INTERVAL-VALUED FUZZY SUBGROUPS AND RINGS

Hee Won Kang* and Kul Hur**

Abstract. We introduce the concepts of interval-valued fuzzy subgroups [resp. normal subgroups, rings and ideals] and investigate some of it’s properties.

1. Introduction

2. Preliminaries
In this section, we list some concepts and results related to interval-valued fuzzy set theory and needed in next sections.

Let $D(I)$ be the set of all closed subintervals of the unit interval $[0, 1]$. The elements of $D(I)$ are generally denoted by capital letters M, N, \cdots, and note that $M = [M^L, M^U]$, where M^L and M^U are the lower and the upper end points respectively. Especially, we denoted $0 = [0, 0], 1 = [1, 1]$, and $a = [a, a]$ for every $a \in (0, 1)$. We also note that

(i) $(\forall M, N \in D(I)) (M = N \iff M^L = N^L, M^U = N^U)$,

(ii) $(\forall M, N \in D(I)) (M = N \leq M^L \leq N^L, M^U \leq N^U)$.

For every $M \in D(I)$, the complement of M, denoted by M^C, is defined by $M^C = 1 - M = [1 - M^U, 1 - M^L]$ (See[12]).

Definition 2.1[7,14]. A mapping $A : X \rightarrow D(I)$ is called an interval-valued fuzzy set(is short, IVFS) in X, denoted by $A = [A^L, A^U]$, if $A^L, A^U \in I^X$ such that $A^L \leq A^U$, i.e., $A^L(x) \leq A^U(x)$ for each $x \in X$, where $A^L(x)[\text{resp } A^U(x)]$ is called the lower[resp upper] end point of x to A. For any $[a, b] \in D(I)$, the interval-valued fuzzy A in X defined by $A(x) = [A^L(x), A^U(x)] = [a, b]$ for each $x \in X$ is denoted by \tilde{a} and if $a = b$, then the IVF empty set and the interval-valued fuzzy whole set in X, respectively.

We will denote the set of all IVFSs in X as $D(I)^X$. It is clear that set $A = [A, A] \in D(I)^X$ for each $A \in I^X$.

For sets X, Y and Z, $f = (f_1, f_2) : X \rightarrow Y \times Z$ is called a complex mapping if $f_1 : X \rightarrow Y$ and $f_2 : Y \rightarrow Z$ are mappings.

Definition 2.1’[1,9]. Let X be a set. A complex mapping $A = (\mu_A, \nu_A) : X \rightarrow I \times I$ is called a intuitionistic fuzzy set(is short, IFS) in X if $\mu_A(x) + \nu_A(x) \leq 1$ for each $x \in X$, where the mappings $\mu_A : X \rightarrow I$ and $\nu_A : X \rightarrow I$ denote the degree of membership(namely $\mu_A(x)$) and the degree of nonmembership(namely $\nu_A(x)$) of each $x \in X$ to A, respectively. in particular, 0_\sim and 1_\sim denote the intuitionistic fuzzy empty set and intuitionistic fuzzy whole set in X defined by $0_\sim(x) = (0, 1)$ and $1_\sim(x) = (1, 0)$ for each $x \in X$, respectively.

We will denoted the set of all the IFSs in X as IFS(X).
Result 2. A[2, Lemma 1]. We define two mappings $f : D(I)^X \rightarrow \text{IFS}(X)$ and $g : \text{IFS}(X) \rightarrow D(I)^X$ as follows, respectively:

(i) $f(A) = (A^L , 1 - A^U)$, $\forall A \in D(I)^X$,

(ii) $g(B) = [\mu_B, 1 - \nu_B]$, $\forall B \in \text{IFS}(X)$.

In this case, we write as $f(A) = A^*$ and $g(B) = B^*$, respectively. Then

(a) $g \circ f = 1_{D(I)^X}$, i.e., $g(f(A)) = A$, $\forall A \in D(I)^X$.

(b) $f \circ g = 1_{\text{IFS}(X)}$, i.e., $f(g(B)) = B$, $\forall B \in \text{IFS}(X)$.

Definition 2.2[7]. An IVFS A is called an *interval-valued fuzzy point* (in short, IVFP) in X with the support $x \in X$ and the value $[a , b] \in D(I)$ with $b > 0$, denoted by $A = x_{[a,b]}$, if for each $y \in X$

$$A(y) = \begin{cases}
[a,b] & \text{if } y = x, \\
0 & \text{otherwise}
\end{cases}$$

In particular, if $b = a$, then $x_{[a,b]}$ is denoted by x_a.

We will denote the set of all IVFPs in X as $\text{IVFP}(X)$.

Definition 2.3 [7]. Let $A, B \in D(I)^X$ and let $\{A_\alpha\}_{\alpha \in \Gamma} \subset D(I)^X$. Then:

(i) $A \subset B$ iff $A^L \leq B^L$ and $A^U \leq B^U$.

(ii) $A = B$ iff $A \subset B$ and $B \subset A$.

(iv) $A \cup B = [A^L \lor B^L , A^U \lor B^U]$.

(iv)$' \bigcup_{\alpha \in \Gamma} A_\alpha = [\bigvee_{\alpha \in \Gamma} A^L_\alpha , \bigvee_{\alpha \in \Gamma} A^U_\alpha]$.

(v) $A \cap B = [A^L \land B^L , A^U \land B^U]$.

(v)$' \bigcap_{\alpha \in \Gamma} A_\alpha = [\bigwedge_{\alpha \in \Gamma} A^L_\alpha , \bigwedge_{\alpha \in \Gamma} A^U_\alpha]$.
Result 2.B[7, Theorem 1]. Let $A, B, C \in D(I)^X$ and let $\{A_\alpha\}_{\alpha \in \Gamma} \subset D(I)^X$. Then:

(a) $\tilde{0} \subset A \subset \tilde{1}$.
(b) $A \cup B = B \cup A$, $A \cap B = B \cap A$.
(c) $A \cup (B \cup C) = (A \cup B) \cup C$, $A \cap (B \cap C) = (A \cap B) \cap C$.
(d) $A, B \subset A \cup B$, $A \cap B \subset A, B$.
(e) $A \cap (\bigcup_{\alpha \in \Gamma} A_\alpha) = \bigcup_{\alpha \in \Gamma} (A \cap A_\alpha)$.
(f) $A \cup (\bigcap_{\alpha \in \Gamma} A_\alpha) = \bigcap_{\alpha \in \Gamma} (A \cup A_\alpha)$.
(g) $(\tilde{0})^c = \tilde{1}$, $(\tilde{1})^c = \tilde{0}$.
(h) $(A^c)^c = A$.
(i) $(\bigcup_{\alpha \in \Gamma} A_\alpha)^c = \bigcap_{\alpha \in \Gamma} A_\alpha^c$, $(\bigcap_{\alpha \in \Gamma} A_\alpha)^c = \bigcup_{\alpha \in \Gamma} A_\alpha^c$.

Definition 2.4[7]. Let $A \in D(I)^X$ and let $x_M \in \text{IVF}_P(X)$. Then:

(i) The set $\{x \in X : A_U(x) > 0\}$ is called the support of A and is denoted by $S(A)$.
(ii) x_M said to belong to A, denoted by $x_M \in A$, if $M^L \leq A_U(x)$ and $M^U \leq A_L(x)$ for each $x \in X$.

It is obvious that $A = \bigcup_{x_M \in A} x_M$ and $x_M \in A$ if and only if $x_M^L \in A_L$ and $x_M^U \in A_U$.

Definition 2.5[7]. Let $f : X \to Y$ be a mapping, let $A \in D(I)^X$ and let $B \in D(I)^Y$. Then:

(i) the image of A under f, denoted by $f(A)$, is an IVFS in Y defined as follows: For each $y \in Y$,

$$f(A)_L(y) = \begin{cases} \bigvee_{y = f(x)} A_L(x) & \text{if } f^{-1}(y) \neq \emptyset, \\ 0 & \text{otherwise} \end{cases}$$

and

$$f(A)_U(y) = \begin{cases} \bigvee_{y = f(x)} A_U(x) & \text{if } f^{-1}(y) \neq \emptyset, \\ 0 & \text{otherwise}. \end{cases}$$
(ii) the preimage of B under f, denoted by $f^{-1}(B)$, is an IVFS in Y defined as follows: For each $y \in Y$,
\[
f^{-1}(B)^L(y) = (B^L \circ f)(x) = B^L(f(x))
\]
and
\[
f^{-1}(B)^U(y) = (B^U \circ f)(x) = B^U(f(x))
\].

It can be easily seen that $f(A) = [f(A^L), f(A^U)]$ and $f^{-1}(B) = [f^{-1}(B^L), f^{-1}(B^U)]$.

Result 2. [7, Theorem 2]. Let $f : X \to Y$ be a mapping and $g : Y \to Z$ be a mapping. Then:

(a) $f^{-1}(B^c)^c = [f^{-1}(B)^c]^c$, $\forall B \in D(I)^Y$.
(b) $[f(A)]^c \subset f(A^c)$, $\forall A \in D(I)^X$.
(c) $B_1 \subset B_2 \Rightarrow f^{-1}(B_1) \subset f^{-1}(B_2)$, where $B_1, B_2 \in D(I)^Y$.
(d) $A_1 \subset A_2 \Rightarrow f(A_1) \subset f(A_2)$, where $A_1, A_2 \in D(I)^X$.
(e) $f(f^{-1}(B)) \subset B$, $\forall B \in D(I)^Y$.
(f) $A \subset f(f^{-1}(A))$, $\forall A \in D(I)^X$.
(g) $(g \circ f)^{-1}(C) = f^{-1}(g^{-1}(C))$, $\forall C \in D(I)^Z$.
(h) $f^{-1}(\bigcup_{\alpha \in \Gamma} B_\alpha) = \bigcup_{\alpha \in \Gamma} f^{-1}B_\alpha$, where $\{B_\alpha\}_{\alpha \in \Gamma} \in D(I)^Y$.
(h) $f^{-1}(\bigcap_{\alpha \in \Gamma} B_\alpha) = \bigcap_{\alpha \in \Gamma} f^{-1}B_\alpha$, where $\{B_\alpha\}_{\alpha \in \Gamma} \in D(I)^Y$.

3. Interval-valued fuzzy subgroupoids

Definition 3.1. Let (X, \cdot) be a groupoid and let $A, B \in D(I)^X$. Then the interval-valued fuzzy product of A and B, denoted by $A \circ B$, is an IVFS in X defined as follows: For each $x \in X$,
\[
(A \circ B)(x) = \begin{cases}
\left[\bigvee_{yz = x} [A^L(y) \land B^L(z)] \right. & \text{if } yz = x, \\
\left. \bigvee_{yz = x} [A^U(y) \land B^U(z)] \right] & \text{otherwise}.
\end{cases}
\]

Definition 3.1 [8]. Let X, \circ be groupoid and let $A, B \in IFS(X)$. Then the intuitionistic fuzzy product of A and B, $A \circ B$, is defined as follows: For any $x \in X$,
\[\begin{align*}
\mu_{A \circ B}(x) &= \begin{cases}
\bigvee_{yz=x} [\mu_A(y) \land \mu_B(z)] & \text{if } \exists (y, z) \in X \times X \text{ with } yz = x, \\
0 & \text{otherwise.}
\end{cases} \\
\nu_{A \circ B}(x) &= \begin{cases}
\bigwedge_{yz=x} [\nu_A(y) \lor \nu_B(z)] & \text{if } \exists (y, z) \in X \times X \text{ with } yz = x, \\
1 & \text{otherwise.}
\end{cases}
\end{align*}\]

Remark 3.1. By Result 2.A, Definition 3.1 is reduced to Definition 3.1’ and the reverse holds.

Proposition 3.2. Let \(\circ \) be same as above, let \(x_M, y_N \in \text{IVFp}(X) \) and let \(A, B \in D(I)^X \). Then:

(a) \(x_M \circ y_N = (xy)_{M \cap N} \).
(b) \(A \circ B = \bigcup_{x_M \in A, y_N \in B} x_M \circ y_N \).

Proof. (a) Let \(z \in X \). Then

\[(x_M \circ y_N)(z) = \begin{cases}
\bigvee_{x'y' = z} (x_M^L(x') \land y_N^L(y')) & \text{if } x'y' = z, \\
0 & \text{otherwise.}
\end{cases}\]

\[= \begin{cases}
[M^L \land N^L, M^U \land N^U] & \text{if } z = xy, \\
0 & \text{otherwise.}
\end{cases}\]

\[= (xy)_{M \cap N}\]

(b) Let \(C = \bigcup_{x_M \in A, y_N \in B} x_M \circ y_N \), i.e.,

\[C = \bigcup_{x_M \in A, y_N \in B} x_M \circ y_N \bigcup_{x_M \in A, y_N \in B} (x_M^L \circ y_N^L), \bigcup_{x_M \in A, y_N \in B} (x_M^U \circ y_N^U)\].
For each \(z \in X \), we may assume that \(\exists u, v \in X \) such that \(uv = z \), \(x_M(u) \neq 0 \) and \(y_N(v) \neq 0 \), without loss of generality. Then

\[
(A \circ B)^L(z) = \bigvee_{z=uv} [A^L(u) \wedge B^L(v)]
\]

\[
\geq \bigvee_{z=uv} \left(\bigvee_{x_M \in A, y_N \in B} [x_M(u) \wedge y_N(v)] \right)
\]

\[
= \bigcup_{x_M \in A, y_N \in B} x_M \circ y_N
\]

\[
= C^L(z).
\]

Since \(u_{A(u)} \in A \) and \(v_{B(v)} \in B \),

\[
C^L(z) = \bigvee_{x_M \in A, y_N \in B} (\bigvee_{z=uv} [x_M(u) \wedge y_N(v)])
\]

\[
= \bigvee_{z=uv} \left(\bigvee_{x_M \in A, y_N \in B} [x_M(u) \wedge y_N(v)] \right)
\]

\[
\geq \bigvee_{z=uv} [u_{A(u)}(u) \wedge v_{B(v)}(v)]
\]

\[
= \bigvee_{z=uv} [A^L(u) \wedge B^L(v)]
\]

\[
= (A \circ B)^L(z).
\]

Thus \((A \circ B)^L = C^L\). By the similar arguments, we have \((A \circ B)^U = C^U\).

Hence

\[
A \circ B = \bigcup_{x_M \in A, y_N \in B} x_M \circ y_N.
\]

The following is the immediate result of Definition 3.1.

Proposition 3.3. Let \((X, \circ)\) be a groupoid, and let ”\(\circ\)” be same as above.

(a) if ”\(\circ\)” is associative[resp. commutative] in \(X\), the so is ”\(\circ\)” in \(D(I)^X\).

(b) if ”\(\circ\)” is has an identity \(e \in X\), then \(e_1 \in IVFp(X)\) is an identity of ”\(\circ\)” in \(D(I)^X\), i.e., \(A \circ e_1 = A = e_1 \circ A\) for each \(A \in D(I)^X\).

Definition 3.4. Let \((G, \cdot)\) be a groupoid and let \(\overline{0} = A \in D(I)^X\). Then \(A\) is called an *interval-valued fuzzy groupoid* (in short, *IVGP*) in \(G\) if
\[A \circ A \subset A, \text{ i.e., } A^L \circ A^L \subset A^L \text{ and } A^U \circ A^U \subset A^U. \]

We will denote the IVGPs in \(G \) as IVGP(\(G \)).

Remark 3.4. (a) If \(A \) is a fuzzy groupoid in a group \(G \) in the sense of Liu[11], then \(A = [A, A] \in \text{IVGP}(G) \).

(b) If \(A \in \text{IVGP}(G) \), then \(A^L, A^U \in \text{FGP}(G) \) and \(A^* \in \text{IFGP}(G) \), where \(\text{FGP}(G) \) [resp. \(\text{IFGP}(G) \)] denoted the set of all fuzzy groupoids in the sense of Liu[resp. the set of all intuitionistic fuzzy groupoids in the sense of Hur et al.].

The followings are the immediate results of Definitions 3.1 and 3.4.

Proposition 3.5. Let \((G, \cdot)\) be a groupoid and let \(\tilde{0} \neq A \in D(I)^X \).

Then the followings are equivalent:

(a) \(A \in \text{IVGP}(G) \).

(b) For any \(x_M, y_N \in A \), \(x_M \circ y_N \in A \), i.e., \((A, \circ)\) is a groupoid.

(c) For any \(x, y \in G \), \(A^L(xy) \geq A^L(x) \land A^L(y) \) and \(A^U(xy) \geq A^U(x) \land A^U(y) \).

Proposition 3.6. Let \(\tilde{0} \neq A \in D(I)^X \). Then the followings are equivalent:

(a) If "\(\circ \)" is associative in \(G \), then so is "\(\circ \)" in \(A \), i.e., for any \(x_L, y_M, z_N \in A \), \(x_L \circ (y_M \circ z_N) = (x_L \circ y_M) \circ z_N. \)

(b) If "\(\circ \)" is commutative in \(G \), then so is "\(\circ \)" in \(A \), i.e., for any \(x_L, y_M \in A \), \(x_L \circ y_M = y_M \circ x_L. \)

(c) If "\(\circ \)" has an identity \(e \in G \), then \(e \circ x_L = x_L = x_L \circ e \) \(\forall x_L \in A. \)

From Proposition 3.5, we can define an IVGP in \(G \) as follows.

Definition 3.4’. An interval-valued fuzzy set \(A \) in \(G \) is called an interval-valued fuzzy subgroupoid (in short, IVGP) in \(G \) if

\[A^L(xy) \geq A^L(x) \land A^L(y) \text{ and } A^U(xy) \geq A^U(x) \land A^U(y), \forall x, y \in G. \]

It is clear that \(\tilde{0}, \tilde{1} \in \text{IVGP}(G) \).
The following is the immediate result of Definition 3.4′.

Proposition 3.7. Let \(T \in \mathcal{P}(G) \), where \(\mathcal{P}(G) \) denoted the set of all subsets of \(G \). Then \(A = [\chi_T, \chi_T] \in \text{IVGP}(G) \) if and only if \(T \) is a subgroupoid of \(G \), where \(\chi_T \) is the characteristic function of \(T \).

Proposition 3.8. If \(\{A_\alpha\}_{\alpha \in \Gamma} \subset \text{IVGP}(G) \), then \(\bigcap_{\alpha \in \Gamma} A_\alpha \in \text{IVGP}(G) \).

Proof. Let \(A = \bigcap_{\alpha \in \Gamma} A_\alpha \) and let \(x, y \in G \). Then
\[
A_L(xy) = \bigwedge_{\alpha \in \Gamma} A_L(\alpha) \leq \bigwedge_{\alpha \in \Gamma} [A_\alpha(x) \wedge A_\alpha(y)], \quad \text{since } A_\alpha \in \text{IVGP}(G)
\]
\[
= \bigwedge_{\alpha \in \Gamma} A_\alpha(x) \wedge \bigwedge_{\alpha \in \Gamma} A_\alpha(y)
\]
\[
= A_L(x) \wedge A_L(y).
\]
Similarly, we can see that \(A_U(xy) \geq A_U(x) \wedge A_U(y) \). Hence \(\bigcap_{\alpha \in \Gamma} A_\alpha \in \text{IVGP}(G) \).

Proposition 3.9. Let \(f : G \to G' \) be a groupoid homomorphism, let \(A \in D(I)_X \) and let \(B \in D(I)_Y \).

(a) \(f(x_M \circ y_N) = f(x_M) \circ f(y_N), \forall x_M, y_N \in \text{IVFp}(G) \).

(b) If \(f \) is surjective and \(A \in \text{IVGP}(G) \), then \(f(A) \in \text{IVGP}(G') \).

(c) If \(B \in \text{IVGP}(G') \), then \(f^{-1}(B) \in \text{IVGP}(G) \).

Proof.

(a) Let \(x_M, y_N \in \text{IVP}(G) \) and let \(z \in G' \). Then
\[
f(x_M \circ y_N)^L(z) = f((xy)_{M \wedge N_L})^L(z) \quad \text{[By Proposition 3.2]}
\]
\[
= \bigvee_{z' = f(xy)} (xy)_{M \wedge N_L}(z')
\]
\[
= \begin{cases}
M_L \wedge N_L & \text{if } z' = f(xy), \\
0 & \text{otherwise}.
\end{cases}
\]

On the other hand,
\[
(f(x)_M \circ f(y)_N)^L(z)
\]
This is a contradiction from the fact that or So or f Since or Thus f

\[
\begin{align*}
\{ & \bigvee_{z=uv} [f(x)_{M^L}(u) \land f(y)_{N^L}(v)] \quad \text{for } (u, v) \in G' \times G' \text{ with } z = \mu \nu, \\
& 0 \quad \text{otherwise.}
\end{align*}
\]

Thus \(f(x_M \circ y_N)^L(z) = (f(x)_M \circ f(y)_N)^L(z) \). Similarly, we can see that \(f(x_M \circ y_N)^U(z) = (f(x)_M \circ f(y)_N)^U(z), \forall z \in G' \). So \(f(x_M \circ y_N) = f(x_M) \circ f(y_N). \)

(b) Assume that \(f(A) \in \text{IVGP}(G') \). Then \(\exists y, y' \in G' \) such that \(f(A)^L(yy') < f(A)^L(y) \land f(A)^L(y') \) or \(f(A)^U(yy') < f(A)^U(y) \land f(A)^U(y') \).

Thus \[
\begin{align*}
\bigvee_{f(z)=yy'} A^L(z) &< \bigvee_{f(z)=y} A^L(x) \land \bigvee_{f(z)=y'} A^L(x') \\
or &\bigvee_{f(z)=yy'} A^U(z) < \bigvee_{f(z)=y} A^U(x) \land \bigvee_{f(z)=y'} A^U(x').
\end{align*}
\]

Since \(f \) is surjective, \(\exists x, x' \in G \) such that \(f(x) = y, f(x') = y' \), and

\[
\begin{align*}
\bigvee_{f(z)=yy'} A^L(z) &< A^L(x) \land A^L(x') \\
or &\bigvee_{f(z)=yy'} A^U(z) < A^U(x) \land A^U(x').
\end{align*}
\]

So

\[
A^L(xx') \leq \bigvee_{f(z)=yy'} A^L(z) < A^L(x) \land A^L(x')
\]

or

\[
A^U(xx') \leq \bigvee_{f(z)=yy'} A^U(z) < A^U(x) \land A^U(x')
\]

This is a contradiction from the fact that \(A \in \text{IVGP}(G) \).

(c) It can be easily seen that \(f^{-1}(B) \in \text{IVGP}(G) \)

\[\Box\]

Definition 3.10[2]. \(A \in D(I)^X \) is said to have the sup-property if for each \(T \in P(X), \exists t_0 \in T \) such that \(A(t_0) = \bigvee_{t \in T} A^L(t), \bigwedge_{t \in T} A^U(t) \).
Definition 3.10[8]. A ∈ IFS(X) is said to have the sup-property if each \(T \in P(X) \), \(\exists t_0 \in T \) such that \(A(t_0) = (\bigvee_{t \in T} \mu_A(t), \bigwedge_{t \in T} \nu_A(t)) \).

Remark 3.10. (a) If \(A \in I^X \) has the sup-property, \(A = [A, A] \in D(I)^X \) resp. \(A = (A, A^c) \in IFS(X) \) has the sup-property.

(b) If \(A = [A^L, A^U] \in D(I)^X \) resp. \(A = (\mu_A, \nu_A) \in IFS(X) \) has the sup-property, then \(A^L \) and \(A^U \in I^X \) resp. \(\mu_A \) and \(\nu_A^c \in I^X \) have the sup-property.

Proposition 3.11. Let \(f : G \rightarrow G' \) be a groupoid homomorphism and let \(A \in D(I)^X \) have the sup-property. If \(A \in IVGP(G) \), then \(f(A) \in IVGP(G') \).

proof. Let \(y, y' \in G' \). Then we can consider four cases:

\(i \) \(f^{-1}(y) \neq \emptyset \) and \(f^{-1}(y') \neq \emptyset \),

\(ii \) \(f^{-1}(y) \neq \emptyset \) and \(f^{-1}(y') = \emptyset \),

\(iii \) \(f^{-1}(y) = \emptyset \) and \(f^{-1}(y') \neq \emptyset \),

\(iv \) \(f^{-1}(y) = \emptyset \) and \(f^{-1}(y') = \emptyset \).

We prove only the case (i) and omit the remainders. Since \(A \) has the sup-property, \(\exists x_0 \in f^{-1}(y) \) and \(x'_0 \in f^{-1}(y') \) such that

\[
A(x_0) = \left[\bigvee_{t \in f^{-1}(y)} A^L(t), \bigvee_{t \in f^{-1}(y)} A^U(t) \right]
\]

and

\[
A(x'_0) = \left[\bigvee_{t' \in f^{-1}(y')} A^L(t'), \bigvee_{t' \in f^{-1}(y')} A^U(t') \right].
\]

Then

\[
f(A)^L(y) = \bigvee_{z \in f^{-1}(y')} A^L(z) \geq A^L(x_0 x'_0) \quad \text{[Since } f(x_0 x'_0) = f(x_0) f(x'_0) \]

\[
= y y' \]

\[
\geq A^L(x_0) \land A^L(x'_0) \quad \text{[Since } A \in IVGP(G) \],}

\[
= \left(\bigvee_{t \in f^{-1}(y)} A^L(t) \right) \land \left(\bigvee_{t' \in f^{-1}(y')} A^L(t') \right)
\]

\[
= f(A)^L(y) \land f(A)^L(y').
\]

Similarly, we have \(f(A)^U(y) \geq f(A)^U(y) \land f(A)^U(y') \) and \(f(A) \in IVGP(G') \).

Definition 3.12. Let \(f : X \rightarrow Y \) be a mapping and let \(A \in D(I)^X \). Then \(A \) is said to be interval-valued fuzzy invariant (in short, IVF-invariant) if \(f(x) = f(y) \) implies \(A(x) = A(y), \) i.e., \(A^L(x) = A^L(y) \)
and $A^U(x) = A^U(y)$. It is clear that if A is IVF-invariant, i.e., $f^{-1}(f(A)) = A$.

The following is the immediate result of Definition 3.12.

Proposition 3.13. Let $f : X \to Y$ be a mapping and let $A = \{A \in D(I)^X : A$ is IVF-invariant and has the sup-property\}. Then there is a one-to-one correspondence between A and $D(I)^{\text{Im} f}$, where $\text{Im} f$ denotes the image of f.

The following is the immediate result of Propositions 3.11 and 3.13.

Corollary 3.13. Let $f : G \to G'$ be a groupoid homomorphism and let $A = \{A \in \text{IVGP}(G) : A$ is IVF-invariant and has the sup-property\}. Then there is a one-to-one correspondence between A and $\text{IVGP}(\text{Im} f)$.

4. Interval-value fuzzy subgroups

Definition 4.1[4]. Let A be an IVF's in a group G. Then A is called an interval-valued fuzzy subgroup (in short, IVF) in G if it satisfies the conditions: For any $x, y \in G$,

(i) $A^L(xy) \geq A^L(x) \land A^L(y)$ and $A^U(xy) \geq A^U(x) \land A^U(y)$

(ii) $A^L(x^{-1}) \geq A^L(x)$ and $A^U(x^{-1}) \geq A^U(x)$

We will denote the set of all IVGS of G as IVG(G).

Example 4.1. Consider the additive group $(\mathbb{Z}, +)$. We define a mapping $A = [A^L, A^U] : \mathbb{Z} \to D(I)$ as follows: For each $n \in \mathbb{Z}$,

$A(0) = [A^L(0), A^U(0)] = [1, 1]$

and

$A(n) = [A^L(n), A^U(n)] = \begin{cases} [\frac{1}{2}, \frac{2}{3}], & \text{if } n \text{ is odd;} \\ [\frac{1}{3}, \frac{4}{5}], & \text{if } n \text{ is even.} \end{cases}$

Then clearly $A \in D(I)^{\mathbb{Z}}$. Moreover, A satisfies all the conditions of Definition 4.1. So $A \in \text{IVG}(\mathbb{Z})$. ■
Remark 4.1. (a) If $A \in \text{FG}(G)$, then $A = [A, A] \in \text{IVG}(G)$, where $\text{FG}(G)$ denotes the set of all fuzzy groups in G.

(b) If $A \in \text{IVG}(G)$, then $A^L, A^U \in \text{FG}(G)$ and $(A^L, A^{U^C}) \in \text{IFG}(G)$.

c) If $A \in \text{IFG}(G)$, then $[\mu_A, \nu^c_A] \in \text{IVG}(G)$.

The following two results can be easily proved from definition 4.1, Propositions 3.7 and 3.8.

Proposition 4.2. Let G be a group and let $H \subset G$. Then H is a subgroup of G if and only if $[\chi_H, \chi_H] \in \text{IVG}(G)$.

Proposition 4.3. Let $\{A_\alpha\}_{\alpha \in \Gamma} \subset \text{IVG}(G)$. Then $\bigcap_{\alpha \in \Gamma} A_\alpha \in \text{IVG}(G)$.

The followings can be easily seen from Definitions 3.1 and 4.1.

Proposition 4.4. Let G be group and let $A \in D(I)^G$. If $A \in \text{IVG}(G)$, then $A \circ A = A$.

Proposition 4.5. Let $A, B \in \text{IVG}(G)$. Then $A \circ B \in \text{IVG}(G)$ if and only if $A \circ B = B \circ A$.

(a) $A(x^{-1}) = A(x), \forall x \in G$.

(b) $A^L(e) \geq A^L(x) \text{ and } A^U(e) \geq A^U(x), \forall x \in G$, where e is the identity of G.

Result 4.B [4, Proposition 3.2]. Let A be an IVFS in a group G. Then A is an IVG in G if and only if $A^L(xy^{-1}) \geq A^L(x) \wedge A^L(y)$ and $A^U(xy^{-1}) \geq A^U(x) \wedge A^U(y), \forall x, y \in G$.

Proposition 4.6. If $A \in \text{IVG}(G)$, then $G_A = \{x \in G : A(x) = A(e)\}$ is a subgroup of G.

Proof. let $x, y \in G_A$. Then

$A^L(xy^{-1}) \geq A^L(x) \wedge A^L(y)$

$= A^L(x) \wedge A^L(y) \text{ [By Result 4.A]}$

$= A^L(e) \wedge A^L(e) \text{ [Since } x, y \in G_A \text{]}$

$= A^L(e)$.

Similarly, we have $A^U(xy^{-1}) \geq A^U(e)$. On the other hand, by Result 4.A, it is clear that $A^L(xy^{-1}) \leq A^L(e)$ and $A^U(xy^{-1}) \leq A^U(e)$, thus
\[A(xy^{-1}) = A(e) \text{.} \] So \(xy^{-1} \in G_A \). Hence \(G_A \) is a subgroup of \(G \). ■

Proposition 4.7. Let \(A \in \text{IVG}(G) \). If \(A(xy^{-1}) = A(e) \) for any \(x, y \in G \), then \(A(x) = A(y) \).

Proof. Let \(x, y \in G \). Then
\[
A^L(x) = A^L((xy^{-1})y)
\geq A^L(xy^{-1}) \land A^L(y) \quad \text{[Since \(A \in \text{IVG}(G) \)]}
= A^L(e) \land A^L(y) \quad \text{[By the hypothesis]}
= A^L(y) \quad \text{[By Result 4.A.]}
\]
On the other hand, by Result 4.A, \(A^L(x^{-1}) = A^L(x) \). Then
\[
A^L(y) = A^L((yx^{-1})x)
\geq A^L(yx^{-1}) \land A^L(x)
= A^L((yx^{-1})^{-1}) \land A^L(x) \quad \text{[By Result 4.A.]}
= A^L(xy^{-1}) \land A^L(x)
= A^L(e) \land A^L(x)
= A^L(x).
\]
Similarly, we have \(A^U(x) = A^U(y) \). Hence \(A(x) = A(y) \). ■

Corollary 4.7-1. Let \(A \in \text{IVG}(G) \). If \(G_A \) is a normal subgroup of \(G \), then \(A \) is constant on each coset of \(G_A \).

Proof. Let \(a \in G \) and let \(x \in aG_A \). Then \(\exists y \in G_A \) such that \(x = ay \). Since \(G_A \) is normal, \(xa^{-1} \in G_A \). Thus, by the definition of \(G_A \), \(A(xa^{-1}) = A(e) \). By proposition 4.7, \(A(x) = A(a) \). So \(A \) is constant on \(aG_A \) \(\forall a \in G \). Similarly, we can see that \(A \) is constant on \(G_Aa \) \(\forall a \in G \). This completes the proof. ■

Let \(H \) be a subgroup of \(G \). Then the number of right [resp. left] cosets of \(H \) in \(G \) is called the index of \(H \) in \(G \) and denoted by \([G : H] \). If \(G \) is a finite group, then there can be only a finite number of distinct right [resp. left] cosets of \(H \); hence the index \([G : H] \) is finite. If \(G \) is an infinite group, then \([G : H] \) may be either finite or infinite.

Corollary 4.7-2. Let \(A \in \text{IVG}(G) \) and let \(G_A \) be normal. If \(G_A \) has a finite index, then \(A \) has the sup property.

Proof. Let \(T \subset G \). Since \(G_A \) has finite index, let the index \([G : G_A] = n \), say \(A = \{a_1G_A, \ldots, a_nG_A\} \), where \(a_i \in G(i = 1, \ldots, n) \) and \(a_iG_A \cap a_jG_A = \emptyset \) for any \(i \neq j \). Let \(t \in T \). Since \(G = \bigcup A = \bigcup_{i=1}^{n} a_iG_i \),
Hence there exists an $i \in \{1, \cdots, n\}$ such that $t \in a_i G_A$. Since G_A is normal, by Corollary 4.7-1, $A(t) = A(a_i)$ on $a_i G_A$, say $A^L(t) = \alpha_i$ and $A^U(t) = \beta_i$, where $\alpha_i, \beta_i \in I$ and $\alpha_i \leq \beta_i$. Thus there exists a $t_0 \in T$ such that $A^L(t_0) = \bigvee_{t \in T} A^L(t) = \bigvee_{i=1}^n \alpha_i$ and $A^U(t_0) = \bigvee_{t \in T} A^U(t) = \bigvee_{i=1}^n \beta_i$. Hence A has the sup property. ■

Proposition 4.8. A group G cannot be the union of two proper IVGs.

Proof. Let A and B be proper IVGs of a group G such that $A \cup B = 1$, $A \neq 1$ and $B \neq 1$. Since $A \cup B = (A^L \cup B^L, A^U \cup B^U)$, $A^L(x) \cup B^L(x) = 1$ and $A^U(x) \cup B^U(x) = 1$, $\forall x \in X$. Then $A^L(x) = 1$ or $B^L(x) = 1$ and $A^U(x) = 1$ or $B^U(x) = 1$. Since $A \neq 1$ and $B \neq 1$, $A^L(x) \neq 1$ or $A^U(x) \neq 1$ and $B^L(x) \neq 1$ or $B^U(x) \neq 1$. In either cases, this is a contradiction. This completes the proof. ■

Proposition 4.9. If A is an IVGP of a finite group G, then $A \in \text{IVG}(G)$.

Proof. Let $x \in G$. Since G is finite, x has the finite order, say n. Then $x^n = e$, where e is the identity of G. Thus $x^{-1} = x^{n-1}$. Since A is an IVGP of G,

$$A^L(x^{-1}) = A^L(x^{n-1}) = A^L(x^{n-2}x) \geq A^L(x)$$

and

$$A^U(x^{-1}) = A^U(x^{n-1}) = A^U(x^{n-2}x) \geq A^U(x).$$

Hence $A \in \text{IVG}(G)$. ■

Proposition 4.10. Let A be an IVG of a group G and let $x \in G$. Then $A(xy) = A(y)$, for each $y \in G$ if and only if $A(x) = A(e)$.

Proof. (\Rightarrow): Suppose $A(xy) = A(y)$ for each $y \in G$. Then clearly $A(x) = A(e)$.

(\Leftarrow): Suppose $A(x) = A(e)$. Then, by Result 4.5, $A^L(y) \leq A^L(x)$ and $A^U(y) \leq A^U(x)$ for each $y \in G$. Since A is an IVG of G, $A^L(xy) \geq A^L(x) \wedge A^L(y)$ and $A^U(xy) \geq A^U(x) \vee A^U(y)$. Thus $A^L(xy) \geq A^L(y)$ and $A^U(xy) \geq A^U(y)$ for each $y \in G$.

On the other hand, by Result 4.5,

$$A^L(y) = A^L(x^{-1}x) \geq A^L(x) \wedge A^L(xy)$$

and

$$A^U(y) = A^U(x^{-1}xy) \geq A^U(x) \wedge A^U(xy).$$

Since $A^L(x) \geq A^L(y)$ for each $y \in G$, $A^L(x) \wedge A^L(xy) = A^L(xy)$ and $A^U(x) \wedge A^U(xy) = A^U(xy)$. So $A^L(y) \geq A^L(xy)$ and $A^U(y) \geq A^U(xy)$.
for each \(y \in G \). Hence \(A(xy) = A(y) \) for each \(y \in G \). \(\blacksquare \)

Proposition 4.11. Let \(f : G \to G' \) be a group homomorphism, let \(A \in \text{IVG}(G) \) and let \(B \in \text{IVG}(G') \). Then the following hold:

(a) If \(A \) has the sup property, then \(f(A) \in \text{IVG}(G') \).

(b) \(f^{-1}(B) \in \text{IVG}(G) \).

Proof. (a) By Proposition 3.11, since \(f(A) \in \text{IVGP}(G) \), it is enough to show that \(f(A)^L(y^{-1}) \geq f(A)^L(y) \) and \(f(A)^U(y^{-1}) \geq f(A)^U(y) \) for each \(y \in f(G) \).

Let \(y \in f(G) \). Then \(\phi \neq f^{-1}(y) \subseteq G \). Since \(A \) has the sup property, there exists an \(x_0 \in f^{-1}(y) \) such that \(A^L(x_0) = \bigvee_{t \in f^{-1}(y)} A^L(t) \) and \(A^U(x_0) = \bigvee_{t \in f^{-1}(y)} A^U(t) \).

Thus

\[
f(A)^L(y^{-1}) = \bigvee_{t \in f^{-1}(y^{-1})} A^L(t) \geq A^L(x_0^{-1}) \geq A^L(x_0) = f(A)^L(y)
\]

and

\[
f(A)^U(y^{-1}) = \bigvee_{t \in f^{-1}(y^{-1})} A^U(t) \geq A^U(x_0^{-1}) \geq A^U(x_0) = f(A)^U(y).
\]

Hence \(f(A) \in \text{IVG}(G) \).

(b) By proposition 3.9, since \(f^{-1}(B) \in \text{IVGP}(G) \), it is enough to show that \(f^{-1}(B)^L(x^{-1}) \geq f^{-1}(B)^L(x) \) and \(f^{-1}(B)^U(x^{-1}) \geq f^{-1}(B)^U(x) \) for each \(x \in G \).

Let \(x \in G \). Then

\[
f^{-1}(B)^L(x^{-1}) = B^L(f(x^{-1})) = B^L(f(x)^{-1}) \geq B^L(f(x)) = f^{-1}(B)^L(x)
\]

and

\[
f^{-1}(B)^U(x^{-1}) = B^U(f(x^{-1})) = B^U(f(x)^{-1}) \geq B^U(f(x)) = f^{-1}(B)^U(x).
\]

Thus \(f^{-1}(B) \in \text{IVG}(G) \). This completes the proof. \(\blacksquare \)

Proposition 4.12. Let \(G_p \) be the cyclic group of prime order \(p \). Then \(A \in \text{IVG}(G_p) \) if and only if \(A^L(x) = A^L(1) \leq A^L(0) \) and \(A^U(x) = A^U(1) \leq A^U(0) \) for each \(0 \neq x \in G_p \).
Proof. (\Rightarrow): Suppose $A \in \text{IVG}(G_p)$ and let $0 \neq x \in G_p$. Then $A^L(xy) \geq A^L(x) \land A^L(y)$ and $A^U(xy) \geq A^U(x) \land A^U(y)$ for any $x, y \in G_p$. Since G_p is the cyclic group of prime order $p, G_p = \{0, 1, 2, \ldots, p - 1\}$. Since x is the sum of 1's and 1 is the sum of x's, $A^L(x) \geq A^L(1) \geq A^L(x)$ and $A^U(x) \geq A^U(1) \geq A^U(x)$. Thus $A^L(x) = A^L(1)$ and $A^U(x) = A^U(1)$. Since 0 is the identity element of G_p, $A^L(x) \leq A^L(0)$ and $A^U(x) \leq A^U(0)$. Hence the necessary conditions hold.

(\Leftarrow): Suppose the necessary conditions hold and let $x, y \in G_p$. Then we have four cases: (i) $x \neq 0, y \neq 0$ and $x = y$, (ii) $x \neq 0, y = 0$, (iii) $x = 0, y \neq 0$, (iv) $x \neq 0, y \neq 0$ and $x \neq y$.

Case(i) Suppose $x \neq 0, y \neq 0$ and $x = y$. Then, by the hypothesis, $A^L(x) = A^L(y) = A^L(1) \leq A^L(0)$ and $A^U(x) = A^U(y) = A^U(1) \leq A^U(0)$. So $A^L(x - y) = A^L(0) \geq A^L(x) \land A^L(y)$ and $A^L(x - y) \geq A^U(x) \land A^U(y)$.

Case(ii) Suppose $x \neq 0$ and $y = 0$. Since $x - y \neq 0$, by the hypothesis, $A^L(x - y) = A^L(x) = A^L(1) \leq A^L(0) = A^L(y)$ and $A^U(x - y) = A^U(1) \leq A^U(0) = A^U(y)$. So $A^L(x - y) \geq A^L(x) \land A^L(y)$ and $A^L(x - y) \geq A^U(x) \land A^U(y)$.

Case(iii) Suppose $x \neq 0, y \neq 0$ and $x \neq y$. In all, $A^L(x - y) \geq A^L(x) \land A^L(y)$ and $A^U(x - y) \geq A^U(x) \land A^U(y)$. Hence, by Result 4.B, $A \in \text{IFG}(G_p)$.

Definition 4.13. Let G be a groupoid and let $A \in \text{IVS}(G)$. Then A is called an:

1. interval-valued fuzzy left ideal (in short, IVLI) of G if for any $x, y \in G, A^L(xy) \geq A^L(x)$ and $A^U(xy) \geq A^U(y)$.

2. interval-valued fuzzy right ideal (in short, IVRI) of G if for any $x, y \in G, A^L(xy) \geq A^L(x)$ and $A^U(xy) \geq A^U(x)$.

3. interval-valued fuzzy ideal (in short, IVI) of G if it is both an IFLI and an IFRI.

We will denote the set of all IVLIs [resp. IVRIs and IVIs] of a groupoid G as $\text{IVLI}(G)$ [resp. $\text{IVRI}(G)$ and $\text{IVI}(G)$].

It is clear that $A \in \text{IVI}(G)$ if and only if and only if for any $x, y \in G, A^L(xy) \geq A^L(x) \lor A^L(y)$ and $A^U(xy) \geq A^U(x) \lor A^U(y)$. Moreover, an IFLI (resp. IFLI, IFRI) is an IVGP of G. Note that for any $A \in \text{IVGP}(G)$,
we have $A^L(x^n) \geq A^L(x)$ and $A^U(x^n) \geq A^U(x)$ for each $x \in G$, where x^n is any composite of x’s.

Proposition 4.14. The IVLIs (resp. IVLIs, IVRIs) in a group G are just the constant mappings.

Proof. Suppose A is an constant mapping and let $x, y \in G$. Then $A(xy) = A(x) = A(y)$. Thus $A \in IVI(G)$.

Now suppose $A \in IVLI(G)$. Then $A^L(xy) \geq A^L(y)$ and $A^U(xy) \geq A^U(y)$ for any $x, y \in G$. In particular, $A^L(x) \geq A^L(e)$ and $A^U(x) \geq A^U(e)$ for each $x \in G$. Moreover, $A^L(e) = A^L(x^{-1}x) \geq A^L(x)$ and $A^U(e) = A^U(x^{-1}x) \geq A^U(x)$ for each $x \in G$. So $A(x) = A(e)$ for each $x \in G$. Hence A is a constant mapping.

Definition 4.15. Let A be an IVS in a set X and let $\lambda, \mu \in I$ with $\lambda \leq \mu$. Then the set $A^{[\lambda, \mu]} = \{x \in X : A^L(x) \geq \lambda \text{ and } A^U(x) \geq \mu\}$ is called a $[\lambda, \mu]$-level subset of A.

Proposition 4.16. Let A be an IVG of a group G. Then, for each $(\lambda, \mu) \in I \times I$ such that $\lambda \leq \mu, A^{[\lambda, \mu]}$ is a subgroup of G.

Proof. Clearly, $A^{[\lambda, \mu]} \neq \emptyset$. Let $x, y \in A^{[\lambda, \mu]}$. Then $A^L(x) \geq \lambda, A^U(y) \geq \mu$ and $A^L(y) \geq \lambda, A^U(y) \geq \mu$. Since $A \in IVG(G)$, $A^L(xy) \geq A^L(x)$ and $A^U(xy) \geq A^U(x) \wedge A^L(y) \geq \lambda$ and $A^U(xy) \geq A^U(x) \wedge A^U(y) \geq \mu$. Thus $A^L(xy) \geq \lambda$ and $A^U(xy) \geq \mu$. So $xy \in A^{[\lambda, \mu]}$. On the other hand, $A^L(x^{-1}) \geq A^L(x) \geq \lambda$ and $A^U(x^{-1}) \geq A^U(x) \geq \mu$. Thus $A^L(x^{-1}) \lambda$ and $A^U(x^{-1}) \geq \mu$. So $x^{-1} \in A^{[\lambda, \mu]}$. Hence $A^{[\lambda, \mu]}$ is a subgroup of G.

Proposition 4.16. Let A be an IVS in a group G such that $A^{[\lambda, \mu]}$ is a subgroup of G for each $(\lambda, \mu) \in I \times I$ such that $\lambda \leq A^L(e), \mu \leq A^U(e)$ and $\lambda \leq \mu$. Then A is an IVG of G.

Proof. For any $x, y \in G$, let $A(x) = [t_1, s_1]$ and let $A(y) = [t_2, s_2]$. Then clearly, $\lambda \leq A^L(x) \wedge A^L(y)$ and $\mu \leq A^U(x) \wedge A^U(y)$. Since $A^{[\lambda, \mu]}$ is a subgroup of G, $xy \in A^{[\lambda, \mu]}$. Then $A^L(xy) \geq t_1$ and $A^U(xy) \geq s_1$. So $A^L(xy) \geq A^L(x) \wedge A^L(y)$ and $A^U(xy) \geq A^U(x) \wedge A^U(y)$. For each $x \in G$, let $A(xy) = [\lambda, \mu]$. Then $x \in A^{[\lambda, \mu]}$. Since $A^{[\lambda, \mu]}$ is a subgroup of G, $x^{-1} \in A^{[\lambda, \mu]}$. So $A^L(x^{-1}) \geq A^L(x)$ and $A^U(x^{-1}) \geq A^U(x)$. Hence $A \in IVG(G)$.
5. Interval-value fuzzy normal subgroups

Definition 5.1. Let $A \in \text{IVG}(G)$. Then A is called an *interval-valued fuzzy normal subgroup* (in short, *IVNG*) of G if $A(xy) = A(yx)$, for any $x, y \in G$.

We will denote the set of all IVNGs of a group G as $\text{IVNG}(G)$. It is clear that if G is abelian, then $A \in \text{IVNG}(G), \forall A \in \text{IVG}(G)$.

Example 5.1. Consider the general linear group of degree n, $\text{GL}(n, \mathbb{R})$. Then clearly, $\text{GL}(n, \mathbb{R})$ is a non abelian group. Let us define a mapping $A : \text{GL}(n, \mathbb{R}) \rightarrow D(I)$ as follows: for any $I_n \neq M \in \text{GL}(n, \mathbb{R})$, where I_n is the unit matrix, $A(I_n) = \overline{1}$, $A(U)(M) = \begin{cases} \frac{1}{5} & \text{if } M \text{ is not a triangular matrix} \\ \frac{1}{3} & \text{if } M \text{ is a triangular matrix} \end{cases}$

and

$A(L)(M) = \begin{cases} \frac{2}{3} & \text{if } M \text{ is not a triangular matrix} \\ \frac{1}{2} & \text{if } M \text{ is a triangular matrix} \end{cases}$

Then we can easily see that A is an IVNG of $\text{GL}(n, \mathbb{R})$. ■

The following is the immediate result of Definitions 3.1 and 5.1.

Proposition 5.2. Let $A \in D(I)^G$ and let $B \in \text{IVNG}(G)$. Then $A \circ B = B \circ A$.

Proposition 5.3. Let $A \in \text{IVNG}(G)$. If $B \in \text{IVG}(G)$, then so is $B \circ A$.

Proof. By Definitions 3.1 and 3.4, it can be easily seen that $B \circ A \in \text{IVGP}(G)$. Thus it is sufficient to show that $(B \circ A)^L(x^{-1}) \geq (B \circ A)^L(x)$ and $(B \circ A)^U(x^{-1}) \geq (B \circ A)^U(x)$ for each $x \in G$.

Let \(x \in G \). Then
\[
(B \circ A)^L(x^{-1}) = \bigvee_{y = x^{-1}} [B^L(y) \wedge A^L(z)]
\]
= \[
\bigvee_{z^{-1}y^{-1} = x} [B^L((y^{-1})^{-1}) \wedge A^L((z^{-1})^{-1})]
\geq \bigvee_{z^{-1}y^{-1} = x} [B^L(y^{-1}) \wedge A^L(z^{-1})]
\]
= \((A \circ B)^L(x) = (B \circ A)^L(x)\).
Similarly, we have \((B \circ A)^U(x^{-1}) \geq (B \circ A)^U(x)\) for each \(x \in G \). Hence \(B \circ A \in \text{IVG}(G) \).

Corollary 5.3. Let \(A, B \in \text{IVNG}(G) \). Then \(A \circ B \in \text{IVNG}(G) \).

Proof. By Proposition 4.5, \(A \circ B \in \text{IVNG}(G) \). Let \(a, b \in G \). Then there exists \(x, y \in G \) such that \(ab = xy \). Since \(b = a^{-1}xy, ba = (a^{-1}xa)(a^{-1}ya) \). Since \(A, B \in \text{IVNG}(G) \),

\[
(A \circ B)(ab) = [(A \circ B)^L(ab), (A \circ B)^U(ab)]
\]
= \[
\bigvee_{ab = xy} (A^L(x) \wedge B^L(y)), \bigvee_{ab = xy} (A^U(x) \wedge B^U(y))
\]
= \[
\bigvee_{ba = (a^{-1}xa)(a^{-1}ya)} (A^L(a^{-1}xa) \wedge B^L(a^{-1}ya)), \bigvee_{ba = (a^{-1}xa)(a^{-1}ya)} (A^U(a^{-1}xa) \wedge B^U(a^{-1}ya))
\]
= \([(A \circ B)^L(ba), (A \circ B)^U(ba)]
\]
= \((A \circ B)(ba)\).
Hence \((A \circ B) \in \text{IFNG}(G)\).

Proposition 5.4. If \(A \in \text{IVNG}(G) \), then \(G_A \) is a normal subgroup of \(G \).

Proof. By Proposition 4.6, \(G_A \) is a subgroup of \(G \). Moreover \(G_A \neq \emptyset \). Let \(x \in G_A \) and let \(y \in G \). Then

\[
A^L(xy^{-1}) = A^L((yx)x^{-1}) = A^L(y^{-1}(yx)) = A^L(x) = A^L(e)
\]
and

\[
A^U(xy^{-1}) = A^U((yx)x^{-1}) = A^U(y^{-1}(yx)) = A^U(x) = A^U(e)
\]
Thus \(xy^{-1} \in G_A \). Hence \(G_A \) is a normal subgroup of \(G \).

It is clear that if \(A \) is a (usual) normal subgroup of \(G \), then \(A = [\chi_A, \chi_A] \in \text{IVNG}(G) \) and \(G_A = A \).
Definition 5.5. Let \(A \in \text{IVNG}(G) \). Then the quotient group \(G/G_A \) is called the \textit{interval-valued fuzzy quotient subgroup} (in short, \(\text{IVQG} \)) of \(X \) with respect to \(A \).

Now let \(\pi : G \rightarrow G/G_A \) be the natural projection.

Proposition 5.6. If \(A \in \text{IVNG}(G) \) and \(B \in D(I)^G \), then \(\pi^{-1}(\pi(B)) = G_A \circ B \).

Proof. Let \(x \in G \). then
\[
\pi^{-1}(\pi(B))^L = \bigvee_{\pi(y) = \pi(x)} B^L(y) = \bigvee_{xy^{-1} \in G_A} B^L(y)
\]
and
\[
\pi^{-1}(\pi(B))^U = \bigvee_{\pi(y) = \pi(x)} B^U(y) = \bigvee_{xy^{-1} \in G_A} B^U(y).
\]

On the other hand
\[
(G_A \circ B)^L(x) = \bigvee_{xy=x} [G_A(z) \land B^L(y)] = \bigvee_{z=xy^{-1} \in G_A} B^L(y)
\]
and
\[
(G_A \circ B)^U(x) = \bigvee_{xy=x} [G_A(z) \land B^U(y)] = \bigvee_{z=xy^{-1} \in G_A} B^U(y).
\]

Thus \(\pi^{-1}(\pi(b))(x) = (G_A \circ B)(x) \) for each \(x \in G \). Hence \(\pi^{-1}(\pi(B)) = G_A \circ B \).

6. Interval-valued fuzzy subrings and ideals

Definition 6.1. Let \((R, +, \cdot)\) be a ring and let \(\tilde{0} \neq A \in D(I)^R \). Then \(A \) is called an \textit{interval-valued fuzzy subring} (in short, \(\text{IVR} \)) in \(R \) if it satisfies the following conditions:

(i) \(A \) is an IVG in \(R \) with respect to the operation “+” (in the sense of Definition 4.1).

(ii) \(A \) is an IVGP in \(R \) with respect to the operation “\(\cdot \)” (in the sense of Definition 3.4 or Definition 3.4’).

We will denote the set of all IVRs of \(R \) as \(\text{IVR}(R) \).
Example 6.1. Consider the ring \((\mathbb{Z}_2, +, \cdot)\), where \(\mathbb{Z}_2 = \{0, 2\}\). We define the mapping \(A : \mathbb{Z}_2 \rightarrow D(I)\) as follows: \(A(0) = [0.2, 0.7]\) and \(A(1) = [0.5, 0.6]\). Then we can see that \(A \in \text{IVR}(\mathbb{Z}_2)\). \(\square\)

Remark 6.1. (1) If \(A\) is a fuzzy subring of a ring \(R\), then \([A, A] \in \text{IVR}(R)\)

(2) If \(A \in \text{IVR}(R)\), then \(A^L\) and \(A^U\) are fuzzy subrings of \(R\).

The following is the immediate result of Definition 3.4' and Result 4.B.

Proposition 6.2. Let \(R\) be a ring and let \(\tilde{0} \neq A \in D(I)\). Then \(A \in \text{IVR}(R)\) if and only if for any \(x, y \in R\),

(i) \(A^L(x - y) \geq A^L(x) \land A^L(y)\) and \(A^U(x - y) \geq A^U(x) \land A^U(y)\).

(ii) \(A^L(xy) \geq A^L(x) \land A^L(y)\) and \(A^U(xy) \geq A^U(x) \land A^U(y)\).

The following is easily seen.

Proposition 6.3. Let \(R\) be a ring. Then \(A\) is a subring of \(R\) if and only if \([\chi_A, \chi_A] \in \text{IVR}(R)\).

Definition 6.4. Let \(R\) be a ring and let \(\tilde{0} \neq A \in \text{IVR}(R)\). Then \(A\) is called an:

(1) interval-valued fuzzy left ideal (in short, \(\text{IVLI}\)) in \(R\) if \(A^L(xy) \geq A^L(y)\) and \(A^U(xy) \geq A^U(y)\) for any \(x, y \in R\).

(2) interval-valued fuzzy right ideal (in short, \(\text{IVRI}\)) in \(X\) if \(A^L(xy) \geq A^L(x)\) and \(A^U(xy) \geq A^U(x)\) for any \(x, y \in R\).

(3) interval-valued fuzzy ideal (in short, \(\text{IFI}\)) in \(X\) if it both an IVLI and an IVRI in \(R\).

We will denote the set of all IVLIs [resp. IVRIs and IVIs] of a ring \(R\) as \(\text{IVLI}(R)\) [resp. \(\text{IVRI}(R)\) and \(\text{IVI}(R)\)].

Example 6.4. Consider the ring \((\mathbb{Z}_4, +, \cdot)\), where \(\mathbb{Z}_4 = \{0, 1, 2, 3\}\). We define the mapping \(A : \mathbb{Z}_4 \rightarrow D(I)\) as follows: \(A(0) = [0.2, 0.8]\), \(A(1) = [0.3, 0.6] = A(3)\), and \(A(2) = [0.4, 0.5]\). Then we can easily see that \(A \in \text{IVI}(\mathbb{Z}_4)\). \(\square\)

Remark 6.4. (1) If \(A\) is a fuzzy [resp. left, right] ideal of a ring \(R\), then \([A, A^c] \in \text{IVI}(R)\) [resp. \(\text{IVLI}(R)\) and \(\text{IVRI}(R)\)].
(2) If $A \in \text{IVI}(R)$ [resp. IVLI(R) and IVRI(R)], then A^L and A^U are fuzzy [resp. left and right] ideals of R.

The following can be directly verified.

Proposition 6.5. Let R be a ring and let $0 \neq A \in D(I)^R$. Then A is an IVI [resp. IFLI and IFRI] of R if and only if for any $x, y \in R$,

(i) $A^L(x - y) \geq A^L(x) \wedge A^L(y)$ and $A^U(x - y) \geq A^U(x) \vee A^U(y)$.

(ii) $A^L(xy) \geq A^L(x) \lor A^L(y)$ and $A^U(xy) \geq A^U(x) \lor A^U(y)$ [resp. $A^L(xy) \geq A^L(y)$ and $A^U(xy) \geq A^U(y)$, $A^L(xy) \geq A^L(x)$ and $A^U(xy) \geq A^U(x)$].

The following is easily seen.

Proposition 6.6. Let R be a ring. Then A is an ideal [resp. a left ideal and a right ideal] of R if and only if $[\chi_A, \chi_A] \in \text{IVI}(R)$ [resp. IVLI(R) and IVRI(R)].

Proposition 6.7. Let R be a skew field (also division ring) and let $0 \neq A \in D(I)^R$. Then A is an IFI (IFLI, IFRI) of R if and only if $A^L(0) = A^L(e) \leq A^L(0)$ and $A^U(0) = A^U(e) \geq A^U(0)$ for any $0 \neq x \in R$, where 0 is the identity of R for "+" and e is the identity of R for ".".

Proof. (\Rightarrow): Suppose $A \in \text{IVLI}(R)$ and let $0 \neq x \in R$. Then

$A^L(x) = A^L(xe) \geq A^L(e), A^L(e) = A^L(x^{-1}x) \geq A^L(x)$

and

$A^U(x) = A^U(xe) \geq A^U(e), A^U(e) = A^U(x^{-1}x) \geq A^U(x)$.

Thus $A(x) = A(e)$. On the other hand,

$A^L(0) = A^L(e - e) \geq A^L(e) \wedge A^L(e) = A^L(e)$

and

$A^U(0) = A^U(e - e) \geq A^U(e) \wedge A^U(e) = A^U(e)$.

So $A^L(e) \leq A^L(0)$ and $A^U(e) \leq A^U(0)$. Hence the necessary conditions hold.

(\Leftarrow): Suppose the necessary conditions hold. Let $x \in R$. Then we have four cases:

(i) $x \neq 0, y \neq 0$ and $x \neq y$ (ii) $x \neq 0, y \neq 0$ and $x = y$

(iii) $x \neq 0, y = 0$ (iv) $x = 0, y \neq 0$.
Case (i) Suppose $x \neq 0, y \neq 0$ and $x \neq y$. Then

\[A^L(x - y) = A^L(e) \geq A^L(x) \land A^L(y), \]

\[A^U(x - y) = A^U(e) \geq A^U(x) \land A^U(y) \]

and

\[A^L(xy) = A^L(e) \geq A^L(x) \lor A^L(y), \]

\[A^U(xy) = A^U(e) \geq A^U(x) \lor A^U(y). \]

Case (ii): Suppose $x \neq 0, y \neq 0$ and $x = y$. Then

\[A^L(x - y) = A^L(0) \geq A^L(x) \land A^L(y), \]

\[A^U(x - y) = A^U(0) \geq A^U(x) \land A^U(y) \]

and

\[A^L(xy) = A^L(e) \geq A^L(x) \lor A^L(y), \]

\[A^U(xy) = A^U(e) \geq A^U(x) \lor A^U(y). \]

Case (iii): Suppose $x \neq 0$ and $y = 0$. Then

\[A^L(x - y) = A^L(x) = A^L(e) \geq A^L(x) \land A^L(y), \]

\[A^U(x - y) = A^U(x) = A^U(0) \geq A^U(x) \land A^U(y) \]

and

\[A^L(xy) = A^L(0) \geq A^L(x) \lor A^L(y), \]

\[A^U(xy) = A^U(0) \geq A^U(x) \lor A^U(y). \]

Case (iv): It is similar to case (iii).

In all, $A \in\text{IVI}(R)$. This completes the proof.

\[\square \]

Remark 6.8. Proposition 6.5 shows that an IVLI(IVRI) is an IVI in a skew field.

The following gives a characteristic of a (usual) field by an IVI.

Proposition 6.9. Let R be a commutative ring with a unity e. If for $A \in\text{IVI}(R)$, $A^L(x) = A^L(e) \leq A^L(0)$ and $A^U(x) = A^U(e) \leq A^U(0)$ for each $0 \neq x \in R$, then R is a field.

Proof. Let A be an ideal of R such that $A \neq R$. Then clearly $A = [\chi_A, \chi_A] \in\text{IVI}(R)$ such that $A \neq \bar{1}$. Thus there exists $y \in R$ such that $y \notin A$. Thus $\chi_A(y) = 0$. By the hypothesis, $\chi_A(x) = \chi_A(e) \leq \chi_A(0)$, for each $0 \neq x \in X$. So $\chi_A(0) = 1$, i.e., $A = \{0\}$. Hence R is a field. \square

References

*Dept of Mathematics Education,
Woosuk University,
Hujong-Ri, Samrae-Eup,
Wanju-Kun, cheonbuk, Korea 560-701
E-mail: khwon@woosuk.ac.kr

**Division of Mathematics
and Informational Statistics,
and Nanoscale Science and Technology Institute,
Wonkwang University,
Iksan, chonbuk, Korea 570-749
E-mail: kulhur@wonkwang.ac.kr