UNITARY INTERPOLATION ON $AX = Y$ IN ALGL

JOO HO KANG

Abstract. Given operators X and Y acting on a Hilbert space H, an interpolating operator is a bounded operator A such that $AX = Y$. In this paper, we showed the following: Let L be a subspace lattice acting on a Hilbert space H and let X_i and Y_i be operators in $B(H)$ for $i = 1, 2, \cdots$. Let P_i be the projection onto $\text{range} X_i$ for all $i = 1, 2, \cdots$. If $P_k E = EP_k$ for some k in \mathbb{N} and all E in L, then the following are equivalent:

1. $\sup \left\{ \frac{\|E + \sum_{i=1}^{n} Y_i f_i\|}{\|E + \sum_{i=1}^{n} X_i f_i\|} : f \in H, n \in \mathbb{N}, E \in L \right\} < \infty,$

2. $\text{range} Y_k = \text{range} X_k = H$, and $< X_k f, X_k g > = < Y_k f, Y_k g >$ for some k in \mathbb{N} and for all f and g in H.

(1) There exists an operator A in $\text{Alg}L$ such that $AX_i = Y_i$ for $i = 1, 2, \cdots$ and $AA^* = I = A^*A$.

1. Introduction

Let A be a sublagebra of the algebra $B(H)$ of all bounded operators acting on a Hilbert space H. An interpolating operator is a bounded operator A in A such that $AX = Y$. Unitary interpolation problem on $AX = Y$ in A is the following: Given operators X and Y in $B(H)$, when is there an unitary operator A in A such that $AX = Y$? We investigate unitary interpolation problems in the subalgebra $\text{Alg}L$ of $B(H)$ when L is a subspace lattice on H.

We establish notations and conventions. A subspace lattice L is a strongly closed lattice of projections acting on a Hilbert space H. We assume that projections 0 and I lie in L. We usually identify projections and their ranges, so that it makes sense to speak of an operator as leaving a projection invariant. The symbol $\text{Alg}L$ is the algebra of all bounded linear operators on H that leave

Received July 13, 2009. Revised August 27, 2009.
2000 Mathematics Subject Classification : 47L35

Key words and phrases : Interpolation Problem, Unitary Interpolation Problem, Subspace Lattice, Alg L. This research was supported by the Daegu University Research Grant, 2007.
invariant all the projections in \mathcal{L}. If each pairwise projections of a subspace lattice \mathcal{L} is commutative, then \mathcal{L} is called a *commutative subspace lattice* or *CSL*. Let M be a subset of a Hilbert space \mathcal{H}. Then \overline{M} means the closure of M and \overline{M}^\perp the orthogonal complement of \overline{M}. Let \mathbb{N} be the set of all natural numbers and \mathbb{C} be the set of all complex numbers.

An operator A in $\mathcal{B}(\mathcal{H})$ is *unitary* if it is surjective isometry.

2. Results

Let \mathcal{H} be a Hilbert space and let $\mathcal{B}(\mathcal{H})$ be the algebra of all bounded operators acting on \mathcal{H}. Let \mathcal{L} be a subspace lattice on \mathcal{H}. $\text{Alg}\mathcal{L}$ is the algebra of all bounded linear operators on \mathcal{H} which leave invariant each projection E in \mathcal{L}.

Assume that X and Y are operators in $\mathcal{B}(\mathcal{H})$ and A is an operator in $\text{Alg}\mathcal{L}$ such that $AX = Y$. Then $\|E^\perp Yf\| = \|E^\perp AXf\| = \|E^\perp AE^\perp Xf\| \leq \|A\|\|E^\perp Xf\|$ for all $E \in \mathcal{L}$. If, for convenience, we adopt the convention that a fraction whose numerator and denominator are both zero is equal to zero, then the inequality above may be stated in the form

$$\sup_{E \in \mathcal{L}} \frac{\|E^\perp Yf\|}{\|E^\perp Xf\|} \leq \|A\|.$$

In [5], we showed the above fact is a necessary and sufficient condition for existence of interpolating operator in $\text{Alg}\mathcal{L}$.

Theorem A[5]. Let \mathcal{L} be a subspace lattice on \mathcal{H} and let X and Y be operators in $\mathcal{B}(\mathcal{H})$. Let P be the projection onto $\text{range} X$. If $PE = EP$ for every $E \in \mathcal{L}$, then the following are equivalent:

1. There exists an operator A in $\text{Alg}\mathcal{L}$ such that $AX = Y$.

2. \[\sup \left\{ \frac{\|E^\perp Yf\|}{\|E^\perp Xf\|} : f \in \mathcal{H}, E \in \mathcal{L} \right\} = K < \infty. \]

Moreover, if condition (2) holds, we may choose an operator A such that $\|A\| = K$.

We introduce Lemmas to investigate unitary interpolation problems.

Lemma 2.1. Let A, X and Y be operators in $\mathcal{B}(\mathcal{H})$. If $Y = AX$ and $A|_{\text{range} X^\perp} = 0$, then $\ker A^* = \ker Y^*$.
PROOF. Let f be a vector in Ker A^*. Then $A^*f = 0$. So $X^*A^*f = 0$. Hence $Y^*f = 0$. Therefore, f is in Ker Y^*.

Conversely, if f is in Ker Y^*, then for any g in H,

$$< f, Ag > = < A^*f, g >$$

$$= < A^*f, Xg_1 + g_2 >$$

for some g_1 and $g_2 \in \text{range } X^\perp$

$$= < A^*f, Xg_1 > + < A^*f, g_2 >$$

$$= < f, AXg_1 > + < f, Ag_2 >$$

$$= < f, Yg_1 > + 0$$

$$= 0$$

Hence $f \in \text{range } A^\perp (=\text{Ker } A^*)$.

LEMMA 2.2. Let A, X and Y be operators in $B(\mathcal{H})$. If $Y = AX$, $A |_{\text{range } X^\perp} = 0$ and $AA^* = I = A^*A$, then Y has dense range in \mathcal{H}.

PROOF. Suppose that $Y = AX$ and $AA^* = I = A^*A$. Then A and A^* are bijective operators on \mathcal{H}. So $\text{range } A^\perp = 0$. Since $Y = AX$, Ker $A^* = \text{Ker } Y^*$ by Lemma 2.1. Hence $0 = \text{range } A^\perp = \text{range } Y^\perp$. So Y has dense range in \mathcal{H}.

LEMMA 2.3. Let A, X and Y be operators in $B(\mathcal{H})$. Assume $Y = AX$, $A |_{\text{range } X^\perp} = 0$ and $A^*A = I = AA^*$. If $\text{range } Y \subset \text{range } X$, then X has dense range in \mathcal{H}.

PROOF. By Lemma 2.2, Y has dense range in \mathcal{H}. Since $\text{range } Y \subset \text{range } X$, X has dense range in \mathcal{H}.

LEMMA 2.4. Let A, X and Y be operators in $B(\mathcal{H})$. Assume $Y = AX$, $A |_{\text{range } X^\perp} = 0$ and $A^*A = AA^*$. If $f \in \text{range } X^\perp$, then $A^*f \in \text{range } X^\perp$.

PROOF. Let \(f \in \overline{\text{range } X^\perp} \) and \(g \in \mathcal{H} \). Then \(Xg = A^*g_1 + g_2 \) for some \(g_2 \in \overline{\text{range } A^*^\perp} \). So

\[
< A^*f, Xg > = < A^*f, A^*g_1 + g_2 > \\
= < A^*f, A^*g_1 > + < A^*f, g_2 > \\
= < Af, A^*g_1 > + 0 \\
= 0
\]

Hence \(A^*f \in \overline{\text{range } X^\perp} \). \(\square \)

LEMMA 2.5. Let \(A, X \) and \(Y \) be operators in \(\mathcal{B}(\mathcal{H}) \). If \(Y = AX \) and \(Af = 0 \) for \(f \) in \(\overline{\text{range } X^\perp} \), then the following statements are equivalent.

(1) \(\overline{\text{range } Y} \subset \overline{\text{range } X} \)

(2) If \(f \in \overline{\text{range } X^\perp} \), then \(A^*f \in \overline{\text{range } X^\perp} \).

PROOF. Suppose that \(\overline{\text{range } Y} \subset \overline{\text{range } X} \) and \(f \in \overline{\text{range } X^\perp} \). Then \(\overline{\text{range } X^\perp} \subset \overline{\text{range } Y^\perp} \) and so \(< A^*f, Xg > = < f, AXg > = < f, Yg > = 0 \) for any \(g \) in \(\mathcal{H} \). Hence \(A^*f \in \overline{\text{range } X^\perp} \).

Conversely, assume that if \(f \in \overline{\text{range } X^\perp} \), then \(A^*f \in \overline{\text{range } X^\perp} \). Let \(f \in \overline{\text{range } X^\perp} \). Then for any \(g \) in \(\mathcal{H} \), \(0 = < A^*f, Xg > = < f, AXg > = < f, Yg > \). So \(f \in \overline{\text{range } Y^\perp} \). Hence \(\overline{\text{range } Y} \subset \overline{\text{range } X} \). \(\square \)

THEOREM 2.6. Let \(\mathcal{L} \) be a subspace lattice acting on a Hilbert space \(\mathcal{H} \) and let \(X \) and \(Y \) be operators in \(\mathcal{B}(\mathcal{H}) \). Then the following are equivalent:

(1) \(\sup \left\{ \frac{\|E^\perp Y f\|}{\|E^\perp X f\|} : f \in \mathcal{H}, E \in \mathcal{L} \right\} < \infty, \overline{\text{range } Y} = \overline{\text{range } X}, \overline{\text{range } X} = \mathcal{H} \) and \(< Xf, Xg > = < Yf, Yg > \) for all \(f \) and \(g \) in \(\mathcal{H} \).

(2) There exists an operator \(A \) in \(\text{Alg}\mathcal{L} \) such that \(AX = Y \) and \(AA^* = I = A^*A \).

PROOF. Assume that \(\sup \left\{ \frac{\|E^\perp Y f\|}{\|E^\perp X f\|} : f \in \mathcal{H}, E \in \mathcal{L} \right\} < \infty \). Then since \(\overline{\text{range } X} = \mathcal{H} \), there exists an operator \(A \) in \(\text{Alg}\mathcal{L} \) such that \(AX = Y \) and \(A|_{\overline{\text{range } X^\perp}} = 0 \) by Theorem A. Since \(< Xf, Xg > = < Yf, Yg > \) for all
f and g in \(\mathcal{H} \), \(\langle Xf, Xg \rangle = \langle AXf, AXg \rangle \). So \(X^*X = X^* A^*AX \). Since \(X \) has dense range in \(\mathcal{H} \), \(I = A^*A \). Let \(f \) and \(g \) be vectors in \(\mathcal{H} \).

\[
\langle Y^*AA^*Yf, g \rangle = \langle AA^*Yf, yg \rangle \\
= \langle AA^*AXf, AXg \rangle \\
= \langle A^*AXf, A^*AXg \rangle \\
= \langle Xf, Xg \rangle \\
= \langle Yf, Yg \rangle .
\]

Hence \(Y^*AA^*Y = Y^*Y \). Since range \(Y = \text{range} \ X \), \(Y \) has dense range in \(\mathcal{H} \). So \(AA^* = I \). Hence \(A^*A = I = AA^* \).

Conversely, if there exists an operator \(A \) in \(\text{Alg} \mathcal{L} \) such that \(AX_i = Y_i \) for \(i = 1, 2, \cdots, n \) and \(AA^* = I = A^*A \), then

\[
\sup \left\{ \frac{\|E^\perp Xf_i\|}{\|E^\perp Xf_i\|} : f_i \in \mathcal{H}, \ E \in \mathcal{L} \right\} < \infty \text{ and range } Y \subset \text{range } X \text{ by Lemmas 2.4 and 2.5. By Lemma 2.1, Ker } A^* = \text{Ker } Y^* \text{. Since } A^* \text{ is one-to-one, range } Y^\perp = 0 \text{. So range } Y = \mathcal{H} \text{. Since range } Y \subset \text{range } X, \text{ range } X = \mathcal{H} \text{. Hence } X \text{ and } Y \text{ have dense ranges in } \mathcal{H} \text{. Also, for all } f \text{ and } g \text{ in } \mathcal{H}, \langle Yf, Yg \rangle = \langle AXf, AXg \rangle = \langle X^*A^*AXf, g \rangle = \langle X^*IXf, g \rangle = \langle Xf, Xg \rangle .
\]

\[\square\]

THEOREM 2.7. Let \(\mathcal{L} \) be a subspace lattice acting on a Hilbert space \(\mathcal{H} \) and let \(X_i \) and \(Y_i \) be operators in \(B(\mathcal{H}) \) for \(i = 1, 2, \cdots, n \). Let \(P_i \) be the projection onto \(\text{range } X_i \) for all \(i = 1, 2, \cdots, n \). If \(P_k E = EP_k \) for some \(k \) in \(\{1, 2, \cdots, n\} \) and all \(E \in \mathcal{L} \), then the following are equivalent:

1. \(\sup \left\{ \frac{\|E^\perp (\sum_{i=1}^{n} Y_i f_i)\|}{\|E^\perp (\sum_{i=1}^{n} X_i f_i)\|} : f_i \in \mathcal{H}, \ E \in \mathcal{L} \right\} < \infty \text{, range } Y_k = \text{range } X_k = \mathcal{H} \text{, and} \)

\[< X_k f, X_k g >= < Y_k f, Y_k g > \text{ for some } k \in \{1, 2, \cdots, n\} \text{ and for all } f \text{ and } g \text{ in } \mathcal{H} .\]

2. There exists an operator \(A \) in \(\text{Alg} \mathcal{L} \) such that \(AX_i = Y_i \) for \(i = 1, 2, \cdots, n \) and \(AA^* = I = A^*A \).

PROOF. Assume that \(\sup \left\{ \frac{\|E^\perp (\sum_{i=1}^{n} Y_i f_i)\|}{\|E^\perp (\sum_{i=1}^{n} X_i f_i)\|} : f_i \in \mathcal{H}, \ E \in \mathcal{L} \right\} < \infty \). Then there
exists an operator A in $\text{Alg} \mathcal{L}$ such that $AX_i = Y_i$ and $A|_{\text{range } Y_i} = 0$ for $i = 1, 2, \cdots, n$, by Theorem 2.2[5]. Since $<X_k f, X_k g>=<Y_k f, Y_k g>$ for some $k = 1, 2, \cdots, n$ and for all f and g in \mathcal{H}, $<X_k f, X_k g>=<AX_k f, AX_k g>$ for all f and g in \mathcal{H}. So $X_k^* X_k = X_k^* A^* AX_k$. Since $\text{range } X_k = \mathcal{H}$, $I = A^* A$. Let f and g be vectors in \mathcal{H}.

$$<Y_k^* A A^* Y_k f, g> = <AA^* Y_k f, Y_k g>$$

$$= <AA^* X_k f, AX_k g>$$

$$= <A^* AX_k f, A^* AX_k g>$$

$$= <X_k f, X_k g>$$

$$= <Y_k f, Y_k g>.$$

Hence $Y_k^* A A^* Y_k = Y_k^* Y_k$. Since Y_k has dense range in \mathcal{H}, $AA^* = I$. Hence $A^* A = I = A A^*$.

Conversely, if there exists an operator A in $\text{Alg} \mathcal{L}$ such that $AX_i = Y_i$, $A|_{\text{range } X_i} = 0$ for all $i = 1, 2, \cdots, n$ and $AA^* = I = A^* A$, then

$$\sup \left\{ \frac{\|E^+(\sum_{i=1}^n Y_i f_i)\|}{\|E^+(\sum_{i=1}^n X_i f_i)\|} : f \in \mathcal{H}, E \in \mathcal{L} \right\} < \infty \text{ and } \text{range } Y_i \subset \text{range } X_i \text{ for all } i = 1, 2, \cdots, n \text{ by Lemmas 2.4 and 2.5. By Lemma 2.1, Ker } A^* = \text{Ker } Y_i^* \text{ for all } i = 1, 2, \cdots, n. \text{ Since } A^* \text{ is one-to-one, } \text{range } Y_i^* = 0. \text{ So range } Y_i = \mathcal{H}. \text{ Since } \text{range } Y_i \subset \text{range } X_i, \text{range } X_i = \mathcal{H}. \text{ Hence } X_i \text{ and } Y_i \text{ have dense ranges in } \mathcal{H} \text{ for all } i = 1, 2, \cdots, n. \text{ Also, for all } f \text{ and } g \in \mathcal{H}, <Y_i f, Y_i g>=<AX_i f, AX_i g>=<X_i^* AX_i f, g> = <X_i^* I X_i f, g> = <X_i f, X_i g>.$$

THEOREM 2.8. Let \mathcal{L} be a subspace lattice acting on a Hilbert space \mathcal{H} and let X_i and Y_i be operators in $B(\mathcal{H})$ for $i = 1, 2, \cdots$. Let P_i be the projection onto $\text{range } X_i$ for all $i = 1, 2, \cdots$. If $P_k E = E P_k$ for some $k \in \mathbb{N}$ and all $E \in \mathcal{L}$, then the following are equivalent:

1. $\sup \left\{ \frac{\|E^+(\sum_{i=1}^n Y_i f_i)\|}{\|E^+(\sum_{i=1}^n X_i f_i)\|} : f \in \mathcal{H}, n \in \mathbb{N}, E \in \mathcal{L} \right\} < \infty$, $\text{range } Y_k = \text{range } X_k = \mathcal{H}$, and $<X_k f, X_k g>=<Y_k f, Y_k g>$ for some $k \in \mathbb{N}$ and for all f and g in \mathcal{H}.

2. There exists an operator A in $\text{Alg} \mathcal{L}$ such that $AX_i = Y_i$ for $i = 1, 2, \cdots$ and $AA^* = I = A^* A$.

Proof. Assume that \(\sup \left\{ \frac{\| E^+ (\sum_{i=1}^n Y_i f_i) \|}{\| E^+ (\sum_{i=1}^n X_i f_i) \|} : f \in \mathcal{H}, n \in \mathbb{N}, E \in \mathcal{L} \right\} < \infty \).

Then there exists an operator \(A \) in \(\text{Alg} \mathcal{L} \) such that \(AX_i = Y_i \) and \(A \mid_{\text{range } X_i} = 0 \) for \(i = 1, 2, \cdots \), by Theorem 2.3[5]. Since \(< X_k f, X_k g > = < Y_k f, Y_k g > \) for some \(k \in \mathbb{N} \) and for all \(f \) and \(g \) in \(\mathcal{H} \), \(< X_k f, X_k g > = < AX_k f, AX_k g > \) for all \(f \) and \(g \) in \(\mathcal{H} \). So \(X_k^* X_k = X_k^* A^* AX_k \). Since \(X_k \) has dense range in \(\mathcal{H} \), \(I = A^* A \). Let \(f \) and \(g \) be vectors in \(\mathcal{H} \).

\[
< Y_k^* AA^* Y_k f, g > = < AA^* Y_k f, Y_k g > \\
= < AA^* X_k f, AX_k g > \\
= < A^* X_k f, A^* AX_k g > \\
= < X_k f, X_k g > \\
= < Y_k f, Y_k g > .
\]

Hence \(Y_k^* AA^* Y_k = Y_k^* Y_k \). Since \(Y_k \) has dense range in \(\mathcal{H} \), \(AA^* = I \). Hence \(A^* A = I = AA^* \).

Conversely, if there exists an operator \(A \) in \(\text{Alg} \mathcal{L} \) such that \(AX_i = Y_i \), \(A \mid_{\text{range } X_i} = 0 \) for all \(i = 1, 2, \cdots \) and \(AA^* = I = A^* A \), then

\[
\sup \left\{ \frac{\| E^+ (\sum_{i=1}^n Y_i f_i) \|}{\| E^+ (\sum_{i=1}^n X_i f_i) \|} : f \in \mathcal{H}, n \in \mathbb{N}, E \in \mathcal{L} \right\} < \infty \text{ and } \text{range } Y_i \subset \text{range } X_i \text{ for all } i \text{ in } \mathbb{N} \text{ by Lemmas 2.4 and 2.5. By Lemma 2.1, Ker } A^* = \text{Ker } Y_i^* \text{ for each } i \text{ in } \mathbb{N}. \text{ Since } A^* \text{ is one-to-one, } \text{range } Y_i = \mathcal{H}. \text{ Hence } X_i \text{ and } Y_i \text{ have dense ranges in } \mathcal{H} \text{ for all } i = 1, 2, \cdots. \text{ And } < Y_i f, Y_i g > = < AX_i f, AX_i g > = < X_i^* A^* AX_i f, g > = < X_i^* I X_i f, g > = < X_i f, X_i g > \text{ for all } f \text{ and } g \text{ in } \mathcal{H}. \qed
\]

References

Joo Ho Kang
Dept. of Math.,
Daegu University
Daegu, Korea
jhkang@daegu.ac.kr