SOME PROPERTIES OF PARALLEL SURFACES IN EUCLIDEAN 3-SPACES

DAE WON YOON

Abstract. In this paper, we study some properties about the parallel surfaces of ruled surfaces in a Euclidean 3-space. Furthermore, we classify the parallel surfaces of ruled surfaces in a Euclidean 3-space satisfying a linear type and a quadric type with respect to the Gaussian curvature and the mean curvature.

1. Introduction

Let f and g be smooth functions on a surface M in a Euclidean 3-space. The Jacobi function $\Phi(f, g)$ formed with f, g is defined by

$$\Phi(f, g) = \det \begin{pmatrix} f_s & f_t \\ g_s & g_t \end{pmatrix}$$

where $f_s = \frac{\partial f}{\partial s}$ and $f_t = \frac{\partial f}{\partial t}$. In particular, a surface satisfying the Jacobi condition $\Phi(K, H) = 0$ with respect to the Gaussian curvature K and the mean curvature H on a surface M is called a Weingarten surface or a W-surface. The classification of the Weingarten surfaces in a Euclidean space is almost completely open today. These surfaces were introduced by the very Weingarten in the context of the problem of finding all surfaces isometric to a given surface of revolution ([cf. 8]). Also, if a surface satisfies a linear type with respect to K and H, that is, $aK + bH = c$ $(a, b, c \in \mathbb{R})$, then it is said to be a linear Weingarten surface and we abbreviate it by LW-surface. The first examples of LW-surfaces are those with constant mean curvature($a = 0$) and those with constant Gaussian curvature($b = 0$).

Although these two kinds of surfaces have been extensively studied in the literature, the classification of LW-surfaces in the general case is almost completely open today. Several geometors ([3,4,7,8,12,13,14,16])

Received June 23, 2008. Accepted October 8, 2008.

2000 Mathematics Subject Classification: 53A05, 53B25.

Key words and phrases: Gaussian curvature, mean curvature, ruled surface, parallel surface, Weingarten surface, linear Weingarten surface.
have studied \(W \)-surfaces and \(LW \)-surfaces and obtained many interesting results. Recently, N.G. Kim and D.W. Yoon ([6]) studied the ruled surfaces in a Euclidean 3-space satisfying the quadric type with respect to the Gaussian curvature, the mean curvature and the second mean curvature. The second mean curvature is the mean curvature of non-degenerate second fundamental form of a surface. Also, Y.H. Kim and D.W. Yoon ([5]) investigated the ruled surfaces in a Minkowski 3-space satisfying the quadric type with respect to the Gaussian curvature, the mean curvature and the second Gaussian curvature. The second Gaussian curvature is that of the non-degenerate second fundamental form of a surface.

In this paper, we will study the parallel surface of a ruled surface in a Euclidean 3-space \(\mathbb{R}^3 \) satisfying the conditions

\[
(1.1) \quad a\overline{K} + b\overline{H} = c, \quad b \neq 0,
\]

\[
(1.2) \quad a\overline{K}^2 + b\overline{K}\overline{H} + c\overline{H}^2 = d, \quad b^2 - 4ac > 0,
\]

where \(a, b, c, d \) are constants, and \(\overline{K}, \overline{H} \) the Gaussian curvature and the mean curvature of the parallel surface of a ruled surface. If a surface satisfies the equation (1.2), then a surface is said to be \(\overline{K} \overline{H} \)-quadric.

On the other hand, the parallel surfaces of a cylindrical ruled surface are ruled surfaces, but the parallel surfaces of a non-cylindrical ruled surface cannot be ruled surfaces ([10]).

Throughout this paper, we assume that all objects are smooth and all surfaces are connected unless stated otherwise.

2. Preliminaries

A surface \(\overline{M} \) whose points are at a constant distance along the normal from another surface \(M \) is said to be parallel to \(M \). So, there are infinite numbers of parallel surfaces because we choose the constant distance along the normal arbitrarily. From the definition it follows that a parallel surface can be regarded as the locus of points which are on the normals to \(M \) at a non-zero constant distance \(\lambda \) from \(M \).

First, we obtain the representation of points on \(\overline{M} \) using the representations of points on \(M \).

Let \(x \) be the position vector of a point \(P \) on \(M \) and \(\mathbf{X} \) be the position vector of a point \(\overline{P} \) on the parallel surface \(\overline{M} \). Then \(\overline{P} \) is at a constant distance \(\lambda \) from \(P \) along the normal to the surface \(M \). Therefore the
parametrization for \overline{M} is given by

\begin{equation}
\overline{x}(s, t) = x(s, t) + \lambda n(s, t),
\end{equation}

where λ is a constant scalar and n is the unit normal vector field on M.

Let I, II, K, H be the first fundamental, the second fundamental form, the Gaussian curvature and the mean curvature of M, respectively, and let $\overline{I}, \overline{II}, \overline{K}, \overline{H}$ be the corresponding ones for \overline{M}. With the parametrization for a parallel surface, the following proposition holds.

Proposition 2.1 ([cf. 11]). Let \overline{M} be a parallel surface of a surface M in a Euclidean 3-space. Then we have

1. $\overline{I} = (1 - \lambda^2 K) I - 2\lambda(1 - \lambda H) II,$
2. $\overline{II} = \lambda K I + (1 - 2\lambda H) II,$
3. $\overline{K} = \frac{K}{1 - 2\lambda H + \lambda^2 K},$
4. $\overline{H} = \frac{H - \lambda K}{1 - 2\lambda H + \lambda^2 K}.$

From Proposition 2.1, differentiating \overline{K} and \overline{H} with respect to s and t respectively, we get

\begin{equation}
\begin{aligned}
(\overline{K})_s &= \frac{1}{(1 - 2\lambda H + \lambda^2 K)^2} (K_s - 2\lambda K_s H + 2\lambda KH_s), \\
(\overline{K})_t &= \frac{1}{(1 - 2\lambda H + \lambda^2 K)^2} (K_t - 2\lambda K_t H + 2\lambda KH_t), \\
(\overline{H})_s &= \frac{1}{(1 - 2\lambda H + \lambda^2 K)^2} (H_s - \lambda^2 KH_s - \lambda K_s + \lambda^2 HK_s), \\
(\overline{H})_t &= \frac{1}{(1 - 2\lambda H + \lambda^2 K)^2} (H_t - \lambda^2 KH_t - \lambda K_t + \lambda^2 HK_t),
\end{aligned}
\end{equation}

which imply the Jacobian function of the Gaussian curvature \overline{K} and the mean curvature \overline{H} is given by

\[\Phi(\overline{K}, \overline{H}) = \frac{1}{1 - 2\lambda H + \lambda^2 K} (K_s H_t - K_t H_s) \]

\[= \frac{1}{1 - 2\lambda H + \lambda^2 K} \Phi(K, H). \]

From the relationship of the above Jacobian function, we have thus the following theorem.

Theorem 2.2. Let \overline{M} be a parallel surface of a surface M in a Euclidean 3-space. If \overline{M} is a Weingarten surface if and only if M is a Weingarten surface.
3. Main Results

In this section, we study the parallel surface \bar{M} of a ruled surface in a Euclidean 3-space \mathbb{R}^3 which satisfies a linear Weingarten equation (1.1) and a quadric equation (1.2) with respect to the Gaussian curvature \bar{K} and the mean curvature \bar{H} of the parallel surface \bar{M}. It is well known that a cylindrical ruled surface is developable, i.e., the Gaussian curvature \bar{K} is identically zero. Therefore, from (3) of Proposition 2.1 \bar{K} is identically zero. Thus, non-cylindrical ruled surfaces are meaningful for our study.

Let M be a non-cylindrical ruled surface in \mathbb{R}^3. Then the parametrization for M is given by

$$x = x(s, t) = \alpha(s) + t\beta(s),$$

where $(\beta, \beta) = 1$, $(\beta', \beta') = 1$ and $(\alpha', \beta') = 0$. In this case α is the striction curve of x, and the parameter s is the arc-length on the spherical curve β. And we have the natural frame $\{x_s, x_t\}$ given by $x_s = \alpha' + t\beta'$ and $x_t = \beta$. Then, the components of the first fundamental form of M are given by $E = \langle \alpha', \alpha' \rangle + t^2$, $F = \langle \alpha', \beta \rangle$, $G = 1$. We put $D = \sqrt{EG - F^2}$. In terms of the orthonormal frame $\{\beta, \beta', \beta \times \beta'\}$ we obtain

$$\alpha' = F \beta + Q \beta \times \beta', \quad \beta'' = -\beta - J \beta \times \beta', \quad \alpha' \times \beta = Q \beta',$$

where $Q = \langle \alpha', \beta \times \beta' \rangle$, $J = \langle \beta'', \beta \times \beta \rangle$. Thus, we get $D = \sqrt{Q^2 + t^2}$, from which the unit normal vector n of M is written as

$$n = \frac{1}{D} (\alpha' \times \beta + t\beta' \times \beta) = \frac{1}{D} (Q\beta' - t\beta \times \beta').$$

This leads to the components e, f and g of the second fundamental form of M

$$e = \frac{1}{D} (Q(F + QJ) - Q't + Jt^2), \quad f = \frac{Q}{D}, \quad g = 0.$$

Therefore, using the data described above, the Gaussian curvature K and the mean curvature H of M are given respectively by

$$K = -\frac{Q^2}{D^4}, \quad H = \frac{1}{2D^3} A,$$

where we put $A = Jt^2 - Q't + Q(QJ - F)$. Differentiating K and H with respect to t respectively, we get

$$K_t = \frac{4Q^2}{D^5} t, \quad H_t = \frac{1}{2D^3} B,$$

where we put $B = -Jt^3 + 2Q't^2 + Q(-QJ + 3F)t - Q^2$.
Let \overline{M} be a parallel surface of a non-cylindrical ruled surface M in \(\mathbb{R}^3\). Then, by the definition of a parallel surface, the parametrization for \overline{M} is given by

$$\overline{x}(s, t) = x(s, t) + \lambda n(s, t).$$

Suppose that a parallel surface \overline{M} in \mathbb{R}^3 is a linear Weingarten surface. Then by (1.1), (2.2), (3.2) and (3.3) we have

\[(3.4)\]

$$(-8a\lambda Q^2 At - 2a\lambda Q^2 B + bB D^4 + b\lambda^2 Q^2 B + 4b\lambda^2 Q^2 At)^2 = 64(a - b\lambda)^2 A^4 t^2 D^6.$$

From the functions D, A and B the equation (3.4) becomes the polynomial in t whose coefficients are functions of variable s. Then, by the coefficient of the highest order t^{14}, we have $b^2 J^2 = 0$, from which $J = 0$ because of $b \neq 0$. Therefore, the functions A and B can be rewritten in the form

\[(3.5)\]

$$A = -Q' t - QF, \quad B = 2Q' t^2 + 3QF t - Q^2 Q'.$$

By (3.5) and the coefficient of t^{12} of (3.4), we have $4b^2 Q'^2 = 0$, from which $Q' = 0$. In this case the coefficient of t^{10} of (3.4) is given by $9b^2 Q^2 F = 0$, which implies $F = 0$ because the ruled surface M is non-developable, that is, $Q \neq 0$. Thus, from (3.2) M is minimal, that is, it is a helicoid. On the other hand, the coefficients of t^8, t^6, t^4 and t^2 are given as follows:

$$t^8 : -64Q^{10}(a - b\lambda)^2 = 0, \quad t^6 : -192Q^8(a - b\lambda)^2 = 0,$$

$$t^4 : -192Q^6(a - b\lambda)^2 = 0, \quad t^2 : -64Q^4(a - b\lambda)^2 = 0.$$

From which we have $\lambda = \frac{a}{b}$.

Thus, we have

Theorem 3.1. Let \overline{M} be a parallel surface of non-cylindrical ruled surface M in a Euclidean 3-space. If \overline{M} is a linear Weingarten surface satisfying $a\overline{K} + b\overline{H} = c$ ($a, b \neq 0, c \in \mathbb{R}$). Then \overline{M} is parametrized by

$$\overline{x}(s, t) = (s \cos t, s \sin t, ht) + \frac{a}{b\sqrt{t^2 + h^2}}(h \sin t, -h \cos t, s), \quad h \neq 0.$$

Next, we consider parallel surfaces of non-cylindrical ruled surfaces satisfying the condition (1.2).

Theorem 3.2. Let \overline{M} be a parallel surface of non-cylindrical ruled surface M in a Euclidean 3-space and let a, b, c, d be constants such that $b^2 - 4ac > 0$ and $c \neq 0$. If \overline{M} is a $\overline{K} \overline{H}$-quadric surface satisfying
\[aK^2 + bKK + cH^2 = d. \] Then \(M \) is parametrized by
\[
\mathbf{r}(s, t) = (s \cos t, s \sin t, h t) + \frac{b \pm \sqrt{b^2 - 4ac}}{2c\sqrt{t^2 + h^2}}(h \sin t, -h \cos t, s), \quad h \neq 0.
\]

Proof. Let \(M \) be a parallel surface of a non-cylindrical ruled surface \(\mathbf{x}(s, t) = \alpha(s) + t\beta(s) \) in \(\mathbb{R}^3 \). Then the parametrization for \(M \) is given by
\[
\mathbf{r}(s, t) = \mathbf{r}(s) + t\mathbf{b}(s) + \lambda \mathbf{n}(s, t),
\]
where \(\langle \mathbf{b}, \mathbf{b} \rangle = 1, \langle \mathbf{b}', \mathbf{b}' \rangle = 1 \) and \(\langle \alpha', \beta' \rangle = 0 \).

Suppose that a parallel surface \(\overline{M} \) is \(\overline{K} \overline{H} \)-quadric. Then, by using (2.2) the equation (1.2) implies
\[
(-16aQ^4tD^2 - 4b\lambda Q^2tA^2D^4 - b\lambda Q^2ABD^4 + 16b\lambda Q^4tD^2
\]
\[+ cAB + 4c\lambda^2Q^2tA^2D^4 - 16c\lambda^2Q^4tD^2)^2
\]
\[(3.6) \quad = (16a\lambda Q^4tAD^4 + 4a\lambda Q^4BD^4 + 4bQ^2tA - 8b\lambda^2Q^4tAD^4
\]
\[- 3b\lambda^2Q^2BD^4 - bQ^2B - 4b\lambda^2Q^4tAD^4 + c\lambda^2Q^2ABD^4
\]
\[- 8c\lambda Q^2tA + 2c\lambda^2Q^3B + 2c\lambda^3Q^4BD^4 + 8c\lambda^3Q^4tAD^4)^2 D^2.
\]

From the functions \(D, A \) and \(B \) the equation (3.6) becomes the polynomial in \(t \) whose coefficients are functions of variable \(s \). Then, by the coefficient of the highest order \(t^{20} \), we have \(c^2\lambda^2Q^4t^{14} = 0 \), from which \(J = 0 \) because \(c \neq 0 \). In this case, by the coefficient of \(t^{16} \) of the equation (3.6), we have \(4\lambda^2Q^4t^8 = 0 \), which implies \(Q = 0 \). From \(J = Q' = 0 \), the coefficient of \(t^{12} \) of the equation (3.6) is given by \(12c^2\lambda^2Q^6F^3 = 0 \), so we have \(F = 0 \). Thus, the surface \(M \) is minimal by (3.2). In this case, we can show that the other coefficients of the equation (3.6) are given as follows:
\[
256Q^8(a - b\lambda + c\lambda^2)^2 = 0, \quad 512Q^{10}(a - b\lambda + c\lambda^2)^2 = 0,
\]
\[
256Q^{12}(a - b\lambda + c\lambda^2)^2 = 0,
\]
which imply \(a - b\lambda + c\lambda^2 = 0 \), that is, \(\lambda = \frac{b \pm \sqrt{b^2 - 4ac}}{2c} \). This completes the proof. \(\square \)

References

Figure 1. Surfaces parallel to a helicoid with $\lambda = 0, 0.5, 1, 2, 4$.

Dae Won Yoon
Department of Mathematics Education and RINS,
Gyeongsang National University,
Jinju 660-701, Korea
E-mail: dwyon@gnu.ac.kr