ON WEAKLY γ-CONTINUOUS FUNCTIONS

WON KEUN MIN

Abstract. We introduce the concepts of weakly γ-continuity, strongly γ-closed graph and γ-T_2 spaces. And we study some characterizations and properties of such concepts.

1. Introduction

Let X, Y and Z be topological spaces on which no separation axioms are assumed unless explicit stated. Let S be a subset of X. The closure (resp. interior) of S will be denoted by $cl(S)$ (resp. $int(S)$). A subset S of X is called semi-open set [2] (resp. α-set [4]) if $S \subseteq cl(int(S))$ (resp. $S \subseteq int(cl(int(S)))$). The complement of a semi-open set (resp. α-set) is called semi-closed set (resp. α-closed set).

A subset $M(x)$ of a space X is called a semi-neighborhood of a point $x \in X$ if there exists a semi-open set S such that $x \in S \subseteq M(x)$. In [1], Latif introduced the notion of semi-convergence of filters. And he investigated some characterizations related to semi-open continuous functions. Now we recall the concept of semi-convergence of filters. Let $S(x) = \{A \in SO(X) : x \in A\}$ and let $S_x = \{A \subseteq X : \text{there exists } \mu \subseteq S(x) \text{ such that } \mu \text{ is finite and } \cap \mu \subseteq A\}$. Then S_x is called the semi-neighborhood filter at x. For any filter F on X, we say that F semi-converges to x if and only if F is finer than the semi-neighborhood filter at x. A subset U of X is called a γ-open set [4] in X if whenever a filter F semi-converges to x and $x \in U$, then $U \in F$. The class of all γ-open sets in X will be denoted by $\gamma(X)$.

The γ-interior [4] of a set A in X, denoted by $I_\gamma(A)$, is the union of all γ-open sets contained in A.

The γ-closure [4] of a set A in X, denoted by $cl_\gamma(A)$, $cl_\gamma(A) = \{x \in X : A \cap U \neq \emptyset \text{ for all } U \in S_x\}$.

Received May 6, 2008. Accepted August 29, 2008.

2000 Mathematics Subject Classification: 54A05, 54B10, 54C10, 54D30.

Key words and phrases: weakly γ-continuous, γ-compact, γ-T_2-space, strongly γ-closed graph.
Theorem 1.1 ([4]). Let \((X, \tau)\) be a topological space and \(A \subseteq X\).
(a) \(I_\gamma(A) = \{x \in A : A \in S_\tau\}\).
(b) \(A\) is \(\gamma\)-open set if and only if \(A = I_\gamma(A)\).
(c) A set \(G\) is \(\gamma\)-closed if and only if whenever \(F\) semi-converges to \(x\) and \(A \in F\), then \(x \in A\).

Theorem 1.2 ([4]). Let \((X, \tau)\) be a topological space and \(A\) be a subset of \(X\).
(1) \(A \subseteq Cl_\gamma(A)\).
(2) \(A\) is \(\gamma\)-closed if and only if \(A = Cl_\gamma A\).
(3) \(I_\gamma(A) = X - Cl_\gamma(X - A)\).
(4) \(Cl_\gamma(A) = X - I_\gamma(X - A)\).

2. Weakly \(\gamma\)-continuous functions

Definition 2.1. Let \((X, \tau)\) and \((Y, \mu)\) be two topological spaces. Then \(f : X \rightarrow Y\) is said to be weakly \(\gamma\)-continuous if for \(x \in X\) and each open subset \(V\) containing \(f(x)\), there is a \(\gamma\)-open subset \(U\) containing \(x\) such that \(f(U) \subseteq cl(V)\).

We get the following implications but the converses are not true:
continuous \(\Rightarrow\) semi-continuous \(\Rightarrow\) \(\gamma\)-continuous \(\Rightarrow\) weakly \(\gamma\)-continuous

Example 2.2. Let \(X = \{a, b, c, d\}\) and \(\tau = \{\emptyset, \{a, b\}, X\}\) be a topology on \(X\). Then \(\gamma(X) = \{\emptyset, \{a, b\}, \{a, b, c\}, \{a, b, d\}, X\}\). Consider a function \(f : (X, \tau) \rightarrow (Y, \mu)\) defined as follows: \(f(a) = c, f(b) = d, f(c) = a\) and \(f(d) = b\). Then \(f\) is weakly \(\gamma\)-continuous. But \(f\) is not \(\gamma\)-continuous because for a \(\gamma\)-open set \(\{a, b\}\), \(f^{-1}(\{a, b\}) = \{c, d\}\) is not \(\gamma\)-open.

Theorem 2.3. Let \(f : (X, \tau) \rightarrow (Y, \mu)\) be a function on topological spaces \((X, \tau)\) and \((Y, \mu)\). Then the following statements are equivalent:
(1) \(f\) is weakly \(\gamma\)-continuous.
(2) \(f^{-1}(V) \subseteq I_\gamma(f^{-1}(cl(V)))\) for every open subset \(V\) of \(Y\).
(3) \(Cl_\gamma(f^{-1}(int(A))) \subseteq f^{-1}(A)\) for every closed set \(A\) of \(Y\).
(4) \(Cl_\gamma(f^{-1}(int(cl(B)))) \subseteq f^{-1}(cl(B))\) for every closed set \(B\) of \(Y\).
(5) \(f^{-1}(int(B)) \subseteq I_\gamma(f^{-1}(cl(int(B))))\) for every closed set \(B\) of \(Y\).
(6) \(Cl_\gamma(f^{-1}(V)) \subseteq f^{-1}(cl(V))\) for every open subset \(V\) of \(Y\).

Proof. (1) \(\Rightarrow\) (2) Let \(V\) be an open subset in \(Y\) and \(x \in f^{-1}(V)\). There exists a \(\gamma\)-open set \(U\) of \(X\) containing \(x\) such that \(f(U) \subseteq cl(V)\).
Since \(x \in U \subseteq f^{-1}(\text{cl}(V)) \), by definition of \(\gamma \)-interior, \(x \in I_\gamma(f^{-1}(\text{cl}(V))) \).
Hence \(f^{-1}(V) \subseteq I_\gamma(f^{-1}(\text{cl}(V))) \).

(2) \implies (3) Let \(A \) be a closed subset in \(Y \). Then \(Y - A \) in open in \(Y \) and, by (2)
\[
f^{-1}(Y - A) \subseteq I_\gamma(f^{-1}(\text{cl}(Y - A)))
= I_\gamma(f^{-1}(Y - \text{int}(A)))
\subseteq X - \text{Cl}_\gamma(f^{-1}(\text{int}(A))).
\]
Thus \(\text{Cl}_\gamma(f^{-1}(\text{int}(A))) \subseteq f^{-1}(A) \).

(3) \implies (4) Let \(B \) be a subset of \(Y \). Since \(\text{cl}(B) \) is closed in \(Y \), from (3), it follows \(\text{Cl}_\gamma(f^{-1}(\text{int}(\text{cl}(B)))) \subseteq f^{-1}(\text{cl}(B)) \).

(4) \implies (5) Let \(B \) be a subset of \(Y \). Then
\[
f^{-1}(\text{int}(B)) = X - f^{-1}(\text{cl}(Y - B))
\subseteq X - \text{Cl}_\gamma(f^{-1}\text{int}(\text{cl}(Y - B)))
= I_\gamma(f^{-1}\text{cl}(\text{int}(B))).
\]
Thus we get the result.

(5) \implies (6) Let \(V \) be an open subset of \(Y \). Suppose \(x \notin f^{-1}(\text{cl}(V)) \).
Then \(f(x) \notin \text{cl}(V) \) and so there exists an open set \(U \) containing \(f(x) \) such that \(U \cap V = \emptyset \) and so \(\text{cl}(U) \cap V = \emptyset \). By (5), \(x \in f^{-1}(U) \subseteq I_\gamma(f^{-1}(\text{cl}(U))) \). Then by definition of \(\gamma \)-interior, there exists an open set \(G \) containing \(x \) such that \(x \in G \subseteq f^{-1}(\text{cl}(U)) \). Since \(\text{cl}(U) \cap V = \emptyset \) and \(f(G) \subseteq \text{cl}(U) \), we have \(G \cap f^{-1}(V) = \emptyset \) and so \(x \notin \text{Cl}_\gamma(f^{-1}(V)) \).
Hence \(\text{Cl}_\gamma(f^{-1}(V)) \subseteq f^{-1}(\text{cl}(V)) \).

(6) \implies (1) Let \(x \in X \) and \(V \) an open set in \(Y \) containing \(f(x) \). Since \(V = \text{int}(V) \subseteq \text{int}(\text{cl}(V)) \), by (6),
\[
x \in f^{-1}(V) \subseteq f^{-1}(\text{int}(\text{cl}(V)))
= X - f^{-1}(\text{cl}(Y - \text{cl}(V)))
\subseteq X - \text{Cl}_\gamma(f^{-1}(\text{cl}(Y - \text{cl}(V))))
= I_\gamma(f^{-1}(\text{cl}(V))).
\]
So there exists a \(\gamma \)-open subset \(U \) in \(X \) such that \(U \subseteq f^{-1}(\text{cl}(V)) \).
Hence \(f \) is weakly \(\gamma \)-continuous.
\[\square\]

We recall that a point \(x \) of a topological space \(X \) is said to be \(\theta \)-adherent of \(A \) if \(A \cap \text{cl}(V) \neq \emptyset \) for every open set \(V \) containing \(x \). The set of all \(\theta \)-adherent points of \(A \) is called \(\theta \)-closure of \(A \) [6] and is denoted by
\(\text{cl}_\theta(A) \). If \(A = \text{cl}_\theta(A) \), then \(A \) is called \(\theta \)-closed. The complement of a \(\theta \)-closed set is said to be \(\theta \)-open. It is shown in [6] that \(\text{cl}(A) = \text{cl}_\theta(A) \) for every open set \(A \) and \(\text{cl}_\theta(B) \) is closed for every subset \(B \) of \(X \).

Theorem 2.4. Let \(f : (X, \tau) \to (Y, \mu) \) be a function on topological spaces \((X, \tau)\) and \((Y, \mu)\). Then the following statements are equivalent:

1. \(f \) is weakly \(\gamma \)-continuous.
2. \(\text{Cl}_\gamma(f^{-1}(\text{int}(\text{cl}_\theta(B)))) \subset f^{-1}(\text{cl}_\theta(B)) \) for every set \(B \) of \(Y \).
3. \(\text{Cl}_\gamma(f^{-1}(\text{int}(\text{cl}(B)))) \subset f^{-1}(\text{cl}(B)) \) for every set \(B \) of \(Y \).
4. \(\text{Cl}_\gamma(f^{-1}(\text{int}(\text{cl}(G)))) \subset f^{-1}(\text{cl}(G)) \) for every open subset \(G \) of \(Y \).
5. \(f(\text{Cl}_\gamma(A)) \subset \text{cl}_\theta(f(A)) \) for every set \(A \) of \(X \).
6. \(\text{Cl}_\gamma(f^{-1}(B)) \subset f^{-1}(\text{cl}_\theta(B)) \) for every set \(B \) of \(Y \).

Proof. (1) \(\implies \) (2) Let \(B \) be any subset in \(Y \); then \(\text{cl}_\theta(B) \) is closed, by Theorem 2.3 (3), we get the result.

(2) \(\implies \) (3) It is obvious since \(\text{cl}(B) \subset \text{cl}_\theta(B) \) for every subset \(B \) of \(Y \).

(3) \(\implies \) (4) It is obvious since \(\text{cl}(G) = \text{cl}_\theta(G) \) for every open subset \(G \) of \(Y \).

(4) \(\implies \) (1) Since \(G \subset \text{int}(\text{cl}(G)) \) for every open set \(G \) of \(Y \), from Theorem 2.3 (6), it follows \(f \) is weakly \(\gamma \)-continuous.

(1) \(\implies \) (5) Let \(A \) be a subset of \(X \). Let \(x \in \text{Cl}_\gamma(A) \) and \(G \) be an open subset of \(Y \) containing \(f(x) \). Since \(f \) is weakly \(\gamma \)-continuous, there exists a \(\gamma \)-open set \(U \) containing \(x \) in \(X \) such that \(f(U) \subset \text{cl}(G) \). Since \(x \in \text{Cl}_\gamma(A) \), we have \(U \cap A \neq \emptyset \) and so \(0 \neq f(U) \cap f(A) \subset \text{cl}(G) \cap f(A) \). Hence \(f(x) \in \text{cl}_\theta(f(A)) \).

(5) \(\implies \) (6) Let \(B \) be a subset of \(Y \); then by (5), we have \(f(\text{Cl}_\gamma(f^{-1}(B))) \subset \text{cl}_\theta(f(f^{-1}(B))) \subset \text{cl}_\theta(B) \) and so we get the result.

(6) \(\implies \) (1) Let \(B \) be a subset of \(Y \); then by (6),

\[
\text{Cl}_\gamma(f^{-1}(\text{int}(\text{cl}(B)))) \subset f^{-1}(\text{cl}_\theta(\text{int}(\text{cl}(B))))
= f^{-1}(\text{cl}(\text{int}(\text{cl}(B))))
\subset f^{-1}(\text{cl}(B)).
\]

Hence \(f \) is weakly \(\gamma \)-continuous by Theorem 2.3 (4). \(\square \)

Theorem 2.5. Let \(f : (X, \tau) \to (Y, \mu) \) be a function on topological spaces \((X, \tau)\) and \((Y, \mu)\). Then the following statements are equivalent:

1. \(f \) is weakly \(\gamma \)-continuous.
2. \(\text{Cl}_\gamma(f^{-1}(\text{int}(K))) \subset f^{-1}(\text{cl}(K)) \) for every regular closed set \(K \) of \(Y \).
3. \(\text{Cl}_\gamma(f^{-1}(\text{int}(\text{cl}(G)))) \subset f^{-1}(\text{cl}(G)) \) for every \(\beta \)-open set \(G \) of \(Y \).
(4) \(Cl_\gamma(f^{-1}(\text{int}(cl(G)))) \subseteq f^{-1}(cl(G)) \) for every semiopen set \(G \) of \(Y \).

Proof. (1) \(\Rightarrow \) (2) Let \(K \) be any regular closed set of \(Y \). Then by Theorem 2.3(6), we have \(Cl_\gamma(f^{-1}(\text{int}(K))) \subseteq f^{-1}(\text{cl}(\text{int}(K))) \). Since \(K \) is regular closed, we have \(Cl_\gamma(f^{-1}(\text{int}(K))) \subseteq f^{-1}(K) \).

(2) \(\Rightarrow \) (3) Let \(G \) be any \(\beta \)-open set. From \(cl(G) \subseteq cl(\text{int}(cl(G))) \subseteq cl(G) \), it follows \(cl(G) \) is regular closed. By (2), we have \(Cl_\gamma(f^{-1}(\text{int}(cl(G)))) \subseteq f^{-1}(cl(G)) \).

(3) \(\Rightarrow \) (4) It is obvious since every semiopen set is \(\beta \)-open.

(4) \(\Rightarrow \) (1) Let \(V \) be any open set of \(Y \). Then by (4),
\[
Cl_\gamma(f^{-1}(V)) \subseteq Cl_\gamma(f^{-1}(\text{int}(cl(V)))) \subseteq f^{-1}(cl(V)).
\]
Hence from Theorem 2.3(6), \(f \) is weakly \(\gamma \)-continuous. \(\square \)

Theorem 2.6. Let \(f : (X, \tau) \rightarrow (Y, \mu) \) be a function on topological spaces \((X, \tau) \) and \((Y, \mu) \). Then the following statements are equivalent:

1. \(f \) is weakly \(\gamma \)-continuous.
2. \(Cl_\gamma(f^{-1}(\text{int}(cl(G)))) \subseteq f^{-1}(cl(G)) \) for every preopen set \(G \) of \(Y \).
3. \(Cl_\gamma(f^{-1}(G)) \subseteq f^{-1}(cl(G)) \) for every preopen set \(G \) of \(Y \).
4. \(f^{-1}(G) \subseteq \text{Int}_\gamma(f^{-1}(cl(G))) \) for every preopen set \(G \) of \(Y \).

Proof. (1) \(\Rightarrow \) (2) Let \(G \) be any preopen set in \(Y \). Then \(cl(G) = cl(\text{int}(cl(G))) \). Let \(A = \text{int}(cl(G)) \). Then from Theorem 2.3 (6), it follows that \(Cl_\gamma(f^{-1}(A)) \subseteq f^{-1}(cl(A)) \). Since \(cl(A) = cl(G) \), we have \(Cl_\gamma(f^{-1}(\text{int}(cl(G)))) \subseteq f^{-1}(cl(G)) \).

(2) \(\Rightarrow \) (3) Obvious.

(3) \(\Rightarrow \) (4) Let \(G \) be any preopen set in \(Y \). Then from definition of preopen sets and (3), it follows that
\[
f^{-1}(G) \subseteq f^{-1}(\text{int}(cl(G))) = X - f^{-1}(cl(Y - cl(G))) \subseteq X - (Cl_\gamma(f^{-1}(Y - cl(G)))) = \text{Int}_\gamma(f^{-1}(cl(G))).
\]
Hence we have (4).

(4) \(\Rightarrow \) (1) Since every open set is preopen, from (4) and Theorem 2.3(6), \(f \) is weakly \(\gamma \)-continuous. \(\square \)
Definition 2.7. Let X be a topological space. Then X is said to be γ-T_2 if for every two distinct points x and y in X, there exist two disjoint γ-open sets U and V such that $x \in U$ and $y \in V$.

Let X be a topological space. Then X is said to be Urysohn if for every two distinct points x and y in X, there exist two open sets U and V such that $\text{cl}(U) \cap \text{cl}(V) = \emptyset$.

Theorem 2.8. Let $f : (X, \tau) \to (Y, \mu)$ be a function on topological spaces (X, τ) and (Y, μ). If f is a weakly γ-continuous injection and Y is Urysohn, then X is γ-T_2.

Proof. Let x_1 and x_2 be two distinct elements in X, then $f(x_1) \neq f(x_2)$. There exist two open sets U and V in Y containing $f(x_1)$, $f(x_2)$, respectively, such that $\text{cl}(U) \cap \text{cl}(V) = \emptyset$. Since f is weakly γ-continuous, there exist γ-open sets U_1, V_2 containing x_1, x_2, respectively, such that $f(U_1) \subseteq \text{cl}(U)$, $f(V_2) \subseteq \text{cl}(V)$. It follows $U_1 \cap V_2 = \emptyset$. Hence X is γ-T_2. □

Definition 2.9. Let $f : (X, \tau) \to (Y, \mu)$ be a function on topological spaces (X, τ) and (Y, μ). We call f has a strongly γ-closed graph if for each $(x, y) \notin G(f)$, there exist a γ-open set U and an open set V containing x and y, respectively, such that $(U \times \text{cl}(V)) \cap G(f) = \emptyset$.

Lemma 2.10. Let $f : (X, \tau) \to (Y, \mu)$ be a function on topological spaces (X, τ) and (Y, μ). Then f has a strongly γ-closed graph if for each $(x, y) \notin G(f)$, there exist a γ-open set U containing and an open set V containing x and y, respectively, such that $f(U) \cap \text{cl}(V) = \emptyset$.

Proof. Obvious. □

Theorem 2.11. Let $f : (X, \tau) \to (Y, \mu)$ be a function on topological spaces (X, τ) and (Y, μ). If f is weakly γ-continuous and Y is Urysohn, then f has a strongly γ-closed graph.

Proof. Let $(x, z) \notin G(f)$. Then $z \neq f(x)$ and since Y is Urysohn, there exist two open sets U and V containing z and $f(x)$, respectively, such that $\text{cl}(U) \cap \text{cl}(V) = \emptyset$. Since f is weakly γ-continuous, there exists a γ-open set H containing x such that $f(H) \subseteq \text{cl}(V)$. It implies $f(H) \cap \text{cl}(U) = \emptyset$. Hence f has a strongly γ-closed graph. □

Theorem 2.12. Let $f : (X, \tau) \to (Y, \mu)$ be a function on topological spaces (X, τ) and (Y, μ). If f is a weakly γ-continuous injection with a strongly γ-closed graph, then X is γ-T_2.
Proof. Let \(x_1 \) and \(x_2 \) be two distinct elements in \(X \), then \(f(x_1) \neq f(x_2) \). This implies that \((x_1, f(x_2)) \in (X \times Y) - G(f)\). Since \(f \) has a strongly \(\gamma \)-closed graph, there exist a \(\gamma \)-open set \(U \) and an open set \(V \) containing \(x_1 \) and \(f(x_2) \), respectively, such that \(f(U) \cap \text{cl}(V) = \emptyset \). Since \(f \) is weakly \(\gamma \)-continuous, there exists a \(\gamma \)-open set \(W \) containing \(x_2 \) such that \(f(W) \subseteq \text{cl}(V) \). It implies \(f(W) \cap f(U) = \emptyset \). Therefore \(W \cap U = \emptyset \) and so \(X \) is a \(\gamma \)-\(T_2 \) space.

Definition 2.13. A subset \(A \) of a topological space \((X, \tau)\) is called a \(\gamma \)-compact relative to \(A \) if every collection \(\{U_i : i \in J\} \) of \(\gamma \)-open subsets of \(X \) such that \(A \subseteq \bigcup \{U_i : i \in J\} \), there exists a finite subset \(J_0 \) of \(J \) such that \(A \subseteq \bigcup \{U_i : i \in J_0\} \).

A subset \(A \) of a topological space \(X \) is said to be quasi \(H \)-closed relative to \(A \) [6] if every collection \(\{U_i : i \in J\} \) of open subsets of \(X \) such that \(A \subseteq \bigcup \{U_i : i \in J\} \), there exists a finite subset \(J_0 \) of \(J \) such that \(A \subseteq \bigcup \{\text{cl}(U_i) : i \in J_0\} \).

Theorem 2.14. Let \(f : (X, \tau) \to (Y, \mu) \) be a function on topological spaces \((X, \tau)\) and \((Y, \mu)\). If \(f \) is weakly \(\gamma \)-continuous and \(A \) is a \(\gamma \)-compact subset of \(X \), then \(f(A) \) is quasi \(H \)-closed relative to \((Y, \mu)\).

Proof. Let \(\{V_i : i \in J\} \) be a cover of \(f(A) \) by open subsets of \(Y \). For each \(x \in A \), there exists \(i(x) \in J \) such that \(f(x) \in V_{i(x)} \). Since \(f \) is weakly \(\gamma \)-continuous, there exists a \(\gamma \)-open set \(U(x) \) containing \(x \) such that \(f(U(x)) \subseteq \text{cl}(V_{i(x)}) \). The family \(\{U(x) : x \in A\} \) is a cover of \(A \) by \(\gamma \)-open sets in \(X \). Since \(A \) is \(\gamma \)-compact, there is a finite subcover \(\{U(x_1), U(x_2), \ldots, U(x_n) : x_j \in A, j = 1, 2, \ldots, n\} \) such that \(A \subseteq \bigcup U(x_j) \). Then

\[
1 \leq j \leq n.
\]

Thus \(f(A) \) is quasi \(H \)-closed relative to \((Y, \mu)\).

References

Won Keun Min
Department of Mathematics,
Kangwon National University,
Chuncheon 200-701, Korea.