SELF-ADJOINT INTERPOLATION ON $AX = Y$ IN A TRIDIAGONAL ALGEBRA Alg_L

Joo Ho Kang* and SangKi Lee

Abstract. Given operators X and Y acting on a separable Hilbert space \mathcal{H}, an interpolating operator is a bounded operator A such that $AX = Y$. In this article, we investigate self-adjoint interpolation problems for operators in a tridiagonal algebra: Let \mathcal{L} be a subspace lattice acting on a separable complex Hilbert space \mathcal{H} and let $X = (x_{ij})$ and $Y = (y_{ij})$ be operators acting on \mathcal{H}. Then the following are equivalent:

1. There exists a self-adjoint operator $A = (a_{ij})$ in Alg_L such that $AX = Y$.

2. There is a bounded real sequence $\{\alpha_n\}$ such that $y_{ij} = \alpha_n x_{ij}$ for $i, j \in \mathbb{N}$.

1. Introduction

Let \mathcal{C} be a subalgebra of the algebra $\mathcal{B}(\mathcal{H})$ of all operators acting on a Hilbert space \mathcal{H} and let X and Y be operators acting on \mathcal{H}. An interpolation question for \mathcal{C} asks for which X and Y is there a bounded operator $A \in \mathcal{C}$ such that $AX = Y$. A variation, the ‘n-operator interpolation problems’, asks for an operator A such that $AX_i = Y_i$ for fixed finite collections $\{X_1, X_2, \cdots, X_n\}$ and $\{Y_1, Y_2, \cdots, Y_n\}$. The n-operator interpolation problem was considered for a C^*-algebra \mathcal{U} by Kadison[4]. In case \mathcal{U} is a nest algebra, the (one-operator) interpolation problem was solved by Lance[5]: his result was extended by Hopenwasser[2] to the case that \mathcal{U} is a CSL-algebra. Munch[6] obtained conditions for interpolation in case A is required to lie in the ideal of Hilbert-Schmidt operators in a nest algebra. Hopenwasser[3] once again extended the

Received November 20, 2013. Accepted January 20, 2014.
2010 Mathematics Subject Classification. 47L35.
Key words and phrases. self-adjoint interpolation, CSL-algebra, tridiagonal algebra, Alg_L.
This paper is supported by Daegu University Grant(2013).
*Corresponding author
interpolation condition to the ideal of Hilbert-Schmidt operators in a CSL-algebra. Hopenwasser’s paper also contains a sufficient condition for interpolation n-operators, although necessity was not proved in that paper.

We establish some notations and conventions. A commutative subspace lattice L, or CSL L is a strongly closed lattice of pairwise-commuting projections acting on a Hilbert space H. We assume that the projections 0 and I lie in L. We usually identify projections and their ranges, so that it makes sense to speak of an operator as leaving a projection invariant. If L is CSL, $\text{Alg}L$ is mathcalled a CSL-algebra. The symbol $\text{Alg}L$ is the algebra of all bounded operators on H that leave invariant all the projections in L. Let x and y be two vectors in a Hilbert space H. Then $\langle x, y \rangle$ means the inner product of the vectors x and y. Let M be a subset of a Hilbert space H. Then \overline{M} means the closure of M and M^\perp the orthogonal complement of M. Let \mathbb{N} be the set of all natural numbers and let \mathbb{C} be the set of all complex numbers.

2. Results

Let H be a separable complex Hilbert space with a fixed orthonormal basis $\{e_1, e_2, \cdots \}$. Let x_1, x_2, \cdots, x_n be vectors in H. Then $[x_1, x_2, \cdots, x_n]$ means the closed subspace generated by the vectors x_1, x_2, \cdots, x_n. Let L be the subspace lattice generated by the subspaces $[\overline{e_{2k-1}}], [\overline{e_{2k-1}}, e_{2k}, \overline{e_{2k+1}}]$ ($k = 1, 2, \cdots$). Then the algebra $\text{Alg}L$ is mathcalled a tridiagonal algebra which was introduced by F. Gilfeather and D. Larson[1]. These algebras have been found to be useful counterexample to a number of plausible conjectures.

Let A be the algebra consisting of all bounded operators acting on H of the form

\[
\begin{pmatrix}
* & & * \\
* & & \\
* & * & * \\
& & \\
& * & \\
& & \ddots
\end{pmatrix}
\]

with respect to the orthonormal basis $\{e_1, e_2, \cdots \}$, where all non-starred entries are zero. It is easy to see that $\text{Alg}L = A$.

Let $B(H)$ be the set of all bounded operators acting on H.
Lemma 1. Let $A = (a_{ij})$ be an operator in the tridiagonal algebra AlgL. Then the following are equivalent:

(1) A is self-adjoint.

(2) A is diagonal and a_{ii} is real for all $i \in \mathbb{N}$.

Proof. Suppose that A is self-adjoint. Since $A = A^*$, $a_{ij} = 0$ for all $i \neq j$ and a_{ii} is real. So A is a real diagonal matrix.

Conversely, it is clear. □

Theorem 2. Let AlgL be the tridiagonal algebra and let $X = (x_{ij})$ and $Y = (y_{ij})$ be operators in \mathcal{H}. Then the following are equivalent:

(1) There exists a self-adjoint operator $A = (a_{ij})$ in AlgL such that $AX = Y$.

(2) There is a bounded sequence $\{\alpha_n\}$ of real numbers such that $y_{ij} = \alpha_i x_{ij}$ for all $i, j \in \mathbb{N}$.

Proof. Suppose that A is a self-adjoint operator $A = (a_{ij})$ in AlgL such that $AX = Y$. By Lemma 1, A is diagonal and a_{ii} is real for all $i \in \mathbb{N}$. Let $\alpha_i = a_{ii}$ for $i = 1, 2, \ldots$. Since $AX = Y$, $y_{ij} = a_{ii} x_{ij} = \alpha_i x_{ij}$ for $i, j = 1, 2, \ldots$.

Conversely, assume that there is a bounded sequence $\{\alpha_n\}$ of real numbers such that $y_{ij} = \alpha_i x_{ij}$ for $i, j = 1, 2, \ldots$. Let A be a diagonal matrix with the diagonal sequence $\{\alpha_n\}$. Since $\{\alpha_n\}$ is bounded, A is a bounded operator. Also A is self-adjoint and $AX = Y$. □

Theorem 3. Let AlgL be the tridiagonal algebra and let $X_i = (x_{jk}^{(i)})$ and $Y_i = (y_{jk}^{(i)})$ be operators acting on \mathcal{H} for $i = 1, 2, \ldots, n$. Then the following are equivalent:

(1) There exists a self-adjoint operator $A = (a_{ij})$ in AlgL such that $AX_i = Y_i$ for $i = 1, 2, \ldots, n$.

(2) There is a bounded sequence $\{\alpha_n\}$ of real numbers such that $y_{jk}^{(i)} = \alpha_j x_{jk}^{(i)}$ for all $i = 1, 2, \ldots, n$ and $j, k \in \mathbb{N}$.

Proof. Suppose that there exists a self-adjoint operator $A = (a_{ij})$ in AlgL such that $AX_i = Y_i$ for $i = 1, 2, \ldots, n$. Then A is diagonal and a_{ii} is real for each $i \in \mathbb{N}$ by Lemma 1. Let $\alpha_i = a_{ii}$ for $i = 1, 2, \ldots$. Then $\{\alpha_n\}$ is bounded. Since $AX_i = Y_i$, $y_{jk}^{(i)} = a_{jj} x_{jk}^{(i)} = \alpha_j x_{jk}^{(i)}$ for $i = 1, 2, \ldots, n$ and $j, k = 1, 2, \ldots$.

Conversely, assume that there is a bounded sequence $\{\alpha_n\}$ of real numbers such that $y_{jk}^{(i)} = \alpha_j x_{jk}^{(i)}$ for $i = 1, 2, \ldots, n$ and $j, k = 1, 2, \ldots$.

Self-adjoint interpolation on $AX = Y$ in a tridiagonal algebra AlgL
Let A be a diagonal matrix with the diagonal sequence $\{\alpha_n\}$. Since $\{\alpha_n\}$ is bounded, A is a bounded operator. Also A is self-adjoint and $AX_i = Y_i$ for $i = 1, 2, \cdots, n$.

By the similar way with the above, we have the following.

Theorem 4. Let $Alg\mathcal{L}$ be the tridiagonal algebra and let $X_i = (x_{jk}^{(i)})$ and $Y_i = (y_{jk}^{(i)})$ be operators acting on \mathcal{H} for $i = 1, 2, \cdots$. Then the following are equivalent:

1. There exists a self-adjoint operator $A = (a_{ij})$ in $Alg\mathcal{L}$ such that $AX_i = Y_i$ for $i = 1, 2, \cdots$.

2. There is a bounded sequence $\{\alpha_n\}$ of real numbers such that $y_{jk}^{(i)} = \alpha_j x_{jk}^{(i)}$ for all $i, j, k \in \mathbb{N}$.

References

Joo Ho Kang
Dept. of Math., Daegu University,
Daegu, Korea.
E-mail : jhkang@daegu.ac.kr

SangKi Lee
Dept. of Math. Education, Daegu University,
Daegu, Korea.
E-mail : sangklee@daegu.ac.kr