SUPERCYCLICITY OF TWO-ISOMETRIES

M. FAGHIH AHMADI AND K. HEDAYATIAN

Abstract. A bounded linear operator T on a complex separable Hilbert space \mathcal{H} is called a two-isometry, if $T^*T^2 - 2T^*T + I = 0$. In this paper it is shown that every two-isometry is not supercyclic. This generalizes a result due to Ansari and Bourdon.

1. Introduction

Let \mathcal{H} be a separable infinite dimensional Hilbert space over the complex field and use $\mathcal{B}(\mathcal{H})$ to denote the algebra of all bounded linear operators $T: \mathcal{H} \rightarrow \mathcal{H}$. For a vector f in \mathcal{H}, the orbit of f under T is defined by

$$orb(T, f) = \{T^n f : n = 0, 1, 2, \cdots\}.$$

We recall that a vector f in \mathcal{H} is cyclic for T, if the closed linear span of $orb(T, f)$ is equal to \mathcal{H}; it is supercyclic if the set of all scalar multiples of the elements of $orb(T, f)$ is dense in \mathcal{H}; also it is said to be hypercyclic if $orb(T, f)$ is dense in \mathcal{H}. An operator T is called a cyclic, hypercyclic or supercyclic operator, respectively, if it has a cyclic, hypercyclic, or supercyclic vector. Recently, the cyclicity of operators has attracted much attention (see [2-8]) from operator theorists.

By a two-isometry, we mean an operator $T \in \mathcal{B}(\mathcal{H})$ satisfying $T^*T^2 - 2T^*T + I = 0$. S. I. Ansari and P. S. Bourdon in [2] proved that every isometry is not supercyclic. In the present note, we show that every two-isometry is not supercyclic. Considering the fact that every isometry is a two-isometry this result generalizes the mentioned result of Ansari and Bourdon.

Received October 25, 2007. Accepted January 7, 2008.

2000 Mathematics Subject Classification: 47A16.

Key words and phrases: supercyclic operators, two-isometries.

This research was in part supported by a grant (no.86-GR-SC-27) from Shiraz University Research Council.
2. Main Results

For a finite Borel measure μ on the unit circle \mathbb{T} in the plane, let the Dirichlet type space $D(\mu)$ consist of all analytic functions f on the open unit disc \mathbb{D} such that $\int_0^1 |f'(z)|^2 \varphi_\mu(z) dA(z) < \infty$, where $dA(z) = \frac{1}{\pi} r dr dt$, $z = re^{it}$, and $\varphi_\mu(z) = \frac{1}{2\pi} \int_0^{2\pi} p(z, e^{it}) d\mu(t)$ where $p(z, e^{it}) = \frac{1-|z|^2}{|e^{it}-z|^2}$ is the Poisson kernel. When μ is the Lebesgue measure on \mathbb{T} the space $D(\mu)$ is the Dirichlet space D and M_z is a two-isometry which is not an isometry; in fact, $\|M_z^n\| = \sqrt{k+1}$ for $k \geq 1$.

In the proof of our main theorem, we use the equivalence of (a) and (c) in Theorem 5. 10 of [9]. For the sake of completeness, we bring it here:

Theorem 1. The operator $T \in \mathcal{B}(\mathcal{H})$ is a cyclic two-isometry with $\bigcap_{n>0} T^n \mathcal{H} = \{0\}$, if and only if there is a positive finite Borel measure μ on \mathbb{T} such that T is unitarily equivalent to the multiplication by z, M_z on $D(\mu)$.

Lemma 1. An operator T in $\mathcal{B}(\mathcal{H})$ is supercyclic if and only if for every nonzero reducing subspace M of T, the restriction of T to M, $T|_M$ is supercyclic.

Proof. Let $\mathcal{H} = M \oplus M^\perp$ and suppose that $h = g \oplus k$ is a supercyclic vector for T. If $g = 0$ then $\mathcal{H} = M^\perp$ which is impossible; so $g \neq 0$. Take $f \in M$, and let $\varepsilon > 0$ be arbitrary. Then there is $n \geq 0$ and $\alpha \in \mathbb{C}$ such that

$$\|\alpha T^n g - f\| \leq \|\alpha T^n (g \oplus k) - f \oplus 0\| < \varepsilon.$$

Hence g is a supercyclic vector for $T|_M$. The converse is obvious. \qed

Recall that a bounded operator T is pure if it has no nonzero reducing subspace M such that $T|_M$ is normal. Since normal operators are not supercyclic, [3], we have the following corollary.

Corollary 1. Every supercyclic operator is pure.

Theorem 2. Every two-isometry is not supercyclic.

Proof. Suppose that T is a supercyclic two-isometry and let $M = \bigcap_{n>0} T^n \mathcal{H}$. If $M = \{0\}$ then Theorem 1 guarantees the existence of a positive finite Borel measure μ on \mathbb{T} such that T is unitarily equivalent to M_z on the space $D(\mu)$. By Corollary 3.8 of [9], the point spectrum
of T^* contains more than one point which contradicts the supercyclicity of T, [2]. Now suppose that $M \neq \{0\}$. Since T is a two-isometry,

$$\|T^2h\|^2 - 2\|Th\|^2 + \|h\|^2 = 0, \forall h \in \mathcal{H}. \quad (*)$$

Moreover, by Proposition 1.5 of [1], $T^*T - I \geq 0$; thus, $\|Th\| \geq \|h\|$ for all $h \in \mathcal{H}$, which implies that $\ker T = \{0\}$ and $\text{ran } T$ is closed. Define $S : \text{ran } T \rightarrow \mathcal{H}$ by $S(Th) = h$. By the inverse mapping theorem S is bounded. Let $g \in M$ and put $h = S^2g$ in $(*)$, then

$$\|T^2S^2g\|^2 - 2\|TS^2g\|^2 + \|S^2g\|^2 = 0. \quad (**)$$

But since $g = T^2k$ for some $k \in \mathcal{H}$, $(**)$ is, indeed,

$$\|g\|^2 - 2\|Sg\|^2 + \|S^2g\|^2 = 0.$$

Using induction, it is easy to see that

$$\|S^{i+1}g\|^2 - \|S^ig\|^2 = \|Sg\|^2 - \|g\|^2, \quad \forall i \geq 1.$$

Thus,

$$\|S^{m+1}g\|^2 - \|g\|^2 = \sum_{i=0}^{m}(\|S^{i+1}g\|^2 - \|S^ig\|^2) = (m+1)(\|Sg\|^2 - \|g\|^2).$$

This, in turn, implies that

$$0 \leq \|S^{m+1}g\|^2 = (m+1)\|Sg\|^2 - m\|g\|^2.$$

Consequently, $\|Sg\|^2 \geq \frac{m}{m+1}\|g\|^2$. Letting $m \to \infty$, we obtain $\|Sg\| \geq \|g\|$. Put $f = Tg$. Then $f \in M$, and so $\|g\| = \|Sf\| \geq \|f\| = \|Tg\|$. Hence, $\|Tg\| = \|g\|$ for every $g \in M$. It follows that $T^*T = I$ on M. Also, the definition of M shows that $TM = M$, and so $T^*M = M$. Since isometries are not supercyclic [2], Lemma 1 complete the proof. □

References

M. Faghih Ahmadi
Department of Mathematics,
College of Sciences, Shiraz University,
Shiraz, 71454, Iran
E-mail: faghiha@shirazu.ac.ir

K. Hedayatian
Department of Mathematics,
College of Sciences, Shiraz University,
Shiraz, 71454, Iran
E-mail: hedayati@shirazu.ac.ir