p-PRECONVEX SETS ON PRECONVEXITY SPACES

WON KEUN MIN

Abstract. In this paper, we introduce the concept of p-preconvex sets on preconvexity spaces. We study some properties for p-preconvex sets by using the co-convexity hull and the convexity hull. Also we introduce and study the concepts of pc-convex function, p* c-convex function, pf-convex function and p* f -convex function.

1. Introduction

In [1], Guay introduced the concept of preconvexity spaces defined by a binary relation on the power set $P(X)$ of a nonempty set X and investigated some properties. He showed that a preconvexity on a nonempty set yields a convexity space in the same manner as a proximity [6] yields a topological space. In [3], we introduced the concepts of co-convexity hull and co-convex sets on preconvexity spaces. And we characterized c-convex functions and c-concave functions by using the co-convexity hull and the convexity hull.

Semi-preconvex sets, sc-convex functions and s* c-convex functions are introduced in [4]. In [5], we introduced the β-preconvex set on a preconvexity space and studied some properties. And we introduced the concepts of β c-convex functions and β* c-convex functions which are defined by the β-preconvex sets.

In this paper, we introduce the concept of p-preconvex set on a preconvexity space and study some basic properties. And we introduce and study the concepts of pc-convex functions, p* c-convex functions, pc-convex functions and p* c-convex functions which are defined by the p-preconvex sets. In particular, for two preconvexity spaces $(X, \sigma), (Y, \mu)$, (a) if a function $f : (X, \sigma) \to (Y, \mu)$ is c-concave and pc-convex, then f is p* c-convex;

Received April 24, 2008. Accepted July 17, 2008.

2000 Mathematics Subject Classification: 52A01.

Key words and phrases: p-preconvex sets, cop-preconvex sets, pc-convex function, p* c-convex function, pf-convex function, p* f -convex function.
(b) if a function \(f : (X, \sigma) \to (Y, \mu) \) is \(c \)-convext and \(pI \)-convex, then \(f \) is \(p^*I \)-convex.

2. Preliminaries

Definition 2.1 ([1]). Let \(X \) be a nonempty set. A binary relation \(\sigma \) on \(P(X) \) is called a preconvexity on \(X \) if the relation satisfies the following properties; we write \(x \sigma A \) for \(\{x\} \sigma A \):

1. If \(A \subset B \), then \(A \sigma B \).
2. If \(A \sigma B \) and \(B = \emptyset \), then \(A = \emptyset \).
3. If \(A \sigma B \) and \(b \sigma C \) for all \(b \in B \), then \(A \sigma C \).
4. If \(A \sigma B \) and \(x \in A \), then \(x \sigma B \).

The pair \((X, \sigma)\) is called a preconvexity space. Let \((X, \sigma)\) be a preconvexity space and \(A \subset X \). \(G(A) = \{x \in X : x \sigma A \} \) is called the convexity hull of a subset \(A \). \(A \) is called convex [1] if \(G_{\sigma}(A) = A \) (simply, \(G(A) \)).

\(I_\sigma(A) = \{x \in A : x \notin (X - A)\} \) (simply, \(I(A) \)) is called the co-convexity hull [3] of a subset \(A \). And \(A \) is called a co-convex set if \(I(A) = A \) [3].

Let \(T(X) = \{A \subset X : I(A) = A\} \) and \(G(X) = \{A \subset X : G(A) = A\} \).

Theorem 2.2 ([1], [3]). For a preconvexity space \((X, \sigma)\),

1. \(G(\emptyset) = \emptyset, \ I(X) = X \).
2. \(A \subset G(A), \ I(A) \subset A \) for all \(A \subset X \).
3. If \(A \subset B \), then \(G(A) \subset G(B) \), \(I(A) \subset I(B) \).
4. \(G(G(A)) = G(A), \ I(I(A)) = I(A) \) for \(A \subset X \).
5. \(I(A) = X - G(X - A) \) and \(G(A) = X - I(X - A) \).

Theorem 2.3 ([1], [3]). Let \(\sigma \) be a preconvexity on \(X \) and \(A, B \subset X \). Then

1. \(A \sigma B \iff A \subset G(B) \iff I(X - B) \subset X - A \).
2. \(A \sigma B \iff G(A) \sigma G(B) \iff I(X - B) \sigma I(X - A) \).

Definition 2.4 ([4]). Let \((X, \sigma)\) be a preconvexity space and \(A \subset X \). \(A \) is called a semi-preconvex set if \(A \sigma I(A) \). And \(A \) is called a cosemi-preconvex set if the complement of \(A \) is a semi-preconvex set.

Let \(S_\sigma(X) \) (resp., \(SC_\sigma(X) \)) denote the set of all semi-preconvex sets (resp., cosemi-preconvex sets) in a preconvexity space \((X, \sigma)\).
Definition 2.5 ([5]). Let \((X, \sigma)\) be a preconvexity space and \(A \subset X\). \(A\) is called a \(\beta\)-preconvex set if \(A \sigma I(G(A))\). And \(A\) is called a \(\text{cop}\)-preconvex set if the complement of \(A\) is a \(\beta\)-preconvex set.

We recall that the notions of \(c\)-convex function and \(c\)-concave function: Let \((X, \sigma)\) and \((Y, \mu)\) be two preconvexity spaces. A function \(f : X \to Y\) is said to be \(c\)-concave [2] if for \(C, D \subset Y\) whenever \(C \mu D\), \(f^{-1}(C) \sigma f^{-1}(D)\). A function \(f : X \to Y\) is said to be \(c\)-convex [1] if \(A \sigma B\) implies \(f(A) \mu f(B)\). And \(f\) is \(c\)-convex iff for each \(U \in I(Y)\), \(f^{-1}(U) \in I(X)\) [3].

3. \(p\)-preconvex sets

Definition 3.1. Let \((X, \sigma)\) be a preconvexity space and \(A \subset X\). \(A\) is called a \(p\)-preconvex set if \(A \subset I(G(A))\). And \(A\) is called a \(\text{cop}\)-preconvex set if the complement of \(A\) is a \(p\)-preconvex set.

Let \(P_\sigma(X)\) (resp., \(PC_\sigma(X)\)) denote the set of all \(p\)-preconvex sets (resp., \(\text{cop}\)-preconvex sets) in a preconvexity space \((X, \sigma)\).

Now we get the following implications but the converses are not true in general as shown in the next example:

\[
\begin{array}{c|c}
\text{co-convex} & \beta\text{-preconvex} \\
\downarrow & \downarrow \\
\text{semi-preconvex} & \text{p-preconvex}
\end{array}
\]

Example 3.2. (1) Let \(X = \{a, b, c\}\) and \(\tau = \{\emptyset, X, \{b, c\}\}\). Define \(A \sigma B\) to mean \(A \subset cl(B)\), the closure of \(B\) in \(X\). Then \(\sigma\) is a preconvexity on \(X\). In the preconvexity space \((X, \sigma)\), \(G(X) = \{\emptyset, X, \{a\}\}\), \(\mathcal{I}(X) = \{\emptyset, X, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}\) and
\(S_{\sigma}(X) = \{\emptyset, X, \{b, c\}\}\). Hence we know that a \(p\)-convex set \(\{a, b\}\) is neither co-convex nor semi-convex.

(2) Let \(X = \{a, b, c, d\}\) and \(\tau = \{\emptyset, X, \{a\}, \{d\}, \{a, d\}\}\). Define \(A \sigma B\) to mean \(A \subset cl(B)\), the closure of \(B\) in \(X\). Then \(\sigma\) is a preconvexity on \(X\). In the preconvexity space \((X, \sigma)\), \(G(X) = \{\emptyset, X, \{b, c, d\}, \{a, b, c\}, \{b, c\}\}\), \(\mathcal{I}(X) = \tau\). Then \(\{a, b\}\) is semi-convex and \(\beta\)-preconvex but not preconvex.

From Theorem 2.2, we get the following:

Theorem 3.3. Let \((X, \sigma)\) be a preconvexity space and \(A \subset X\). Then \(A\) is a \(\text{cop}\)-preconvex set if and only if \(G(I(A)) \subset A\).
Theorem 3.4. Every p-preconvex set is a β-preconvex set in a preconvexity space (X, σ).

Proof. Let A be a p-preconvex set; then by definition of p-preconvex sets, $A \subseteq I(G(A))$. By Definition 3.1 (1), $A \sigma I(G(A))$. □

Corollary 3.5. Every cop-preconvex set is coβ-preconvex in a preconvexity space (X, σ).

Proof. Obvious. □

Theorem 3.6. In a preconvexity space (X, σ), X and \emptyset are both p-preconvex and cop-preconvex.

Proof. By Theorem 2.2, it is obvious. □

Theorem 3.7. In a preconvexity space (X, σ), the arbitrary union of p-preconvex sets is a p-preconvex set.

Proof. Let $\mathcal{F} = \{A_\alpha : A_\alpha \in \mathcal{P}_\sigma(X)\}$ be any subfamily of $\mathcal{P}_\sigma(X)$ and $x \in \bigcup \mathcal{F}$. Then there exists a p-preconvex set A_α containing x such that $x \in A_\alpha \subseteq I(G(A_\alpha))$. And from Theorem 2.2 and $A_\alpha \subseteq \bigcup \mathcal{F}$, it follows $I(G(A_\alpha)) \subseteq I(G(\bigcup \mathcal{F}))$ and so $x \in I(G(\bigcup \mathcal{F}))$. Hence, $\bigcup \mathcal{F} \subseteq I(G(\bigcup \mathcal{F}))$. □

Theorem 3.8. In a preconvexity space (X, σ), the arbitrary intersection of cop-preconvex sets is a cop-preconvex set.

Proof. From Theorem 2.2 and Theorem 3.7, it is obvious. □

Definition 3.9. Let (X, σ) be a preconvexity space and $A \subseteq X$.
1. $pG(A) = \cap \{F : A \subseteq F, F \in \mathcal{P}_\sigma(X)\}$.
2. $pI(A) = \cup \{U : U \subseteq A, U \in \mathcal{P}_\sigma(X)\}$.

Theorem 3.10. Let (X, σ) be a preconvexity space and $A, B \subseteq X$.
1. $I(A) \subseteq pI(A) \subseteq A$.
2. $A \subseteq pG(A) \subseteq G(A)$.
3. A is p-preconvex iff $A = pI(X)$.
4. A is cop-p-preconvex iff $A = pG(X)$.

Proof. (1) and (2) are obvious from Theorem 3.4 and Corollary 3.5.
(3) It is obtained from Theorem 3.7.
(4) It is obtained from Theorem 3.8. □

Theorem 3.11. Let (X, σ) be a preconvexity space and $A, B \subseteq X$.
1. $pI(X) = X$.
2. $pI(A) \subseteq A$.
3. If $A \subseteq B$, then $pI(A) \subseteq pI(B)$.
4. $pI(pI(A)) = pI(A)$.

Proof. (1), (2) and (3) are obvious.
(4) Since $pI(A) \subseteq A$, by (3), $pI(pI(A)) \subseteq pI(A)$.
For the converse, let $x \in pI(A)$; then since $x \in pI(A) \subseteq pI(A)$ and
$pI(A)$ is a p-preconvex set, we get $x \in pI(pI(A))$ by Definition 3.9. \qed

Theorem 3.12. Let (X, σ) be a preconvexity space and $A, B \subseteq X$.

1. $pG(\emptyset) = \emptyset$.
2. $A \subseteq pG(A)$.
3. If $A \subseteq B$, then $pG(A) \subseteq pG(B)$.
4. $pG(pG(A)) = pG(A)$.

Proof. It is similar to the proof of Theorem 3.11. \qed

4. **pc-convex functions and pI-convex functions**

Definition 4.1. Let (X, σ) and (Y, μ) be two preconvexity spaces. A function $f : X \to Y$ is said to be pc-convex if for each $A \in \mathcal{I}(Y)$, $f^{-1}(A) \in \mathcal{P}_\sigma(X)$.

Every pc-convex function is βc-convex but the converse is not always true as follows:

Example 4.2. In Example 3.2 (2), consider a function $f : (X, \sigma) \to (X, \sigma)$ defined as follows: $f(a) = f(b) = a$, $f(d) = b$ and $f(c) = c$. Then f is βc-convex but not pc-convex because for co-convex set $\{a\}$, $f^{-1}(\{a\}) = \{a, b\}$ is not p-preconvex.

Theorem 4.3. Let (X, σ) and (Y, μ) be two preconvexity spaces and $f : X \to Y$ a function. Then the following things are equivalent:

1. f is pc-convex.
2. $f^{-1}(I(B)) \subseteq I(G(f^{-1}(B)))$ for all $B \subseteq Y$.
3. $G(I(f^{-1}(B))) \subseteq f^{-1}(G(B))$ for all $B \subseteq Y$.
4. $f(G(I(A))) \subseteq G(f(A))$ for all $A \subseteq X$.
5. For each $U \in \mathcal{G}(Y)$, $f^{-1}(U) \in \mathcal{P}_\sigma(X)$.

Proof. (1) \Rightarrow (2) Suppose that f is pc-convex and let $A \subseteq Y$; then since $I(A) \subseteq A$, by Theorem 2.2, we get $I(G(f^{-1}(I(A)))) \subseteq I(G(f^{-1}(A)))$. Since $I(A) \in \mathcal{I}(Y)$ and f is pc-convex, $f^{-1}(I(A)) \subseteq I(G(f^{-1}(I(A))))$. Hence, we have $f^{-1}(I(A)) \subseteq I(G(f^{-1}(A)))$.

(2) \Rightarrow (1) Suppose that f is not pc-convex. Then there exists a set $B \subseteq Y$ such that $f^{-1}(I(B)) \not\subseteq I(G(f^{-1}(B)))$.

(2) \Rightarrow (3) Since $I(B) \subseteq B$, we have $I(G(f^{-1}(B))) \subseteq G(f^{-1}(B))$. Therefore, $G(I(f^{-1}(B))) \subseteq f^{-1}(G(B))$.

(3) \Rightarrow (1) Suppose that f is not pc-convex. Then there exists a set $B \subseteq Y$ such that $G(I(f^{-1}(B))) \not\subseteq f^{-1}(G(B))$.

(3) \Rightarrow (4) Since $I(A) \subseteq A$, we have $G(I(A)) \subseteq G(A)$. Therefore, $f(G(I(A))) \subseteq f(G(A))$.

(4) \Rightarrow (1) Suppose that f is not pc-convex. Then there exists a set $A \subseteq X$ such that $f(G(A)) \not\subseteq G(f(A))$.

(4) \Rightarrow (2) Since $G(A) \subseteq A$, we have $f(G(A)) \subseteq f(A)$. Therefore, $f^{-1}(I(B)) \subseteq f^{-1}(G(f^{-1}(B)))$.

(2) \Rightarrow (5) Suppose that f is not pc-convex. Then there exists a set $B \subseteq Y$ such that $f^{-1}(U) \not\subseteq f^{-1}(U)$ for some $U \in \mathcal{G}(Y)$.

(5) \Rightarrow (1) Suppose that f is not pc-convex. Then there exists a set $A \subseteq X$ such that $f^{-1}(U) \not\subseteq f^{-1}(U)$ for some $U \in \mathcal{G}(Y)$.

(5) \Rightarrow (2) Since $f^{-1}(U) \subseteq f^{-1}(U)$, we have $f^{-1}(I(B)) \subseteq f^{-1}(G(f^{-1}(B)))$. Therefore, $G(I(f^{-1}(B))) \subseteq f^{-1}(G(B))$.

(2) \Rightarrow (3) Since $I(B) \subseteq B$, we have $I(G(f^{-1}(B))) \subseteq G(f^{-1}(B))$. Therefore, $G(I(B)) \subseteq f^{-1}(G(B))$.
(2) \Rightarrow (3) Let $B \subset Y$; then by (2), we have
\[X - f^{-1}(G(B)) = f^{-1}(I(Y - B)) \subset I(G(f^{-1}(Y - B))) = X - G(I(f^{-1}(B))). \]
Hence (3) is obtained.
(3) \iff (4) It is obvious.
(3) \Rightarrow (5) It is obvious.
(5) \Rightarrow (1) It is obvious by Theorem 2.2.

From Theorem 3.10 and Theorem 4.3, we get the following:

Theorem 4.4. Let (X, σ) and (Y, μ) be two preconvexity spaces and $f : X \to Y$ a function. Then the following things are equivalent:

1. f is pc-convex.
2. $f^{-1}(I(B)) \subset pI(f^{-1}(B))$ for all $B \subset Y$.
3. $pG(f^{-1}(B)) \subset f^{-1}(G(B))$ for all $B \subset Y$.
4. $f(pG(A)) \subset G(f(A))$ for all $A \subset X$.

Definition 4.5. Let (X, σ) and (Y, μ) be two preconvexity spaces. A function $f : X \to Y$ is said to be p^*c-convex if for each $A \in \mathcal{P}_\mu(Y)$, $f^{-1}(A) \in \mathcal{P}_\sigma(X)$.

Every p^*c-convex function is pc-convex but the converse is not always true as shown in the next example:

Example 4.6. In Example 3.2 (1), consider a function $f : (X, \sigma) \to (X, \sigma)$ defined as follows: $f(a) = b, f(b) = c$ and $f(c) = a$. Then f is pc-convex but not p^*c-convex because $f^{-1} \{\{b\}\} = \{a\}$ is not p-preconvex for a p-preconvex set $\{b\}$.

We have the following:
\[
\begin{array}{c}
\text{pc-convex} \iff \beta c-convex \\
\uparrow & \uparrow \\
c-convex \Rightarrow \text{pc-convex} \iff p^*c-convex
\end{array}
\]

Theorem 4.7. Let (X, σ) and (Y, μ) be two preconvexity spaces. A function $f : X \to Y$ is p^*c-convex iff for $A \subset Y$ whenever $A \subset I(G(\mathcal{A}))$, $f^{-1}(A) \subset I(G(f^{-1}(\mathcal{A})))$.

Proof. From Definition 4.5, it is obvious.

Theorem 4.8 ([3]). Let (X, σ) and (Y, μ) be two preconvexity spaces and $f : X \to Y$ a function. Then the following things are equivalent:
1. f is c-concave.
2. $f^{-1}(G(A)) \subseteq G(f^{-1}(A))$ for all $A \subseteq Y$.
3. $I(f^{-1}(A)) \subseteq f^{-1}(I(A))$ for all $A \subseteq Y$.

Theorem 4.9 ([3]). Let (X, σ) and (Y, μ) be two preconvexity spaces and $f : X \to Y$ a function. Then the following things are equivalent:

1. f is c-convex.
2. $f(G(A)) \subseteq G(f(A))$ for all $A \subseteq X$.
3. $G(f^{-1}(B)) \subseteq f^{-1}(G(B))$ for all $B \subseteq Y$.
4. $f^{-1}(I(B)) \subseteq I(f^{-1}(B))$ for all $B \subseteq Y$.
5. For each $U \in \mathcal{I}(Y)$, $f^{-1}(U) \in \mathcal{I}(X)$.
6. For each $C \in \mathcal{G}(Y)$, $f^{-1}(U) \in \mathcal{G}(X)$.

Lemma 4.10. Let $f : (X, \sigma) \to (Y, \mu)$ be a function on two preconvexity spaces. If f is c-convex and c-concave, then we have the following:

1. $f^{-1}(I(B)) = I(f^{-1}(B))$ for all $B \subseteq Y$.
2. $G(f^{-1}(B)) = f^{-1}(G(B))$ for all $B \subseteq Y$.

Proof. From the above Theorem 4.8 and Theorem 4.9, the results are obtained.

Theorem 4.11. Let $f : (X, \sigma) \to (Y, \mu)$ be a function on two preconvexity spaces. If f is c-concave and c-convex, then f is p^*c-convex.

Proof. Let $A \in \mathcal{P}_\mu(Y)$; then $A \subseteq I(G(A))$. Since f is c-concave and c-convex, from Lemma 4.10, it follows

$$f^{-1}(A) \subseteq f^{-1}(I(G(A))) = I(G(f^{-1}(A))).$$

Hence by Theorem 4.7, f is p^*c-convex.

Corollary 4.12. Let $f : (X, \sigma) \to (Y, \mu)$ be a function on two preconvexity spaces. If f is c-concave and c-convex, then f is pc-convex.

Proof. Since every p^*c-convex function is p-convex, f is pl-convex.

Theorem 4.13. Let $f : (X, \sigma) \to (Y, \mu)$ be a function on two preconvexity spaces. If f is c-concave and pc-convex, then f is p^*c-convex.

Proof. Suppose f is c-concave and pc-convex and let $A \in \mathcal{P}_\mu(Y)$; then $A \subseteq I(G(A))$. From Theorem 4.3 (2) and Theorem 4.8 (2), it follows

$$f^{-1}(A) \subseteq f^{-1}(I(G(A))) \subseteq I(G(f^{-1}(G(A)))) \subseteq I(G(G(f^{-1}(A)))) \subseteq I(G(f^{-1}(A))).$$

Hence by Theorem 4.7, f is p^*c-convex.

Theorem 4.14. Let (X, σ) and (Y, μ) be two preconvexity spaces and $f : X \to Y$ a function. Then the following things are equivalent:
1. f is p^*c-convex.
2. For each $U \in \mathcal{PC}(Y)$, $f^{-1}(U) \in \mathcal{PC}(X)$.
3. $f(pG(A)) \subset pG(f(A))$ for all $A \subset X$.
4. $pG(f^{-1}(B)) \subset f^{-1}(pG(B))$ for all $B \subset Y$.
5. $f^{-1}(pI(B)) \subset pI(f^{-1}(B))$ for all $B \subset Y$.

Proof. Obvious. \qed

Definition 4.15. Let (X, σ) and (Y, μ) be two preconvexity spaces and $f : X \to Y$ a function. Then

1. f is said to be pI-convex if for each $U \in \mathcal{I}(X)$, $f(U) \in \mathcal{P}(Y)$.
2. f is is said to be p^*I-convex if for each $U \in \mathcal{P}(X)$, $f(U) \in \mathcal{P}(Y)$.

Example 4.16. In Example 4.6, the function f is pI-convex but not I-convex. And f is not p^*I-convex because $f(\{c\}) = \{a\}$ is not p-convex for a p-convex set $\{c\}$ in X.

I-convex $\Rightarrow pI$-convex $\iff p^*I$-convex

Theorem 4.17. Let $f : (X, \sigma) \to (Y, \mu)$ be a function on two preconvexity spaces. Then f is pI-convex if $f(I(A)) \subset I(G(f(A)))$ for all $A \subset X$.

Proof. Let f be pI-convex; then since $I(A) \in \mathcal{I}(X)$, $f(I(A)) \subset I(G(f(I(A)))) \subset I(G(f(A)))$.

Suppose that $f(I(A)) \subset I(G(f(A)))$ for all $A \subset X$. Since $U \in \mathcal{I}(X)$ iff $I(U) = U$, we have f is pI-convex. \qed

Theorem 4.18. Let (X, σ) and (Y, μ) be two preconvexity spaces and $f : X \to Y$ a function. Then f is c-concave iff $f(I(U)) \subset I(f(U))$ for all $U \subset X$.

Proof. Let U be a subset of X; then from Theorem 4.8, it follows

$I(U) \subset I(f^{-1}(f(U)) \subset f^{-1}(I(f(U)))$.

Hence $f(I(U)) \subset I(f(U))$.

Similarly, we have the converse. \qed

Theorem 4.19. Let $f : (X, \sigma) \to (Y, \mu)$ be a function on two preconvexity spaces. Then if f is c-convex and c-concave, then f is p^*I-convex.

Proof. Let $U \in \mathcal{P}(X)$; then $U \subset I(G(U))$. From Theorem 4.9 (2) and Theorem 4.18, we have
\[f(U) \subset f(I(G(U))) \subset I(f(G(U))) \subset I(G(f(U))). \]
Hence \(f(U) \in \mathcal{P}(Y). \)

\[\square \]

Corollary 4.20. Let \(f : (X, \sigma) \to (Y, \mu) \) be a function on two preconvexity spaces. Then if \(f \) is c-convex and c-concave, then \(f \) is \(\text{p}_1 \)-convex.

Proof. Since every \(\text{p}_1 \)-convex function is \(\text{p}_1 \)-convex, by Theorem 4.19, \(f \) is \(\text{p}_1 \)-convex. \[\square \]

Theorem 4.21. Let \(f : (X, \sigma) \to (Y, \mu) \) be a function on two preconvexity spaces. Then \(f \) is \(\text{p}_1 \)-convex and c-convex, then \(f \) is \(\text{p}_1 \)-convex.

Proof. Let \(U \in \mathcal{P}(X) \); then since \(U \subset I(G(U)) \), from Theorem 4.17 and c-convexity, we have
\[f(U) \subset f(I(G(U))) \subset I(G(f(G(U)))) \subset I(G(G(f(U)))) \subset I(G(f(U))). \]
Hence \(f(U) \in \mathcal{P}(Y). \) \[\square \]

References

Won Keun Min
Department of Mathematics,
Kangwon National University;
Chuncheon, 200-701, Korea

E-mail: wkmin@kangwon.ac.kr