CHARACTERIZATIONS OF REAL HYPERSURFACES
OF TYPE A IN A COMPLEX SPACE FORM USED BY
THE ξ-PARALLEL STRUCTURE JACOBI OPERATOR

NAM-GIL KIM*, U-HANG KI, AND HIROYUKI KURIHARA

Abstract. Let M be a real hypersurface of a complex space form with almost contact metric structure (ϕ, ξ, η, g). In this paper, we study real hypersurfaces in a complex space form whose structure Jacobi operator $R_\xi = R(\cdot, \xi)\xi$ is ξ-parallel. In particular, we prove that the condition $\nabla_\xi R_\xi = 0$ characterize the homogeneous real hypersurfaces of type A in a complex projective space $P_n\mathbb{C}$ or a complex hyperbolic space $H_n\mathbb{C}$ when $g(\nabla_\xi \xi, \nabla_\xi \xi)$ is constant and not equal to $-c/24$ on M, where c is a constant holomorphic sectional curvature of a complex space form.

1. Introduction

Let $(M_n(c), J, \bar{g})$ be a complex n-dimensional complex space form with Kähler structure (J, \bar{g}) of constant holomorphic sectional curvature c and let M be an orientable real hypersurface in $M_n(c)$. Then M has an almost contact metric structure (ϕ, ξ, η, g) induced from (J, \bar{g}).

It is known that there are no real hypersurfaces with parallel Ricci tensors in a nonflat complex space form (see [6], [9]). This result says that there does not exist locally symmetric real hypersurfaces in a nonflat complex space form. The structure Jacobi operator $R_\xi = R(\cdot, \xi)\xi$ has a fundamental role in contact geometry. Cho and the second author started the study on real hypersurfaces in a complex space form by using the operator R_ξ in [3], [4] and [5]. Recently Ortega, Pérez and Santos [13] have proved that there are no real hypersurfaces in a complex projective space $P_n\mathbb{C}, n \geq 3$ with parallel structure Jacobi operator $\nabla R_\xi = 0$. More generally, such a result has been extended by [14].

Received July 7, 2008. Accepted September 1, 2008.

2000 Mathematics Subject Classification: 53B20, 53C15, 53C25.

Key words and phrases: complex space form, real hypersurface, structure Jacobi operator.

* This study was supported by the research funds Chosun University, 2007.
Now in this paper, motivated by results mentioned above we consider the parallelism of the structure Jacobi operator R_ξ in the direction of the structure vector field, that is $\nabla_\xi R_\xi = 0$.

In 1970’s, Takagi ([15], [16]) classified the homogeneous real hypersurfaces of $P_n \mathbb{C}$ into six types. On the other hand, Cecil and Ryan [2] extensively studied a Hopf hypersurface (whose structure vector field ξ is principal), which is realized as tubes over certain submanifolds in $P_n \mathbb{C}$, by using its focal map. By making use of those results and the mentioned work of Takagi, Kimura [10] proved the local classification theorem for Hopf hypersurfaces of $P_n \mathbb{C}$ whose all principal curvatures are constant. For the case of a complex hyperbolic space $H_n \mathbb{C}$, Berndt [1] proved the classification theorem for Hopf hypersurfaces whose all principal curvatures are constant. Among the several types of real hypersurfaces appeared in Takagi’s list or Berndt’s list, a particular type of tubes over totally geodesic $P_k \mathbb{C}$ or $H_k \mathbb{C}$ ($0 < k < n - 1$) adding a horosphere in $H_n \mathbb{C}$, which is called type A, has a lot of nice geometric properties. For example, Okumura [12] (resp. Montiel and Romero [11]) shows that a real hypersurface of type A if and only if the structure operator ϕ commutes with the shape operator ($A\phi = \phi A$).

In this paper we study a real hypersurface in a nonflat complex space form $M_n(c)$ which satisfies $\nabla_\xi R_\xi = 0$ and at the same time $g(\nabla_\xi \xi, \nabla_\xi \xi)$ is constant and not equal to $-c/24$ on M. We give another characterization of real hypersurfaces of type A in $M_n(c)$ by above two conditions. In particular, in the case of $P_n \mathbb{C}$, it is not necessary to the condition $g(\nabla_\xi \xi, \nabla_\xi \xi)$ is not equal to $-c/24$. The main purpose of the present paper is to establish Theorem 2 stated in section 5. We note that the condition $g(\nabla_\xi \xi, \nabla_\xi \xi)$ is constant on M is a much weaker condition. Indeed, every Hopf hypersurface always satisfies this condition.

All manifolds in this paper are assumed to be connected and of class C^∞ and the real hypersurfaces are supposed to be oriented.

2. Preliminaries

Let M be a real hypersurface of a nonflat complex space form $M_n(c)$, $c \neq 0$ and C be a unit normal vector on M. By $\tilde{\nabla}$ we denote the Levi-Civita connection with respect to the Kähler metric \tilde{g}. Then the Gauss and Weingarten formulas are given respectively by

$$\tilde{\nabla}_X Y = \nabla_X Y + g(AX, Y)C, \quad \tilde{\nabla}_X C = -AX$$
for any vector fields X and Y on M, where g denotes the Riemannian metric of M induced from \tilde{g} and A is the shape operator of M in $M_n(c)$. For any vector field X tangent to M, we put

$$JX = \phi X + \eta(X)C, \quad JC = -\xi,$$

where J is the almost complex structure of $M_n(c)$. Then we may see that M induces an almost contact metric structure (ϕ, ξ, η, g), namely

$$\phi^2 X = -X + \eta(X)\xi, \quad \eta(\xi) = 1, \quad \phi\xi = 0,$$
$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \quad \eta(X) = g(X, \xi)$$

for any vector fields X and Y on M.

Since J is parallel, we verify, using the Gauss and Weingarten formulas, that

$$(2.1) \quad \nabla_X \xi = \phi AX,$$
$$(2.2) \quad (\nabla_X \phi) Y = \eta(Y)AX - g(AX, Y)\xi.$$

Since the ambient space is of constant holomorphic sectional curvature c, we have the following Gauss and Codazzi equations respectively:

$$(2.3) \quad R(X, Y)Z = \frac{c}{4} \{g(Y, Z)X - g(X, Z)Y + g(\phi Y, Z)\phi X - g(\phi X, Z)\phi Y - 2g(\phi X, Y)\phi Z\} + g(AY, Z)AX - g(AX, Z)AY,$$
$$(2.4) \quad (\nabla_X A)Y - (\nabla_Y A)X = \frac{c}{4} \{\eta(X)\phi Y - \eta(Y)\phi X - 2g(\phi X, Y)\xi\}$$

for any vector fields X, Y and Z on M, where R denotes the Riemannian curvature tensor of M.

In the sequel, to write our formulas in convention forms, we denote by $\alpha = \eta(AX)$, $\beta = \eta(A^2)\xi$, and for a function f we denote by ∇f the gradient vector field of f.

If we put $U = \nabla \xi$, then U is orthogonal to the structure vector ξ. From (2.1), we get

$$\phi U = -A\xi + \alpha \xi,$$

which enables us to obtain $g(U, U) = \beta - \alpha^2$. If we put

$$\phi U = -A\xi + \alpha \xi,$$

we have

$$(2.5) \quad A\xi = \alpha \xi + \mu W,$$

where W is a unit vector field orthogonal to ξ. Then we get $U = \mu \phi W$, which shows that W is also orthogonal to U. Further we have

$$\mu^2 = \beta - \alpha^2.$$
Thus we see that ξ is principal curvature vector, that is $A\xi = \alpha\xi$ if and only if $\beta - \alpha^2 = 0$.

In this paper, we basically use the technical computations with the orthogonal triplet $\{\xi, U, W\}$ and their associated scalars α, β and μ.

Because of (2.1), (2.5) and (2.6), it is seen that
\begin{equation}
(2.8)
 g(\nabla_X\xi, U) = \mu g(AW, X)
\end{equation}
and
\begin{equation}
(2.9)
 \mu g(\nabla_X W, \xi) = g(AU, X)
\end{equation}
for any vector field X on M.

Differentiating (2.5) covariantly along M and making use of (2.1) and (2.2), we find
\begin{equation}
(2.10)
 (\nabla_X A)\xi = -\phi\nabla_X U + g(AU + \nabla\alpha, X)\xi - A\phi AX + \alpha\phi AX,
\end{equation}
which enables us to obtain
\begin{equation}
(2.11)
 (\nabla_{\xi} A)\xi = 2AU + \nabla\alpha,
\end{equation}
where we have used (2.4). From (2.1) and (2.10), it is verified that
\begin{equation}
(2.12)
 \nabla_{\xi} U = 3\phi AU + \alpha AX - \beta\xi + \phi\nabla\alpha.
\end{equation}

The curvature equation (2.3) gives the structure Jacobi operator R_{ξ}:
\begin{equation}
(2.13)
 R_{\xi}(X) = R(X, \xi)\xi = \frac{c}{4} \{X - \eta(X)\xi\} + \alpha AX - \eta(AX)AX
\end{equation}
for any vector field X on M.

3. Real hypersurfaces satisfying $\nabla_{\xi} R_{\xi} = 0$

We set $\Omega = \{p \in M; \mu(p) \neq 0\}$ and suppose that Ω is non-empty, that is, ξ is not a principal curvature vector on M. Hereafter, unless otherwise stated, we discuss our arguments on the open subset Ω of M.

Differentiating (2.13) covariantly, and using (2.11), we find
\begin{equation}
(3.1)
 g((\nabla_{\xi} R_{\xi}) Y, Z) = -\frac{c}{4} \{u(Y)\eta(Z) + u(Z)\eta(Y)\} + (\xi\alpha) g(AY, Z)
 + \alpha g((\nabla_{\xi} A) Y, Z) - \eta(AX) \{3g(AX, Y) + A\alpha\}
 - \eta(AY) \{3g(AU, Z) + Z\alpha\},
\end{equation}
where u is a 1-form dual to U with respect to g, that is $u(X) = g(U, X)$.
We assume that $\nabla_\xi R_\xi = 0$. Then from (3.1) we have
\begin{equation}
\alpha(\nabla_\xi A)X + (\xi \alpha)AX = \frac{c}{4}(u(X)\xi + \eta(X)U) \\
+ \eta(AX)(3A\nu + \nabla \alpha) + \{3g(AX, X) + X\alpha\}A\xi.
\end{equation}
Putting $X = \xi$ in this and using (2.11), we find
\begin{equation}
\alpha AU + \frac{c}{4}U = 0,
\end{equation}
which shows that $\alpha \neq 0$ on Ω.
Differentiating (3.3) covariantly and using itself, we obtain
\begin{equation}
-\frac{c}{4}(X\alpha)U + \alpha^2(\nabla X A)U + \alpha^2 A\nabla_X U + \frac{c}{4}\alpha \nabla_X U = 0,
\end{equation}
or, using (2.4) and (2.5)
\begin{equation}
\frac{c}{4}\{(Y\alpha)u(X) - (X\alpha)u(Y)\} + \frac{c}{4}\alpha^2\mu\{\eta(X)w(Y) - \eta(Y)w(X)\} \\
+ \alpha^2\{g(A\nabla_X U, Y) - g(A\nabla_Y U, X)\} + \frac{c}{4}\alpha du(X, Y) = 0,
\end{equation}
where w is a dual 1-form of W with respect to g, that is $w(X) = g(W, X)$. Here, du is the exterior derivative of a 1-form u given by
$$du(X, Y) = - Yu(X) + Xu(Y) - u([X, Y]).$$
If we replace X by U in (3.5), then it follows that
\begin{equation}
\frac{c}{4}\mu^2\nabla\alpha - (U\alpha)U\} + \alpha^2 A\nabla_U U + \frac{c}{4}a \nabla_U U = 0,
\end{equation}
because U and W are mutually orthogonal.
Combining (2.10) to (3.2) and using (2.4), we obtain
\begin{equation}
\alpha^2\phi\nabla_X U = \alpha^2(X\alpha)\xi - \frac{c}{4}\alpha u(X)\xi + (\xi \alpha)AX + \frac{c}{4}\alpha^2\phi X \\
- \eta(AX)\left(\alpha \nabla \alpha - \frac{3}{4}cU\right) - \left(\alpha(X\alpha) - \frac{3}{4}cu(X)\right)A\xi \\
- \frac{c}{4}\alpha\{u(X)\xi + \eta(X)U\} - \alpha^2 A\phi AX + \alpha^3\phi AX.
\end{equation}
Applying ϕ to this and using (2.8), we have
\begin{equation}
\alpha^2\nabla_X U + \alpha^2\mu g(W, X)\xi - \alpha\eta(AX)\phi \nabla \alpha \\
= -\alpha(\xi \alpha)\phi AX + \frac{c}{4}\alpha^2(X - \eta(X)\xi) + \frac{3}{4}c\mu\eta(AX)W + \alpha(X\alpha)U \\
- \frac{3}{4}cu(X)U + \alpha^3 AX - \frac{c}{4}\alpha \mu \eta(X)W - \alpha^3 \eta(AX)\xi + \alpha^2 \phi A\phi AX.
\end{equation}
On the other hand, differentiating (2.6) covariantly, and using (2.1), we find
\[(\nabla_X A)\xi - \frac{c}{4}\phi X + A\phi AX = (X\alpha)\xi + \alpha\phi AX + (X\mu)W + \mu\nabla_X W,\]
or using (2.4) and (3.2),
\[(3.9)\]
\[\alpha\mu\nabla_X W = \frac{c}{4}\{u(X)\xi + \eta(X)U\} + \eta(A)A(3AU + \nabla\alpha) + 3g(AU, X)A\xi + \mu(X\alpha)W - \frac{c}{4}\alpha\phi X + \alpha A\phi AX - \alpha^2\phi\xi - (\xi\alpha)AX - \alpha(X\mu)W.\]
From (2.12) and (3.3) we have
\[(3.10)\]
\[\alpha\nabla_\xi U = \frac{3}{4}c\mu W + \alpha^2 A\xi - \alpha\beta\xi + \alpha\phi\nabla\alpha.\]
Putting \(X = \alpha U\) in (3.2) and using (2.4) and (3.3), we get
\[(3.11)\]
\[\alpha^2(\nabla_\xi A)U - \frac{c}{4}(\xi\alpha)U = \frac{c}{4}\alpha\mu^2\xi + \left\{\alpha(U\alpha) - \frac{3}{4}c\mu^2\right\}A\xi.\]
If we put \(X = \alpha\xi\) in (3.5) and make use of (3.10) and (3.11), then we have
\[(3.12)\]
\[\alpha A\phi\nabla\alpha + \frac{c}{4}\phi\nabla\alpha + (U\alpha)A\xi + \mu\left\{\alpha^2 + \frac{3}{4}c\right\}AW - \mu\xi - \frac{1}{\alpha}\left(\mu^2 - \frac{c}{4}\right)W = 0.\]

4. Real hypersurfaces satisfying \(\nabla_\xi R_\xi = 0\) and \(g(U, U)\) is constant

In this section we assume that \(\nabla_\xi R_\xi = 0\) and at the same time \(g(\nabla_\xi \xi, \nabla_\xi \xi)\) is constant, i.e. \(g(U, U) = \mu^2\) is constant. Then we get
\[(4.1)\]
\[\nabla \mu = 0,\]
on \(\Omega\). Note that above equation implies that
\[g(\nabla_X U, U) = 0.\]
If we take a inner product \(U\) to (3.8), then we have
\[(4.2)\]
\[(W\alpha)A\xi = (\xi\alpha)AW + \frac{3}{4\alpha}c\mu U - \mu\nabla\alpha + \alpha A\phi AW,\]
which shows that \(W\alpha = 0\) on \(\Omega\) because of (3.3). Moreover we take a inner product \(W\) to (4.2), then we get
\[(4.3)\]
\[(\xi\alpha)g(AW, W) = 0.\]
Thus, (4.2) turns out to be

\[\mu \left(\nabla \alpha - \frac{3}{4 \alpha} cU \right) = (\xi \alpha) AW + \alpha A \phi AW, \]

which implies that

\[\alpha(U \alpha) = \frac{3}{4} c \mu^2 - \frac{c}{4} \alpha \lambda, \]

where we have put \(\lambda = g(AW, W) \).

Putting \(X = U \) in (3.8) and using (3.3), we also find

\[\alpha^2 \nabla_U U = -\frac{c}{4} (\xi \alpha) \mu W + \left\{ \alpha(U \alpha) - \frac{3}{4} c \mu^2 \right\} U + \frac{c}{4} \alpha \mu \phi AW, \]

or using (4.5)

\[\alpha \nabla_U U = -\frac{c}{4} \mu (\xi \alpha) W - \frac{c}{4} \mu \lambda U + \frac{c}{4} \mu \phi AW. \]

Hence we have

\[\alpha^2 A \nabla U U = -\frac{c}{4} \mu (\xi \alpha) AW + \left(\frac{c}{4} \right)^2 \mu \lambda U + \frac{c}{4} \mu A \phi AW. \]

Combining last two equations, it follows that

\[\alpha^2 A \nabla_U U + \frac{c}{4} \alpha \nabla_U U = -\frac{c}{4} \mu (\xi \alpha) \left(\alpha AW + \frac{c}{4} W \right) + \frac{c}{4} \mu \left(\alpha A \phi AW + \frac{c}{4} \phi AW \right), \]

which together with (3.6) yields

\[\mu^2 \nabla \alpha - (U \alpha) U = \frac{\mu}{\alpha} (\xi \alpha) \left(\alpha AW + \frac{c}{4} W \right) - \mu \left(\alpha A \phi AW + \frac{c}{4} \phi AW \right). \]

If we take a inner product \(W \) to this and take account of (4.3), then we obtain \(\xi \alpha = 0 \). So we see, using (4.5), that

\[\mu \nabla \alpha = \left(\frac{3}{4 \alpha} c \mu - \frac{c \lambda}{4 \mu} \right) U - \alpha A \phi AW - \frac{c}{4} \phi AW. \]

Combining this to (4.4), we have

\[\alpha A \phi AW = -\frac{c}{8} \left(\frac{\lambda}{\mu} U + \phi AW \right) \]

by virtue of \(\xi \alpha = 0 \). Thus, (4.7) turns out to be

\[\mu \left(\alpha \nabla \alpha - \frac{3}{4} cU \right) = -\frac{c}{8} \left(\alpha \phi AW + \frac{\alpha \lambda}{\mu} U \right). \]

Putting \(X = \xi \) in (3.9) and using (3.3) and (4.9), we obtain

\[\mu^2 \nabla_{\xi} W = -\frac{\mu \alpha + \frac{c \lambda}{8 \mu}}{\alpha} U - \frac{c}{8} \phi AW, \]
which implies
\[g(AW, \nabla_\xi W) = 0. \]

We verify, using (3.2) and \(\omega = 0 \), that \(g((\nabla_\xi A)W, W) = 0 \). By the definition of \(\lambda \), we see that
\[\xi \lambda = g((\nabla_\xi A)W, W) + 2g(AW, \nabla_\xi W). \]
Therefore we obtain \(\xi \lambda = 0 \). Summing up we have

Lemma 1. \(\xi \alpha = \xi \lambda = \omega = 0 \) on \(\Omega \).

Applying (4.8) by \(\phi \), we get
\[\alpha \phi \nabla \phi = \frac{c}{8} (\lambda W + AW - \mu \xi). \]
If we apply (4.7) by \(\phi \) and take account of the last equation, then we obtain
\[\mu \phi \nabla \alpha = \frac{c}{8} (AW - \mu \xi) + \frac{c}{8} \left(\lambda - \frac{6}{\alpha} \mu^2 \right) W. \]
Accordingly we have
\[\mu \alpha A \phi \nabla \alpha = \frac{c}{8} (\alpha (A^2 W - \mu A \xi) + \frac{c}{8} (\alpha \lambda - 6 \mu^2) AW. \]
Substituting (4.5), (4.11) and this into (3.12), we obtain
\[-\frac{c}{8} \alpha A^2 W = \left\{ \mu^2 \left[\frac{c^2}{2} + \frac{c}{8} \alpha \xi \right] \right\} AW + \mu \left(\frac{3}{4 \alpha} \mu^2 - \frac{c}{4} \lambda - \frac{c}{8} \alpha \right) A \xi \]
\[-\mu \left\{ \frac{c^2}{32} + \mu^2 \left(\alpha^2 + \frac{3}{4} \right) \right\} \xi \]
\[-\frac{1}{\alpha} \left\{ \mu^2 \left(\alpha^2 + \frac{3}{4} c \right) \left(\mu^2 - \frac{c}{4} \right) + \frac{3}{16} \mu^2 \right\} W, \]
which implies
\[\frac{c}{8} \alpha g(A^2 W, W) = \frac{c}{8} \mu^2 \left(\alpha + \frac{3}{2 \alpha} c \right) - \frac{3 c}{4 \alpha} A \xi \]
\[+ \mu^2 \left[\alpha + \frac{3}{4 \alpha} c \right] \left(\mu^2 - \frac{c}{4} \right) + \lambda \left(\alpha^2 \mu^2 - \frac{1}{4} c \mu^2 + \frac{c^2}{16} \right) - \frac{c}{8} \alpha^2 \lambda^2. \]

If we take account of Lemma 1, we can write the equation (3.8) as
\[\alpha(\nabla_\xi u)(Y) + (4 \alpha \mu g(AX, W) \eta(Y) - \eta(AX)g(\phi \nabla \alpha, Y) \]
\[= \frac{c}{4} \{ g(X, Y) - \eta(X) \eta(Y) \} + \frac{3}{4 \alpha} c \mu \eta(AX) w(Y) + (X\alpha) u(Y) - \frac{3}{4 \alpha} cu(X) u(Y) \]
\[+ \alpha^2 g(AX, Y) - \frac{c}{4} \mu \eta(X) w(Y) - \alpha^2 \eta(AX) \eta(Y) + \alpha g(\phi \nabla \alpha AX, Y). \]
From this, we have a Codazzi-type for u:

$$
\alpha\{\nabla_X u(Y) - \nabla_Y u(X)\} + \alpha \mu \{ \eta(Y)w(AX) - \eta(X)w(AY) \}
- \eta(AX)g(\phi \nabla \alpha, Y) + \eta(AY)g(\phi \nabla \alpha, X)
= \mu \left(\alpha^2 + \frac{c}{2} \right) (\eta(X)w(Y) - \eta(Y)w(X))
+ (X \alpha)u(Y) - (Y \alpha)u(X)
+ \alpha g((\phi A \phi A - A \phi A \phi)X, Y),
$$

where we have used (2.6). Putting $X = \xi$ in this and using (3.3), (4.10) and Lemma 1, we get

$$
(\nabla_\xi u)(Y) - (\nabla_Y u)(\xi)
= \left(\mu + \frac{c}{8\mu} \right) w(AY) - \left(\mu^2 + \frac{c}{8} \right) \eta(Y) + \left(\mu \alpha + \frac{c\lambda}{8\mu} \right) w(Y).
$$

(4.14)

Applying (4.10) by αA and using (3.3) and (4.8), we have

$$
\alpha \mu^2 A \nabla_\xi W = \frac{c}{4} \left(\mu \alpha + \frac{3\lambda}{16\mu} \right) U + \left(\frac{c}{8} \right)^2 \phi AW,
$$

which shows that

$$
\alpha \mu^2 A \nabla_\xi W = -\frac{c}{4} \left(\alpha \mu^2 + \frac{3}{16} c\lambda \right) W - \left(\frac{c}{8} \right)^2 (AW - \mu \xi).
$$

(4.15)

If we replace X by W in (3.2) and make use of (3.3) and Lemma 1, then we obtain

$$
\alpha (\nabla_\xi A) W = \mu \left(\nabla \alpha - \frac{3}{4\alpha} cU \right),
$$

which together with (4.9) yields

$$
\alpha \phi (\nabla_\xi A) W = \frac{c}{8} (AW - \mu \xi + \lambda W).
$$

(4.16)

5. Lemmas and theorems

We will continue our arguments under the hypotheses $\nabla_\xi R_\xi = 0$ and at the same time $g(U, U)$ is constant. Then (4.9) is rewritted as

$$
\frac{4}{c} \mu^2 (Y \alpha^2) = (6\mu^2 - \alpha \lambda)u(Y) - \mu \alpha g(\phi AW, Y)
$$

(5.1)

for any vector field Y. Since μ is constant, if we differentiate this with respect to a vector field X again, and take the skew-symmetric part for
X and Y, then we eventually have
\begin{equation}
0 = Y(\alpha \lambda)u(X) - X(\alpha \lambda)u(Y) + (6\mu^2 - \alpha \lambda)((\nabla_X u)(Y) - (\nabla_Y u)(X)) \\
+ \frac{c}{8} \left(\frac{\lambda}{\mu} - \frac{6\mu}{\alpha} \right) \{u(X)g(\phi AW, Y) - u(Y)g(\phi AW, X)\} \\
+ \mu (g(A^2 W, X)\eta(Y) - g(A^2 W, Y)\eta(X) + g(\phi(\nabla X A)W, X) \\
- g(\phi(\nabla Y A)W, Y) + g(\phi A \nabla Y W, X) - g(\phi A \nabla X W, Y). \}
\end{equation}
Putting $X = \xi$ in this, and using (4.14), (4.15), (4.16) and Lemma 1, we have
\begin{equation}
\mu \alpha A^2 W = \left\{ (6\mu^2 - \alpha \lambda) \left(\mu + \frac{c}{8\mu} \right) - \frac{c}{8} \mu + \frac{1}{\mu} \left(\frac{c}{8} \right)^2 \right\} AW \\
+ \left\{ \alpha \mu^2 (\alpha + \lambda) - (6\mu^2 - \alpha \lambda) \left(\mu^2 + \frac{c}{8} \right) + \frac{c}{8} \mu^2 - \left(\frac{c}{8} \right)^2 \right\} \xi \\
+ \left\{ (6\mu^2 - \alpha \lambda) (\mu + \frac{c}{8} \mu) - \frac{c}{8} \mu \lambda + \frac{c}{4} \alpha \mu + 3 \left(\frac{c}{8} \right)^2 \frac{\lambda}{\mu} \right\} W,
\end{equation}
which implies that
\begin{equation}
\mu \alpha g(A^2 W, W) = (6\mu^2 - \alpha \lambda) \left(\mu \lambda + \mu \alpha + \frac{c\lambda}{4\mu} \right) + \frac{c}{4} \alpha \mu - \frac{c}{4} \mu \lambda + \left(\frac{c}{4} \right)^2 \frac{\lambda}{\mu},
\end{equation}
Combine (4.12) and (5.3), we find
\begin{equation}
\left\{ \alpha^2 \mu^2 - \frac{3}{4} \alpha \mu^2 + \frac{5}{64} \frac{\alpha \lambda}{\mu^2} - \left(\frac{c}{8} \right)^2 \frac{\alpha}{\mu^2} - \left(\frac{c}{8} \right)^3 \frac{1}{\mu^2} \right\} AW = f_1 \xi + f_2 W
\end{equation}
for some smooth functions f_1 and f_2 on Ω.
Now, we are going to prove the following:

Lemma 2. $AW = \mu \xi + \lambda W$ on Ω.

Proof. If not, then we have from (5.5)
\begin{equation}
\left(\frac{c}{8} \right)^2 \alpha \lambda = \mu^4 \alpha^2 - \frac{3}{4} \alpha \mu^4 + \frac{5}{64} \alpha^2 \mu^2 - \left(\frac{c}{8} \right)^3.
\end{equation}
If we combine (4.13) to (5.4), then we get
\begin{align*}
\frac{c}{8} \left\{ (6\mu^2 - \alpha \lambda) \left(\mu \lambda + \mu \alpha + \frac{c\lambda}{4\mu} \right) + \frac{c}{4} \alpha \mu - \frac{c}{4} \mu \lambda + \left(\frac{c}{4} \right)^2 \frac{\lambda}{\mu} \right\} \\
= \mu^3 \left(-\alpha \mu^2 + \frac{c}{8} \alpha - \frac{3}{4\alpha} \alpha \mu^2 + \frac{3}{16\alpha} \lambda \mu + \frac{c}{4} \lambda \right) + \frac{c}{8} \mu \left(\alpha \lambda + \frac{c}{2} \right).
\end{align*}
Comparing this with (5.6), we obtain
\[
\left\{ \mu^{10} + \frac{3c}{8} \mu^8 + \left(\frac{c}{8} \right)^2 \mu^6 \right\} \alpha^4 \\
+ \left\{ \frac{12c}{8} \mu^{10} + 32 \left(\frac{c}{8} \right)^2 \mu^8 - 9 \left(\frac{c}{8} \right)^4 \mu^4 - 3 \left(\frac{c}{8} \right)^5 \mu^2 \right\} \alpha^2 \\
+ 42 \left(\frac{c}{8} \right)^3 \mu^8 + 27 \left(\frac{c}{8} \right)^4 \mu^6 - 38 \left(\frac{c}{8} \right)^5 \mu^4 - 29 \left(\frac{c}{8} \right)^6 \mu^2 + 6 \left(\frac{c}{8} \right)^7 = 0,
\]
which implies that \(\alpha \) is a root of the algebraic equation with constant coefficient, because \(\mu \) is constant. Consequently \(\alpha \) is constant and hence \(3\mu^2 = \alpha \lambda \) by virtue of (4.5). Thus, (4.9) is reduced to
\[\mu \phi A W = \lambda U.\]
So we have \(AW = \mu \xi + \lambda W \), a contradiction. Thus, Lemma 2 is proved. \(\square \)

Using Lemma 2, we have
\[(\nabla_X A) W + A \nabla_X W = \mu \phi A X + (X \lambda) W + \lambda \nabla_X W,\]
which yields
\[g((\nabla_X A) W, Y) + g(A \nabla_X W, Y) = \mu g(\phi A X, Y) + (X \lambda) w(Y) + \lambda g(\nabla_X W, Y).\]
Putting \(Y = W \) in this and using (2.9) and (3.3), we find
\[g((\nabla_X A) W, W) = \frac{c}{2\alpha} \nu(X) + X \lambda,\]
which together with (2.4) implies that
\[(\nabla_W A) W = \frac{c}{2\alpha} U + \nabla \lambda.\]
If we put \(X = W \) in (5.7) and make use of Lemma 2 and the last equation, then we obtain
\[(5.8) \quad A \nabla_W W - \lambda \nabla_W W = \left(\lambda - \frac{c}{2\alpha} \right) U - \nabla \lambda.\]
Indeed, it is, using Lemma 2, seen that \(g(A^2 W, W) = \lambda^2 + \mu^2 \). Hence (4.13) becomes
\[\frac{c}{4} \alpha \lambda^2 - \left(\frac{c}{2} \alpha \lambda - \alpha^2 \mu^2 + \frac{c}{4} \mu^2 - \frac{c^2}{16} \right) \lambda - \alpha \mu^2 \left(\mu^2 - \frac{c}{8} \right) = 0.
\]
From this and Lemma 1 we verify that \(W \lambda = 0 \). Thus, (5.8) is accomplished on \(\Omega \).
Because of Lemma 2, (4.9) turns out to be

$$\mu^2 \alpha \nabla \alpha = \frac{c}{4} (3\mu^2 - \alpha \lambda) U. \quad (5.9)$$

If we take account of (2.6), (5.9), Lemma 1 and Lemma 2, then (3.9) is reduced to

$$\mu^2 \alpha \nabla_X W = -\frac{c}{4} \alpha \phi X + \alpha \phi AX - \alpha^2 \phi AX - \frac{c}{2} u(X) \xi$$

$$\quad + \frac{c}{4\mu} (\mu^2 - \alpha \lambda) \eta(X) U - \frac{c\lambda}{4} (u(X) W + w(X) U). \quad (5.10)$$

Putting $X = W$ in this and using (3.3) and Lemma 2, we have

$$\mu^2 \alpha \nabla_W W = -\left(\frac{c}{2} + \frac{c}{4\alpha} + \alpha^2 \lambda\right) U.$$

Combining this to (5.8), we obtain

$$\alpha \mu^2 \nabla \lambda = \left\{ \alpha \mu^2 \left(\lambda - \frac{c}{2\alpha}\right) - (\lambda + \frac{c}{4\alpha}) \left(\alpha^2 \lambda + \frac{c}{2} \lambda + \frac{c}{4\alpha}\right) \right\} U. \quad (5.11)$$

In the next place, we prove

Lemma 3. α and λ are constant on Ω.

Proof. (5.9) is rewritten as

$$\mu^2 \alpha (Y \alpha) = \frac{c}{4} (3\mu^2 - \alpha \lambda) u(Y) \quad (5.12)$$

for any vector field Y. Using the same method as that used to derive (5.2) from (5.1), we can deduce from the last equation the following:

$$Y(\alpha \lambda) u(X) - X(\alpha \lambda) u(Y) + (3\mu^2 - \alpha \lambda)((\nabla_X u)(Y) - (\nabla_Y u)(X)) = 0,$$

which together with Lemma 1 gives

$$(3\mu^2 - \alpha \lambda)((\nabla \xi u)(Y) - (\nabla_Y u)(\xi)) = 0.$$

Now, we suppose that $3\mu^2 - \alpha \lambda \neq 0$ on Ω, and that we restrict the arguments on such a place. Then we have from the last equation

$$g(\nabla \xi U, Y) + g(\nabla_Y \xi, U) = 0.$$

Further, we get from (4.14)

$$\left(\mu + \frac{c}{8\mu}\right) AW - \left(\mu^2 + \frac{c}{8}\right) \xi + \left(\mu \alpha + \frac{c}{8\mu} \lambda\right) W = 0$$

and hence

$$\mu^2 (\lambda + \alpha) + \frac{c}{4} \lambda = 0 \quad (5.13)$$
with the aid of Lemma 2, which implies
\[(\mu^2 + \frac{c}{4}) \nabla \lambda = -\mu^2 \nabla \alpha. \]

From this and (5.12) we see that
\[\alpha(\mu^2 + \frac{c}{4}) \nabla \lambda = \frac{c}{4} (\alpha \lambda - 3\mu^2) U, \]

which together with (5.11) yields
\[\frac{c}{4} \mu^2 (\alpha \lambda - 3\mu^2) \]
\[= \alpha \mu^2 \left(\mu^2 + \frac{c}{4} \right) \left(\lambda - \frac{c}{2\alpha} \right) - \left(\lambda + \frac{c}{4\alpha} \right) \left(\mu^2 + \frac{c}{4} \right) \left(\alpha^2 \lambda + \frac{c}{2} \lambda + \frac{c}{4} \alpha \right). \]

If we make use of (5.13), then we get
\[\mu^4 \alpha^4 + \left(\mu^6 - \frac{c^2}{8} \mu^2 \right) \alpha^2 + f(\mu) = 0, \]

where \(f(\mu) \) is certain polynomial with respect to \(\mu \). Since \(\mu \) is constant, the last equation tells us that \(\alpha \) is constant and hence \(3\mu^2 = \alpha \lambda \) because of (5.12), a contradiction. Therefore, we arrive at the conclusion. \(\square \)

Lemma 4. \(\alpha^2 + (3/4)c = 0 \) on \(\Omega \).

Proof. Replacing \(X \) by \(U \) in (5.10) and making use of (3.3) and Lemma 2, we find
\[\alpha \nabla_U W = -\frac{c}{4} \mu \xi. \]

If we take a inner product (5.10) with \(U \) and use (3.3), Lemma 2 and Lemma 3, then we also obtain
\[\alpha g(\nabla_X W, U) = -\mu \left(\alpha^2 + \frac{3}{4} \right) \eta(X) = \left(\frac{c}{4\alpha} + \frac{c}{2} \alpha + \alpha^2 \lambda \right) w(X). \]

From (5.7) we have a Codazzi-type formula for \(w \):
\[\lambda((\nabla_X w)(Y) - (\nabla_Y w)(X)) = \frac{c}{4\mu} (u(X)\eta(Y) - u(Y)\eta(X)) \]
\[+ g(A\nabla_X W, Y) - g(A\nabla_Y W, X) - \mu g((\phi A + A\phi)X, Y), \]

where we have used (2.4) and Lemma 3. If we replace \(X \) by \(U \) and take account of (3.3) and (5.15), then we obtain
\[\left(\lambda + \frac{c}{4\alpha} \right) g(\nabla_X W, U) = -\mu^2 g(AW, X) + \frac{c}{2\alpha} \mu^2 w(X) - \frac{c}{4\alpha} \lambda \mu \eta(X), \]
or make use of (5.16),
\[
\left(\lambda + \frac{c}{4\alpha} \right) \left(\mu \left(\alpha^2 + \frac{3}{4}c \right) \xi + \left(\frac{c}{4} \alpha + \frac{c}{2} \lambda + \alpha^2 \lambda \right) W \right) = \mu^2 \alpha W - \frac{c}{2} \mu^2 W + \frac{c}{4} \lambda \mu \xi.
\]

From this we have
\[
(5.17) \quad \left(\lambda + \frac{c}{4\alpha} \right) \left(\alpha^2 + \frac{3}{4}c \right) - \alpha \mu^2 - \frac{c}{4} \lambda = 0
\]
and
\[
(5.18) \quad \left(\lambda + \frac{c}{4\alpha} \right) \left(\frac{c}{4} \alpha + \frac{c}{2} \lambda + \alpha^2 \lambda \right) + \mu^2 \left(\frac{c}{2} - \alpha \lambda \right) = 0
\]
because of Lemma 2. Since we have
\[
(5.19) \quad 3\mu^2 = \alpha \lambda
\]
by virtue of (5.9) and Lemma 3, we can deduce (5.17) as
\[
\left(\alpha^2 + \frac{3}{4}c \right) \left(2\mu^2 + \frac{c}{4} \right) = 0.
\]

Now, we suppose that \(2\mu^2 + c/4 = 0\) on \(\Omega\), then we have \(c < 0\).
However combining this and (5.19) to (5.18) we get \(\alpha^2 = c/4\), which
implies that \(c > 0\), a contradiction. Therefore, Lemma 4 is proved. \(\square\)

From (5.19) and Lemma 4, we have
\[
(5.20) \quad \mu^2 \alpha = -\frac{c}{4} \lambda,
\]
which together with (5.18) implies that \(6\lambda = \alpha\). So we see, using (5.20),
that \(6\mu^2 + c/4 = 0\). Developed as above we conclude that \(\mu = 0\) or
\(6\mu^2 + c/4 = 0\) on \(M\) because \(\mu\) is constant. Thus we have

Proposition 1. Let \(M\) be a real hypersurface of a complex space
form \(M_{n}(c)\), \(c \neq 0\) which satisfies \(\nabla_{\xi} R_{\xi} = 0\). If \(g(\nabla_{\xi} \xi, \nabla_{\xi} \xi) = \mu^2\) is constant on \(M\), then \(\mu = 0\), that is, \(A\xi = \alpha \xi\) or \(6\mu^2 + c/4 = 0\).

If \(6\mu^2 + c/4 \neq 0\) holds on Proposition 1, then we have \(A\xi = \alpha \xi\)
on whole space \(M\). So we verify that \(\alpha\) is constant on \(M\) (see [8]).
Thus it follows from (3.2) that \(\alpha \nabla_{\xi} A = 0\). Consequently, we see that
\(\alpha(A\phi - \phi A) = 0\) by virtue of (2.1) and (2.4).

Here, we note the case \(\alpha = 0\) corresponds to the case of tube of radius \(\pi/4\)
in \(P_{n}\mathbb{C}\) (see [2]). But, in the case of \(H_{n}\mathbb{C}\) it is known that \(\alpha\) never
vanishes for Hopf hypersurfaces (cf. [1]). Thus, owing to Okumura's
work for \(P_{n}\mathbb{C}\) or Montiel and Romero's work for \(H_{n}\mathbb{C}\) we have
Theorem 2. Let M be a real hypersurface of a complex space form $M_n(c)$, $c \neq 0$ which satisfies $\mu^2 = g(\nabla_\xi \xi, \nabla_\xi \xi)$ is constant and $6\mu^2 + c/4 \neq 0$. Then M holds $\nabla_\xi R_\xi = 0$ if and only if M is locally congruent to one of the following:

(I) in case that $M_n(c) = P_n \mathbb{C}$ with $\eta(A\xi) \neq 0$,

(A_1) a geodesic hypersphere of radius r, where $0 < r < \pi/2$ and $r \neq \pi/4$,

(A_2) a tube of radius r over a totally geodesic $P_k \mathbb{C}(1 \leq k \leq n-2)$, where $0 < r < \pi/2$ and $r \neq \pi/4$;

(II) in case that $M_n(c) = H_n \mathbb{C}$,

(A_0) a horosphere,

(A_1) a geodesic hypersphere or a tube over a complex hyperbolic hyperplane $H_{n-1} \mathbb{C}$,

(A_2) a tube over a totally geodesic $H_k \mathbb{C}(1 \leq k \leq n-2)$.

Corollary 3. Let M be a real hypersurface of a complex projective space $P_n \mathbb{C}$ which satisfies $\mu^2 = g(\nabla_\xi \xi, \nabla_\xi \xi)$ is constant. Then M holds $\nabla_\xi R_\xi = 0$ if and only if M is locally congruent to one of the following:

(A_1) a geodesic hypersphere of radius r, where $0 < r < \pi/2$ and $r \neq \pi/4$,

(A_2) a tube of radius r over a totally geodesic $P_k \mathbb{C}(1 \leq k \leq n-2)$, where $0 < r < \pi/2$ and $r \neq \pi/4$;

provided that $\eta(A\xi) \neq 0$.

References

Nam-Gil Kim
Department of Mathematics,
Chosun University,
Kwangju 501-759, Korea
E-mail: ngkim@chosun.ac.kr

U-Hang Ki
Department of Mathematics,
Kyungpook National University,
Daegu 702-701, Korea
E-mail: uhangki2005@yahoo.co.kr

Hiroyuki Kurihara
Department of Computer and Media Science,
Saitama Junior College,
Hanasaki-ebashi, Kaho, Saitama 347-8503, Japan
E-mail: kurihara@sjc.ac.jp

Current address
5-15-5 Hanamigawaku-makuharihongou,
Chiba 262-0033, Japan
E-mail: h-kuri@leo.nit.ac.jp