IMPLICATIVE VAGUE IDEALS IN BCK-ALGEBRAS

Sun Shin Ahn and Jung Mi Ko*

Abstract. The notion of implicative vague ideals of BCK-algebras is defined, and several properties of it are investigated. Relations between a vague ideal and an implicative vague ideal is discussed. Characterizations of an implicative vague ideal are considered.

1. Introduction

Several authors from time to time have made a number of generalizations of Zadeh's fuzzy set theory [9]. Of these, the notion of vague set theory introduced by Gau and Buehrer [3] is of interest to us. Using the vague set in the sense of Gau and Buehrer, Biswas [2] studied vague groups. Jun and Park [4,8] studied vague ideals and vague deductive systems in subtraction algebras. In [6], the concept of vague BCK/BCI-algebras is discussed. S. S. Ahn, Y. U. Cho and C. H. Park [1] studied vague quick ideals of BCK/BCI-algebras. Y. B. Jun and K. J. Lee ([5]) introduced the notion of positive implicative vague ideals in BCK-algebras. They established relations between a vague ideal and a positive implicative ideals.

In this paper, we also use the notion of vague set in the sense of Gau and Buehrer to discuss the vague theory in BCK-algebras. We define the notion of implicative vague ideal of BCK-algebras and investigate several properties of it. We study a relation between a vague ideal and an implicative vague ideal. We establish characterizations of an implicative vague ideal.

2. Preliminaries

We review some definitions and properties that will be useful in our results.

Received October 26, 2011. Accepted March 26, 2012.
2000 Mathematics Subject Classification. 06F35, 03G25, 03E72.
Key words and phrases. vague ideal, (positive implicative) implicative vague ideal.
*Corresponding author.
By a \textit{BCI-algebra} we mean an algebra \((X, \star, 0)\) of type \((2,0)\) satisfying the following conditions:

(a1) \((\forall x, y, z \in X) ((x \star y) \star (x \star z) \star (z \star y) = 0)\),
(a2) \((\forall x, y \in X) ((x \star (x \star y)) \star y = 0)\),
(a3) \((\forall x \in X) (x \star x = 0)\),
(a4) \((\forall x, y \in X) (x \star y = 0, y \star x = 0 \Rightarrow x = y)\).

A BCI-algebra \(X\) satisfying the additional condition:

(a5) \((\forall x \in X) (0 \star x = 0)\)

is called a \textit{BCK-algebra}. In any BCK/BCI-algebra \(X\) one can define a partial order “\(\leq\)” by putting \(x \leq y\) if and only if \(x \star y = 0\).

A BCK/BCI-algebra \(X\) has the following properties:

(b1) \((\forall x \in X) (x \star 0 = x)\).
(b2) \((\forall x, y, z \in X) ((x \star y) \star z = (x \star z) \star y)\).
(b3) \((\forall x, y, z \in X) (x \leq y \Rightarrow x \star z \leq y \star z, z \star y \leq z \star x)\).
(b4) \((\forall x, y, z \in X) ((x \star z) \star (y \star z) \leq x \star y)\).
(b5) \((\forall x, y \in X) (x \star (x \star (x \star y))) = x \star y)\).

A non-empty subset \(S\) of a BCK/BCI-algebra \(X\) is called a \textit{subalgebra} of \(X\) if \(x \star y \in S\) whenever \(x, y \in S\). A subset \(A\) of a BCK/BCI-algebra \(X\) is called an \textit{ideal} of \(X\) if it satisfies:

(c1) \(0 \in A\),
(c2) \((\forall x \in A) (\forall y \in X) (y \star x \in A \Rightarrow y \in A)\).

Note that every ideal \(A\) of a BCK/BCI-algebra \(X\) satisfies:

\((\forall x \in A) (\forall y \in X) (y \leq x \Rightarrow y \in A)\).

A subset \(A\) of a BCK-algebra \(X\) is called a \textit{positive implicative ideal} of \(X\) if it satisfies (c1) and

(c3) \((\forall x, y, z \in A)((x \star y) \star z \in A, y \star z \in A \Rightarrow x \star z \in A)\).

Note that any positive implicative ideal is an ideal, but the converse is not true in general.

A subset \(A\) of a BCK-algebra \(X\) is called an \textit{implicative ideal} of \(X\) if it satisfies (c1) and

(c4) \((\forall x, y, z \in A)((x \star (y \star x)) \star z \in A, z \in A \Rightarrow x \in A)\).

Note that any implicative ideal is an ideal, but the converse is not true in general.

We refer the reader to the book [7] for further information regarding BCK-algebras.
Definition 2.1. ([2]) A vague set A in the universe of discourse U is characterized by two membership functions given by:

1. A true membership function

 \[t_A : U \rightarrow [0, 1], \]

 and

2. A false membership function

 \[f_A : U \rightarrow [0, 1], \]

where $t_A(u)$ is a lower bound on the grade of membership of u derived from the “evidence for u”, $f_A(u)$ is a lower bound on the negation of u derived from the “evidence against u”, and

\[t_A(u) + f_A(u) \leq 1. \]

Thus the grade of membership of u in the vague set A is bounded by a subinterval $[t_A(u), 1 - f_A(u)]$ of $[0, 1]$. This indicates that if the actual grade of membership of u is $\mu(u)$, then

\[t_A(u) \leq \mu(u) \leq 1 - f_A(u). \]

The vague set A is written as

\[A = \{ \langle u, [t_A(u), f_A(u)] \rangle \mid u \in U \}, \]

where the interval $[t_A(u), 1 - f_A(u)]$ is called the vague value of u in A, denoted by $V_A(u)$.

For $\alpha, \beta \in [0, 1]$ we now define (α, β)-cut and α-cut of a vague set. Recall that if $I_1 = [a_1, b_1]$ and $I_2 = [a_2, b_2]$ are two subintervals of $[0, 1]$, we can define a relation “\succeq” by putting $I_1 \succeq I_2$ if and only if $a_1 \geq a_2$ and $b_1 \geq b_2$.

Definition 2.2. ([2]) Let A be a vague set of a universe X with the true-membership function t_A and the false-membership function f_A. The (α, β)-cut of the vague set A is a crisp subset $A_{(\alpha, \beta)}$ of the set X given by

\[A_{(\alpha, \beta)} = \{ x \in X \mid V_A(x) \succeq [\alpha, \beta] \}. \]

Clearly $A_{(0,0)} = X$. The (α, β)-cuts of the vague set A are also called vague-cuts of A.

Definition 2.3. ([2]) The α-cut of the vague set A is a crisp subset A_α of the set X given by $A_\alpha = A_{(\alpha, \alpha)}$.

Note that $A_0 = X$, and if $\alpha \geq \beta$ then $A_\alpha \subseteq A_\beta$ and $A_{(\alpha, \beta)} = A_\alpha$.
Equivalently, we can define the α-cut as
$$A_\alpha = \{ x \in X \mid t_A(x) \geq \alpha \}.$$

3. Implicative vague ideals

For our discussion, we shall use the following notations on interval arithmetic:

Let $I[0,1]$ denote the family of all closed subintervals of $[0,1]$. We define the term “imax” to mean the maximum of two intervals as
$$\text{imax}(I_1, I_2) := [\max(a_1, a_2), \max(b_1, b_2)],$$
where $I_1 = [a_1, b_1], I_2 = [a_2, b_2] \in I[0,1]$. Similarly we define “imin”. The concepts of “imax” and “imin” could be extended to define “isup” and “iinf” of infinite number of elements of $I[0,1]$.

It is obvious that $L = \{I[0,1], \text{isup}, \text{iinf}, \geq\}$ is a lattice with universal bounds $[0,0]$ and $[1,1]$ (see [2]).

In what follows let X denote BCK-algebra unless specified otherwise.

Definition 3.1. ([6]) A vague set A of a BCK/BCI-algebra X is called a vague BCK/BCI-algebra of X if the following condition is true:

$$(\forall x, y \in X)(V_A(x * y) \succeq \text{imin}\{V_A(x), V_A(y)\}),$$

that is,

$$t_A(x * y) \geq \min\{t_A(x), t_A(y)\},$$

$$1 - f_A(x * y) \geq \min\{1 - f_A(x), 1 - f_A(y)\}$$

for all $x, y \in X$.

Definition 3.2. ([6]) A vague set A of a BCK-algebra X is called a vague ideal of X if the following conditions are true:

(d1) $$(\forall x \in X)(V_A(0) \succeq V_A(x)),$$

(d2) $$(\forall x, y \in X)(V_A(x) \succeq \text{imin}\{V_A(x * y), V_A(y)\}).$$

that is,

$$t_A(0) \geq t_A(x), 1 - f_A(0) \geq 1 - f_A(x),$$

and

$$t_A(x) \geq \min\{t_A(x * y), t_A(y)\}$$

$$1 - f_A(x) \geq \min\{1 - f_A(x * y), 1 - f_A(y)\}$$

for all $x, y \in X$.

Proposition 3.3. ([6]) Every vague ideal A of a BCK-algebra X satisfies the following properties:

(i) $$(\forall x, y \in X)(x \leq y \Rightarrow V_A(x) \succeq V_A(y)),$$
(ii) $(\forall x, y, z \in X)(VA(x * z) \succeq \text{imin}\{VA((x * y) * z), VA(y * z)\})$.

Definition 3.4. ([5]) A vague set A of a BCK-algebra X is called a positive implicative vague ideal of X if it satisfies (d1) and

(d3) $(\forall x, y, z \in X)(VA(x * z) \succeq \text{imin}\{VA((x * y) * z), VA(y * z)\})$

that is,

$$t_A(x * z) \geq \min\{t_A((x * y) * z), t_A(y * z)\},$$

$$1 - f_A(x * z) \geq \min\{1 - f_A((x * y) * z), 1 - f_A(y * z)\}$$

for all $x, y, z \in X$.

Definition 3.5. A vague set A of a BCK-algebra X is called an implicative vague ideal of a BCK-algebra X if it satisfies (d1) and

(d4) $(\forall x, y, z \in X)(VA(x) \succeq \text{imin}\{VA((x * (y * x)) * z), VA(z)\})$

that is,

$$t_A(x) \geq \min\{t_A((x * (y * x)) * z), t_A(z)\},$$

$$1 - f_A(x) \geq \min\{1 - f_A((x * (y * x)) * z), 1 - f_A(z)\}$$

for all $x, y, z \in X$.

Theorem 3.6. Every implicative vague ideal of a BCK-algebra X is a vague ideal of X.

Proof. Let A be an implicative vague ideal of a BCK-algebra X. If we take $y := x$ in (d4) and use (b1), then we obtain (d2). Hence A is a vague ideal of X. \hfill \square

Example 3.7. Let $X := \{0, 1, 2, 3, 4\}$ be a BCK-algebra([7]) in which the $*$-operation is given by the following table:

$$
\begin{array}{c|cccc}
* & 0 & 1 & 2 & 3 \\
\hline
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
2 & 2 & 1 & 0 & 1 \\
3 & 3 & 3 & 3 & 0 \\
4 & 4 & 4 & 4 & 0 \\
\end{array}
$$

Let A be the vague set in X defined as follows:

$$A = \{\langle0, [0.7, 0.2]\rangle, \langle1, [0.7, 0.2]\rangle, \langle2, [0.7, 0.2]\rangle, \langle3, [0.7, 0.2]\rangle, \langle4, [0.5, 0.3]\rangle\}$$

It is routine to verify that A is an implicative vague ideal of X.

Theorem 3.8. Every implicative vague ideal of a BCK-algebra X is a positive implicative ideal of X.
Proof. Let \(A \) be an implicative vague ideal of a BCK-algebra \(X \). Since \(((x \ast z) \ast z) \ast (y \ast z) \leq (x \ast z) \ast y = (x \ast y) \ast z \), using Proposition 3.3(i) we obtain
\[
V_A(((x \ast z) \ast z) \ast (y \ast z)) \succeq V_A((x \ast y) \ast z).
\]
(3.1)
Note that
\[
(x \ast z) \ast (x \ast (x \ast z)) = (x \ast (x \ast (x \ast z))) \ast z = (x \ast z) \ast z.
\]
(3.2)
It follows from (d4), (3.1) and (3.2) that
\[
V_A((x \ast z)) \succeq \min \{V_A(((x \ast z) \ast (x \ast (x \ast z))) \ast (y \ast z)), V_A((y \ast z)) \}
= \min \{V_A(((x \ast z) \ast (y \ast z)), V_A((y \ast z)) \}
\geq \min \{V_A((x \ast y) \ast z), V_A((y \ast z)) \}.
\]
Hence \(A \) is a positive implicative ideal of \(X \).

Example 3.9. Let \(X := \{0, 1, 2, 3, 4\} \) be a BCK-algebra([7]) in which the \(* \)-operation is given by the following table:

<table>
<thead>
<tr>
<th>*</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Let \(A \) be the vague set in \(X \) defined as follows:
\[
A = \{(0, [0, 0.7, 0.2]), (1, [0.5, 0.3]), (2, [0.7, 0.2]), (3, [0.5, 0.3]), (4, [0.5, 0.3])\}.
\]
It is routine to verify that \(A \) is a vague ideal of \(X \). But it is not an implicative vague ideal of \(X \), since
\[
V_A(1) \not\succeq \min \{V_A((1 \ast (3 \ast 1)) \ast 2), V_A(2) \}.
\]

Theorem 3.10.([5]) For a vague set \(A \) in a BCK-algebra \(X \), the following are equivalent:
\begin{enumerate}
\item \(A \) is a positive implicative ideal of \(X \).
\item \((\forall x, y \in X)(V_A(x \ast y) \succeq V_A((x \ast y) \ast y)). \)
\item \((\forall x, y, z \in X)(V_A((x \ast z) \ast (y \ast z)) \succeq V_A((x \ast y) \ast z)). \)
\end{enumerate}

Theorem 3.11. Let \(A \) be a positive implicative vague ideal of a BCK-algebra \(X \). Then \(A \) is an implicative vague ideal of \(X \) if and only if
\[
(\forall x, y, z \in X)(V_A(x \ast (x \ast y)) \succeq V_A(y \ast (y \ast x))).
\]
Using (3.4), (3.5) and Proposition 3.3(ii), we have

\[(x \ast (x \ast y)) \ast (y \ast (x \ast y)) \leq (x \ast (x \ast y)) \ast (y \ast x) = (x \ast (y \ast x)) \ast (x \ast y) \leq y \ast (y \ast x).\]

It follows from Proposition 3.3(i) that

\[V_A((x \ast (x \ast y)) \ast (y \ast (x \ast y))) \geq V_A(y \ast (y \ast x)). \tag{3.3}\]

Using (d4), (b1), (d1), and (3.3), we have

\[V_A(x \ast (x \ast y)) \geq \min \{V_A((x \ast (x \ast y)) \ast (y \ast (x \ast y))) \ast 0), V_A(0)\}
\[= V_A((x \ast (x \ast y)) \ast (y \ast (x \ast y))) \geq V_A(y \ast (y \ast x)).\]

Thus \(A\) satisfies (\ast). Conversely, let \(A\) be a positive implicative vague ideal of \(X\) which satisfies (\ast). Since \((y \ast (y \ast x)) \ast (y \ast x) \leq x \ast (y \ast x)\), it follows from Proposition 3.3(i), Theorem 3.10(2) and (\ast) that

\[V_A(x \ast (y \ast x)) \leq V_A((y \ast (y \ast x)) \ast (y \ast x)) \leq V_A(y \ast (y \ast x)) \leq V_A(x \ast (x \ast y)). \tag{3.4}\]

Since \((x \ast y) \ast z \leq x \ast y \leq x \ast (y \ast x)\) for any \(x, y, z \in X\), it follows from Proposition 3.3(i) that

\[V_A(x \ast (y \ast x)) \leq V_A((x \ast y) \ast z). \tag{3.5}\]

Using (3.4), (3.5) and Proposition 3.3(ii), we have

\[V_A(x) \geq \min \{V_A(x \ast (x \ast y)), V_A(x \ast y)\}
\[\geq \min \{V_A(x \ast (y \ast x)), V_A(x \ast y)\}
\[\geq \min \{V_A(x \ast (y \ast x)), V_A((x \ast y) \ast z), V_A(z)\}
\[\geq \min \{V_A(x \ast (y \ast x)), V_A(z)\}
\[= \min \{\min \{V_A((x \ast z) \ast (y \ast x)), V_A(z)\}, V_A(z)\}
\[= \min \{V_A((x \ast z) \ast (y \ast x)), V_A(z)\}.\]

Thus \(A\) is an implicative vague ideal of \(X\). \qed
Theorem 3.12. A vague ideal A of a BCK-algebra X is implicative if and only if

$$(* *) \quad (\forall x, y \in X)(V_A(x) \succeq V_A(x \ast (y \ast x))).$$

Proof. Suppose that a vague ideal A of X satisfies $(**)$.

It follows from (d2) and $(**)$ that

$$V_A(x) \succeq V_A(x \ast (y \ast x)) \succeq \text{imin}\{V_A((x \ast (y \ast x)) \ast z), V_A(z)\}.$$

Hence A is an implicative vague ideal of X.

Conversely, assume that a vague ideal A of X is implicative. Putting $z := 0$ in (d4), we have

$$V_A(x) \succeq \text{imin}\{V_A((x \ast (y \ast x)) \ast 0), V_A(0)\} = \text{imin}\{V_A(x \ast (y \ast x)), V_A(0)\} \succeq V_A(x \ast (y \ast x)).$$

This completes the proof. \(\square\)

Lemma 3.13. ([6]) For a vague set A in a BCK-algebra X, the following are equivalent:

1. A is a vague ideal of X,
2. A satisfies the following implication:

$$((\forall x, y, z \in X)((x \ast y) \ast z = 0 \Rightarrow V_A(x) \succeq \text{imin}\{V_A(y), V_A(z)\})).$$

Theorem 3.14. For a vague set A in a BCK-algebra X, the following are equivalent:

1. A is an implicative vague ideal of X,
2. A satisfies the following implication:

$$((\forall x, a, b \in X)((x \ast (y \ast x)) \ast a) \ast b = 0 \Rightarrow V_A(x) \succeq \text{imin}\{V_A(a), V_A(b)\}).$$

Proof. Assume that A is an implicative vague ideal of a BCK-algebra X. Then A is a vague ideal of X by Theorem 3.6. Let $x, y, a, b \in X$ be such that $((x \ast (y \ast x)) \ast a) \ast b = 0$. It follows from Theorem 3.12 and Lemma 3.13 that

$$V_A(x) \succeq V_A(x \ast (y \ast x)) \succeq \text{imin}\{V_A(a), V_A(b)\}.$$

Therefore A satisfies (2).

Conversely, let $x, a, b \in X$ be such that $(x \ast a) \ast b = 0$. Then $((x \ast (0 \ast x)) \ast a) \ast b = (x \ast a) \ast b = 0$. By (2), we have $V_A(x) \succeq \text{imin}\{V_A(a), V_A(b)\}$.
Thus A is a vague ideal of X by Lemma 3.13. Since $[(x * (y * x)) * (x * (y * x))] * 0 = 0$, it follow from (2) that
\[V_A(x) \geq \text{imin}\{V_A(x * (y * x)), V_A(0)\} \]
\[= V_A(x * (y * x)). \]
Thus A is an implicative vague ideal of X by Theorem 3.12.

Corollary 3.15. Let A be a vague set of a BCK-algebra X. If A satisfies the following inequality:
\[V_A(x) \geq \text{imin}\{V_A(a_1), \ldots, V_A(a_n)\} \]
whenever $(\cdots((x * (y * x)) * a_1) \cdots) * a_n = 0$ for all $x, a_1, \ldots, a_n \in X$, then A is an implicative vague ideal of X.

Proof. Straightforward.

Theorem 3.16. Let A be an implicative vague ideal of a BCK-algebra X. Then for any $\alpha, \beta \in [0, 1]$, the vague-cut $A_{(\alpha, \beta)}$ of A is a crisp implicative ideal of X.

Proof. Obviously, $0 \in A_{(\alpha, \beta)}$. Let $(x * (y * x)) * z \in A_{(\alpha, \beta)}$ and $z \in A_{(\alpha, \beta)}$. Then $V_A((x * (y * x)) * z) \geq [\alpha, \beta]$ and $V_A(z) \geq [\alpha, \beta]$, i.e., $t_A((x * (y * x)) * z) \geq \alpha$, $t_A(z) \geq \alpha$ and $1 - f_A((x * (y * x)) * z) \geq \beta$, $1 - f_A(z) \geq \beta$. It follows that
\[t_A(x) \geq \text{imin}\{t_A((x * (y * x)) * z), t_A(z)\} \geq \alpha \]
and $1 - f_A(x) \geq \text{imin}\{1 - f((x * (y * x)) * z), 1 - f_A(z)\} \geq \beta$.
Hence $x \in A_{(\alpha, \beta)}$ and so $A_{(\alpha, \beta)}$ is an implicative ideal of X.

The ideals like $A_{(\alpha, \beta)}$ are also called vague cut implicative ideals of X.

Theorem 3.17. Any implicative ideal I of a BCK-algebra X is a vague cut-ideal of some implicative vague ideal of X.

Proof. Consider the vague set A of X given by
\[V_A(x) = \begin{cases} [\alpha, \alpha] & \text{if } x \in I \\ [0, 0] & \text{if } x \notin I \end{cases} \]
where $\alpha \in (0, 1)$. Since $0 \in I$, we have $V_A(0) = [\alpha, \alpha] \succeq V_A(x)$ for all $x \in X$. Let $x, y, z \in X$ be such that $(x * (y * x)) * z \in I$ and $z \in I$. If $x \notin I$, then
\[t_A(x) = 0 \leq \text{imin}\{t_A((x * (y * x)) * z), t_A(z)\} \]
and $1 - f_A(x) = 0 \leq \text{imin}\{1 - f_A((x * (y * x)) * z), 1 - f_A(z)\}$.
If $x \in I$, then
\[t_A(x) = \alpha = \min\{t_A((x * (y * z)) * z), t_A(z)\} \]
and $1 - f_A(x) = \alpha = \min\{1 - f_A((x * (y * x)) * z), 1 - f_A(z)\}$.

Thus A is an implicative vague ideal of X. Clearly, $I = A_{(\alpha, \alpha)}$.

Theorem 3.18. Let A be an implicative vague ideal of a BCK-algebra X. Then the set
\[I := \{x \in X|V_A(x) = V_A(0)\} \]
is a crisp implicative ideal of X.

Proof. Clearly, $0 \in I$. Let $x, y, z \in X$ be such that $(x * (y * x)) * z \in I$ and $z \in I$. Then $V_A((x * (y * x)) * z) = V_A(0)$ and $V_A(z) = V_A(0)$ and so
\[V_A(x) \succeq \min\{V_A((x * (y * x)) * z), V_A(z)\} = V_A(0). \]
Since $V_A(0) \succeq V_A(x)$ for all $x \in X$, it follows that $V_A(x) = V_A(0)$. Hence $x \in I$. Therefore I is a crisp implicative ideal of X. □

References

Sun Shin Ahn
Department of Mathematics Education, Dongguk University,
Seoul 100-715, Korea.
E-mail: sunshine@dongguk.edu
Jung Mi Ko
Department of Mathematics, Gangneung-Wonju National University,
Gangneung 210-702, Korea.
E-mail: jmko@gwnu.ac.kr