

(13)

By separating the real and imaginary parts of (13), the designed parameters of \(R_1 \) and \(Z_4 \) can be achieved as follows:

\[R_1 = \frac{1}{\text{Re}(Z_{in4}^{-1})}, \]

(14.1)

\[Z_4 = \frac{1}{\tan \theta \cdot \text{Im}(Z_{in4}^{-1})}. \]

(14.2)

Similarly, the impedances \(Z_4' \) and \(R_1' \) can be calculated by using (1), as follows:

\[Z_4' = k^2 Z_4, \quad R_1' = k^2 R_1. \]

(15)

For the unequal out-of-phase PD, terminations \(Z_{p2} \) and \(Z_{o2} \) in Fig. 1 are not equal to \(Z_0 \). Two dual-band transformers consisting of two sections of transmission lines are needed to respectively transform \(Z_{p2} \) and \(Z_{o2} \) into \(Z_0 \). According to Monzon’s analytical solution [18], the impedances of the dual-band transformers can be derived by

\[Z_0 = \frac{Z_o Z_{p2}}{Z_4}, \]

(16.2)

\[Z_0' = kZ_4', \]

(16.3)

\[Z_0'' = kZ_4'', \]

(16.4)

where \(p = \tan \theta, \theta \) and \(Z_{p2} \) are defined by (8) and (11).

IV. Analysis of Impedance Values and High Power-Handling Feature

By using the design equations (1), (10), and (15) through (17), we can obtain the available ranges of frequency ratios for different power-division ratios when the value of \(Z_4 \) is fixed. According to the analysis in sections II and III, we only need to calculate the impedances on the top layer; the high impedances on the bottom layer can be derived by using (1). To simplify the analysis, we set \(Z_4 = 42.5 \Omega \) and \(Z_4 = 26.5 \Omega \) for \(k^2 = 1 \) and \(k^2 = 2 \), respectively. For the top layer with lower impedances, we assume that the source impedance is \(Z_0 = 50 \Omega \) and all the available impedance values are in a practical range of 10 \(\Omega < Z_0 < 150 \Omega \) (10 \(\Omega < Z_0 < 75 \Omega \) when \(k^2 = 2 \)). The corresponding design parameters against frequency ratio \(m = f_1/f_2 \) can be calculated by using MATLAB, which are shown in Table 1. Therefore, a frequency ratio range covering 1 < \(m < 1.6 \) can

<table>
<thead>
<tr>
<th>Power-division ratio</th>
<th>Frequency ratio range</th>
<th>Impedance value ((\Omega))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(m)</td>
<td>(Z_1) (Z_2) (Z_3) (Z_4) (R_1) (Z_5) (Z_6)</td>
</tr>
<tr>
<td>(k^2 = 1)</td>
<td>1.0</td>
<td>42.5 (60.1) 33.7 (10.2) (22.8) (50.0) (50.0)</td>
</tr>
<tr>
<td></td>
<td>1.1</td>
<td>42.5 (59.3) 33.9 (10.7) (23.9) (50.0) (50.0)</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>42.5 (57.2) 34.2 (12.3) (27.2) (50.0) (50.0)</td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>42.5 (54.4) 34.7 (15.1) (33.0) (50.0) (50.0)</td>
</tr>
<tr>
<td></td>
<td>1.4</td>
<td>42.5 (51.3) 35.5 (19.7) (41.9) (50.0) (50.0)</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>42.5 (48.2) 36.4 (27.7) (55.5) (50.0) (50.0)</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>42.5 (45.2) 37.5 (42.6) (76.1) (50.0) (50.0)</td>
</tr>
<tr>
<td>(k^2 = 2)</td>
<td>1.0</td>
<td>26.5 (38.6) 31.1 (15.2) (27.3) (45.9) (38.6)</td>
</tr>
<tr>
<td></td>
<td>1.1</td>
<td>26.5 (38.2) 31.3 (16.1) (28.7) (45.8) (38.6)</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>26.5 (37.2) 31.8 (18.7) (32.5) (45.8) (38.6)</td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>26.5 (35.8) 32.7 (23.6) (39.2) (45.7) (38.7)</td>
</tr>
<tr>
<td></td>
<td>1.4</td>
<td>26.5 (34.2) 33.8 (32.5) (49.6) (45.6) (38.8)</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>26.5 (32.6) 35.3 (50.0) (65.2) (45.4) (38.9)</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>26.5 (31.5) 36.5 (74.7) (80.6) (45.3) (39.0)</td>
</tr>
</tbody>
</table>
be obtained for different power-division ratios.

As discussed in [7]-[11], [15], the proposed PD has a high power-handling feature due to the external isolation resistors. However, for the PDs presented in [7]-[11], [15], the external isolation resistors are generally shorted by transmission lines. Therefore, the out-of-band signal power is partly dissipated on the isolation resistors because of the frequency-dependent transmission lines. In the design presented herein, the isolation resistors are shorted by the TGV structure. Based on the analysis in section III, when Port 1 is excited, the voltage at the TGV equals zero and the isolation resistors are shorted at the full-frequency band. Thus, there is no power dissipated on the isolation resistors. With this structure, the proposed PD has a high power capacity both in and out of the operation bands.

V. Analysis of Broadband Characteristic

To investigate the broadband characteristic of the proposed unequal PD, we choose the power-division ratio $k_2 = 2$. The transmission and reflection coefficients of the proposed PD can be calculated according to the transmission theory [15], [19]. The corresponding calculated results of the PD are obtained as shown in Fig. 4. As evidenced in this figure, it is found that the proposed PD with power-division ratio $k_2 = 2$ can operate at broadband response when proper frequency ratios are adopted.

VI. Designed Example and Measurement

The proposed broadband unequal (2:1) out-of-phase PD is

<table>
<thead>
<tr>
<th>W_1</th>
<th>W_2</th>
<th>W_3</th>
<th>W_4</th>
<th>W_5</th>
<th>W_6</th>
<th>W_{r1}</th>
<th>W_{r2}</th>
<th>W_{r3}</th>
<th>W_{r4}</th>
<th>W_{r5}</th>
<th>W_{r6}</th>
<th>L</th>
<th>W_c</th>
<th>R_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.16 mm</td>
<td>3 mm</td>
<td>3.4 mm</td>
<td>4.36 mm</td>
<td>2.54 mm</td>
<td>2 mm</td>
<td>100 Ω</td>
<td>1.52 mm</td>
<td>1 mm</td>
<td>1.18 mm</td>
<td>1.62 mm</td>
<td>1.12 mm</td>
<td>1.59 mm</td>
<td>25.5 mm</td>
<td>4.59 mm</td>
</tr>
</tbody>
</table>

Table 2. Dimensions of experimental PD.
implemented to verify the previous analysis. The divider is fabricated on two sandwiched Rogers 4350 substrates with a relative dielectric constant of 3.48, a thickness of 0.76 mm, and a loss tangent of 0.004.

The typical parameters of the designed PD are as follows: \(Z_0 = 50 \, \Omega \), \(f_1 = 1.5 \, \text{GHz} \), \(f_2 = 2.1 \, \text{GHz} \), \(m = 1.4 \), and \(k = \sqrt{2} \). The impedance values of the proposed PD calculated by using (1), (10), and (15) through (17) are as follows: \(Z_1 = 26.5 \, \Omega \), \(Z_2 = 34.2 \, \Omega \), \(Z_3 = 33.8 \, \Omega \), \(Z_4 = 32.5 \, \Omega \), \(R_1 = 49.6 \, \Omega \), \(Z_5 = 45.6 \, \Omega \), \(Z_6 = 38.8 \, \Omega \), \(Z'_1 = 53 \, \Omega \), \(Z'_2 = 68.4 \, \Omega \), \(Z'_3 = 67.6 \, \Omega \), \(Z'_4 = 65 \, \Omega \), \(R'_1 = 99.2 \, \Omega \), \(Z'_5 = 54.9 \, \Omega \), and \(Z'_6 = 64.5 \, \Omega \). The desired electrical length of the transmission lines is 75°. The physical dimensions of the circuit are achieved as illustrated in Table 2 by using Ansys HFSS. For the actual implementation, components \(R_1 = 50 \, \Omega \) and \(R'_1 = 100 \, \Omega \) are adopted in this design.

Photographs of the fabricated PD are shown in Fig. 5. The measurement is accomplished by using the Agilent 8358E network analyzer. Comparisons of the calculated, simulated, and measured results are shown in Figs. 6(a) through 6(d). The measured return loss (\(S_{11}, S_{22}, S_{33} \)) and isolation (\(S_{32} \)) are below between –10 dB and –15 dB from 1.19 GHz to 2.19 GHz (FBW: 59.2%). The measured value of \(S_{31} \) and \(S_{21} \) at a center frequency of 1.69 GHz is 2.25 dB and 5.12 dB, respectively, whereas, in the ideal case of the 2:1 PD, \(S_{31} \) is 1.77 dB and \(S_{21} \) is 4.77 dB. Furthermore, the measured phase difference between the two output ports is in the range of 180° ± 8° from 1.19 GHz to 2.19 GHz, as shown in Fig. 7.

VII. Conclusion

In this paper, a novel unequal broadband out-of-phase PD was presented. The proposed PD employs external isolation resistors, which have advantages in heat sinking. The TGV structure is used to improve the bandwidth and high power capacity. The design equations of the proposed PD were
derived by using odd mode and even mode excitation. To demonstrate the proposed idea, an unequal (2:1) broadband out-of-phase PD was designed and fabricated. The simulated and measured results show agreement. This PD will be very useful for the high-power balanced systems and push-pull applications.

References

Yun Long Lu was born in Huzhou, Zhejiang Province, China, in 1984. He received his BS degree in electronic engineering from Ningbo University, Ningbo, China, in 2007, and his MS degree in electronic engineering from the Zhejiang University, Hangzhou, China, in 2010. He is currently working toward his PhD degree at Zhejiang University. From July to December 2008, he was a research assistant with the Nanyang Technological University, Singapore. His research interests include antenna and RF/microwave active and passive circuit designs.

Gao-Le Dai was born in Ningbo, Zhejiang Province, China, in 1985. He received his BS and PhD degrees in electronic engineering from Peking University, Beijing, China, in 2007 and 2011, respectively. From September 2008 to January 2009, he was a research assistant with the City University of Hong Kong. From September 2009 to February 2010, he was a visiting PhD student with the National University of Singapore. From August 2011 to November 2012, he was with the faculty of the Department of Information and Electronic Engineering, Zhejiang University, Hangzhou, China, as an associate professor. In 2012, he joined the Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, as an associate professor. His research interests include antenna and RF/microwave active and passive circuit designs.
Kai Li was born in Xiao County, Anhui, China, on February 10, 1968. He received his BS degree in physics from Fuyang Normal University, Anhui, China, in 1990, MS degree in radio physics from Xidian University, Xi’an, Shaanxi, China, in 1994, and PhD degree in astrophysics from Shanxi Astronomical Observatory, the Chinese Academy of Sciences, Shaanxi, China, in 1998, respectively. From August 1990 to December 2000, he was on the faculty of China Research Institute Radiowave Propagation (CRIRP). From January 2001 to December 2002, he was a postdoctoral fellow at Information and Communications University (ICU), Daejeon, Rep. of Korea. From January 2003 to January 2005, he was a research fellow with the School of Electrical and Electric Engineering, Nanyang Technological University (NTU), Singapore. Since January 2005, he has been a professor with the Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China. His current research interests include classic electromagnetic theory and radio wave propagation. Dr. Li is a senior member of the Chinese Institute of Electronics (CIE) and a member of the Chinese Institute of Space Science (CISS).