NOTE ON THE CLASSICAL WATSON’S THEOREM FOR THE SERIES \(_3F_2 \)

J. Choi* and P. Agarwal

Abstract. Summation theorems for hypergeometric series \(_2F_1 \) and generalized hypergeometric series \(_pF_q \) play important roles in themselves and their diverse applications. Some summation theorems for \(_2F_1 \) and \(_pF_q \) have been established in several or many ways. Here we give a proof of Watson’s classical summation theorem for the series \(_3F_2 \) by following the same lines used by Rakha [7] except for the last step in which we applied an integral formula introduced by Choi et al. [3].

1. Introduction and Preliminaries

We begin by introducing a response of Michael Atiyah [9] when Michael Atiyah and Isadore Singer were interviewed which took place in Oslo on May 24, 2004, during the Abel Prize celebrations: Any good theorem should have several proofs, the more the better. For two reasons: usually, different proofs have different strengths and weaknesses, and they generalize in different directions—they are not just repetitions of each other ···. If you cannot look at a problem from different directions, it is probably not very interesting; the more perspectives, the better.

We recall the well known classical Watson’s summation theorem for the generalized hypergeometric series \(_3F_2 \) (see, e.g., [1, p.16, Eq. (1)]):

*Corresponding author
\[3F_2 \left[\begin{array}{c} a, b, c; \\ \frac{1}{2}(a + b + 1), 2c; 1 \end{array} \right] \]

\[= \frac{\Gamma\left(\frac{1}{2}\right) \Gamma(c + \frac{1}{2}) \Gamma\left(\frac{1}{2}a + \frac{1}{2}b + \frac{1}{2}\right) \Gamma\left(c - \frac{1}{2}a - \frac{1}{2}b + \frac{1}{2}\right)}{\Gamma\left(\frac{1}{2}a + \frac{1}{2}\right) \Gamma\left(\frac{1}{2}b + \frac{1}{2}\right) \Gamma\left(c - \frac{1}{2}a + \frac{1}{2}\right) \Gamma\left(c - \frac{1}{2}b + \frac{1}{2}\right)} \]

provided that \(\Re(2c - a - b) > -1 \). This Watson’s summation theorem (1.1) has been established in many different ways (see, e.g., [1, 2, 5, 7, 8, 11, 12]). For concise outlines of various proofs of (1.1), see [7, 8].

Here we present a proof of Watson’s summation theorem (1.1) for the series \({}_3F_2(1) \) by following the same lines used by Rakha [7] except for the last step in which we applied an integral formula introduced by Choi et al. [3].

For our purpose, we need to recall some known functions and earlier works. The well known Beta function \(\beta(\alpha, \beta) \) is defined by

\[\beta(\alpha, \beta) = \int_0^1 t^{\alpha-1}(1-t)^{\beta-1} dt \quad (\Re(\alpha) > 0; \ Re(\beta) > 0) \]

or, equivalently,

\[\beta(\alpha, \beta) = 2 \int_0^{\pi/2} \sin^\alpha \theta \cos^\beta \theta d\theta \quad (\Re(\alpha) > 0; \ Re(\beta) > 0). \]

An integral representation for \({}_3F_2 \) is given as follows (see [4]):

\[{}_3F_2 \left[\begin{array}{c} a, b, c; \\ d, e; z \end{array} \right] = \frac{\Gamma(d)}{\Gamma(d-c)\Gamma(c)} \int_0^1 t^{c-1}(1-t)^{d-c-1} {}_2F_1 \left[\begin{array}{c} a, b; \\ e; zt \end{array} \right] dt, \]

provided \(\Re(c) > 0, \ Re(d-c) > 0 \) and \(\Re(d-a-b) > 0 \).

A transformation formula for \({}_2F_1 \) is as follows (see, e.g., [6, p. 65, Theorem 24]):

\[{}_2F_1 \left[\begin{array}{c} a, b; \\ 2b; 2y \end{array} \right] = (1-y)^{-a} {}_2F_1 \left[\begin{array}{c} \frac{1}{2}a + \frac{1}{2}; \\ \frac{1}{2}b + \frac{1}{2}; \left(\frac{y}{1-y} \right)^2 \end{array} \right] \]

provided \(|y| < \frac{1}{2} \) and \(\left| \frac{y}{1-y} \right| < 1 \).
Euler’s integral representation for the hypergeometric function \(_2F_1 \) is given as follows (see \([10, p. 65]\)):

\[
(1.6) \quad _2F_1 \left[a, b; \frac{1}{2} \right] = \frac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)} \int_0^1 t^{b-1} (1-t)^{c-b-1} (1-zt)^{-a} dt,
\]

provided that \(\Re(c) > \Re(b) > 0 \) and \(|z| < 1 \).

An integral representation for \(_2F_1(1/2) \) is given as follows (see, e.g., \([3, p. 510, Eq. (8)]\)):

\[
(1.7) \quad _2F_1 \left[a, b; \frac{1}{2} \right] = \frac{2^a \Gamma(c)}{\Gamma(b)\Gamma(c-b)} \cdot \int_0^{\pi/2} (\cos \theta)^{b-1} \left(\frac{\sin \theta}{2} \right)^{2c-2b-1} \left(\frac{\cos \theta}{2} \right)^{2a-2c+1} d\theta.
\]

Gauss’s second summation theorem is given as follows (see, e.g., \([1, p. 10, Eq. (2)]\)):

\[
(1.8) \quad _2F_1 \left[\frac{1}{2}(a+b+1); \frac{1}{2} \right] = \frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{2}a + \frac{1}{2}b + \frac{1}{2})}{\Gamma(\frac{1}{2}a + \frac{1}{2}) \Gamma(\frac{1}{2}b + \frac{1}{2})}.
\]

2. Derivation of Watson’s summation theorem (1.1)

Setting \(e = 2b \) in (1.4), we have

\[
(2.1) \quad _3F_2 \left[\frac{a}{d}, b, c; \frac{1}{2} \right] = \frac{\Gamma(d)}{\Gamma(d-c)\Gamma(c)} \int_0^1 t^{c-1}(1-t)^{d-c-1} _2F_1 \left[a, b; \frac{1}{2} \right] dt.
\]

Replacing \(y \) by \(\frac{1}{2}zt \) in (1.5) and applying the resulting identity to the \(_2F_1 \) in (2.1), after a little simplification, we obtain

\[
(2.2) \quad _3F_2 \left[\frac{a}{d}, b, c; \frac{1}{2} \right] = \frac{\Gamma(d)}{\Gamma(d-c)\Gamma(c)} \cdot \int_0^1 t^{c-1}(1-t)^{d-c-1} (1-\frac{1}{2}zt)^{-a} _2F_1 \left[\frac{1}{2}a, \frac{1}{2}a + \frac{1}{2}; \frac{b}{2} + \frac{1}{2}; \left(\frac{zt}{2} - \frac{z}{2} \right)^2 \right] dt.
\]
Expressing the $2F_1$ in (2.2) as a series and changing the order of integration and summation, which is easily seen to be justified due to the uniform convergence of the series on the interval $(0, 1)$, after a little algebra, we have

\[(2.3) \quad 3F_2 \left[\begin{array}{c} a, b, c; \\ d, 2b; \\ z \end{array} \right] = \frac{\Gamma(d)}{\Gamma(d-c)\Gamma(c)} \cdot \sum_{n=0}^{\infty} \frac{(\frac{1}{2}a)_n(\frac{1}{2}a + \frac{1}{2})_n}{(b + \frac{1}{2})_n n!} \left(\frac{z}{2} \right)^{2n} \int_0^1 t^{c+2n-1}(1-t)^{d-c-1} \left(1 - \frac{1}{2}zt \right)^{-(a+2n)} dt.
\]

Using (1.6) to evaluate the integral in (2.3), after a little simplification, we get

\[(2.4) \quad 3F_2 \left[\begin{array}{c} a, b, c; \\ d, 2b; \\ z \end{array} \right] = \sum_{n=0}^{\infty} \frac{(\frac{1}{2}a)_n(\frac{1}{2}a + \frac{1}{2})_n (c)_n}{(b + \frac{1}{2})_n (d)_n n!} \left(\frac{z}{2} \right)^{2n} 2F_1 \left[\begin{array}{c} a + 2n, c + 2n; \\ d + 2n; \\ \frac{z}{2} \end{array} \right].
\]

Interchanging b and c and taking $d = \frac{1}{2}(a + b + 1)$ in (2.4), we have

\[(2.5) \quad 3F_2 \left[\begin{array}{c} \frac{1}{2}(a + b + 1), 2c; \\ d, 2b; \\ z \end{array} \right] = \sum_{n=0}^{\infty} \frac{(\frac{1}{2}a)_n(\frac{1}{2}a + \frac{1}{2})_n (b)_n}{(c + \frac{1}{2})_n (\frac{1}{2}a + \frac{1}{2}b + \frac{1}{2})_n n!} \left(\frac{z}{2} \right)^{2n} 2F_1 \left[\begin{array}{c} a + 2n, b + 2n; \\ \frac{1}{2}(a + b + 1) + 2n; \\ \frac{z}{2} \end{array} \right].
\]

Taking $z = 1$ in (2.5) and using (1.7) in the resulting equation, we obtain

\[(2.6) \quad 3F_2 \left[\begin{array}{c} \frac{1}{2}(a + b + 1), 2c; \\ d, 2b; \\ 1 \end{array} \right] = \sum_{n=0}^{\infty} \frac{(\frac{1}{2}a)_n(\frac{1}{2}a + \frac{1}{2})_n (b)_n}{(c + \frac{1}{2})_n (\frac{1}{2}a + \frac{1}{2}b + \frac{1}{2})_n n!} \left(\frac{1}{2} \right)^{2n} \frac{2^{a+2n} \Gamma(\frac{1}{2}a + \frac{1}{2}b + \frac{1}{2})}{\Gamma(b + 2n)\Gamma(\frac{1}{2}a - \frac{1}{2}b + \frac{1}{2})} \cdot 2^{b-a} \int_0^{\pi/2} (\cos \theta)^{b+2n-1} (\sin \theta)^{a-b} d\theta,
\]

where we used an elementary trigonometric identity: $\sin \theta = 2 \sin(\theta/2) \cos(\theta/2)$. Applying (1.3) to evaluate the integral in (2.6) and using Legendre’s duplication formula for the Gamma function (see [10, p. 6, Eq. (29)]) in the resulting identity, we get
Note on The Classical Watson’s Theorem for the Series $3F_2$

\[\begin{align*}
3F_2 & \left[\frac{1}{2}(a + b + 1), 2c; 1 \right] \\
& = \frac{\Gamma \left(\frac{1}{2}a + \frac{1}{2}b + \frac{1}{2}c \right) \Gamma \left(\frac{1}{2}a + \frac{1}{2}b \right) \Gamma \left(\frac{1}{2}a \right)}{\Gamma \left(\frac{1}{2}a + \frac{1}{2}b + \frac{1}{2}c \right) \Gamma \left(\frac{1}{2}a + \frac{1}{2}b \right) \Gamma \left(\frac{1}{2}a \right)} 2F_1 \left[\frac{1}{2}a, \frac{1}{2}b; c + \frac{1}{2}; 1 \right],
\end{align*} \]

which, upon using the well known Gauss’s summation theorem (see, e.g., [10, p. 64, Eq. (7)]), yields (1.1). This completes the proof of Watson’s summation theorem (1.1).

Acknowledgements

The authors would like to express their deep gratitude for the reviewer’s careful and thorough reading of this paper to point out several errors.

References

Junesang Choi
Department of Mathematics, Dongguk University,
Gyeongju 780-714, Republic of Korea.
E-mail: junesang@mail.dongguk.ac.kr

P. Agarwal
Department of Mathematics,
Anand International College of Engineering,
Jaipur-303012, India.
E-mail: goyal.praveen2011@gmail.com