ON W_4-BIRECURRENT MANIFOLDS

JAEMAN KIM

Abstract. In the present paper, we introduce a type of Riemannian manifolds (namely, W_4-birecurrent manifold) and study the several properties of such a manifold on which some geometric conditions are imposed.

1. Introduction

In [7], Lichnerowicz introduced a recurrent manifold of second order (called birecurrent manifold) and obtained some interesting results. Later the weak notion of this manifold was studied by many authors including Thompson [9], Chaki and Roy Chowdhury [2], Ewert-Krzemieniewski [3,4], Garai [5]. In [8], Pokhariyal defined some curvature tensors with the help of Weyl’s projective curvature tensor and studied their physical and geometrical properties. One of the curvature tensors mentioned in [8] was the W_4-curvature tensor defined by

$$W_4(X,Y,Z,T) = R(X,Y,Z,T) + \frac{1}{(n-1)}[g(X,Z)r(Y,T) - g(X,Y)r(Z,T)],$$

or in local coordinates,

$$W_{4ijkl} = R_{ijkl} + \frac{1}{(n-1)}[g_{ik}r_{jl} - g_{ij}r_{kl}],$$

where R and r are the Riemannian curvature tensor and the Ricci tensor, respectively. The W_4-curvature tensor has no symmetry but it satisfies the cyclic property

and by way of contraction, it reduces to the Ricci tensor. Hence a W_4-flat manifold (i.e., a Riemannian manifold with $W_4 = 0$) is Ricci-flat.

Received July 29, 2014. Accepted September 22, 2014.

2010 Mathematics Subject Classification. 53A55, 53B20.

Key words and phrases. W_4-birecurrent manifold, birecurrent manifold, associated tensor, scalar curvature, Einstein, concurrent vector field, parallel vector field.

This study is supported by Kangwon National University.
which yields from (1.1) that the manifold is flat. Moreover it was shown that the vanishing of the divergence of W_4-curvature tensor in an electromagnetic field implies a purely electric field [6,8,10]. A Riemannian manifold (M^n,g) is said to be a birecurrent manifold if the manifold satisfies the following condition
\[(\nabla_U \nabla_V R)(X,Y,Z,T) = A(U,V)R(X,Y,Z,T)\]
or in local coordinates,
\[(1.2)\quad R_{ijkl;qp} = A_{pq}R_{ijkl},\]
where A is the associated tensor of type $(0,2)$ which is nonzero.

This paper is concerned with the manifolds in which the W_4-curvature tensor is second order recurrent. More precisely, we deals with a Riemannian manifold (M^n,g) called W_4-birecurrent manifold such that the W_4-curvature tensor W_4 of (M^n,g) satisfies the following relation
or in local coordinates,
\[(1.3)\quad W_{4ijkl;qp} = A_{pq}W_{4ijkl},\]
where A is the associated tensor of type $(0,2)$ which is nonzero.

Here the semicolon denotes covariant derivative with respect to the metric.

2. Some properties of W_4-birecurrent manifold

We first prove the following.

Theorem 2.1. Every W_4-birecurrent manifold is a birecurrent manifold with the same associated tensor.

Proof. Contracting (1.3) over i and l, we obtain
\[(2.4)\quad r_{jk;qp} = A_{pq}r_{jk},\]
From (1.1), (1.3) and (2.4), it follows that
\[(2.5)\quad R_{ijkl;qp} = A_{pq}R_{ijkl},\]
which completes the proof. □

As a consequence we have

Theorem 2.2. Let (M^n,g) be a W_4-birecurrent manifold. Then either the manifold is flat or the associated tensor A in (1.2) is symmetric.
Proof. Taking account of (2.5), we have
\begin{equation}
(R_{ijkl}R^{ijkl})_{;qp} = 2R_{ijkl;qp}R^{ijkl} + 2R_{ijkl;q}R^{ijkl;p}.
\end{equation}
Therefore from (2.5) and (2.6) we obtain
\[0 = 2(A_{pq} - A_{qp})R_{ijkl}R^{ijkl}, \]
which yields either
\[A_{pq} = A_{qp} \]
or
\[R_{ijkl} = 0. \]
This completes the proof.

Concerning the scalar curvature of \(W_4 \)-birecurrent manifold, we can state the followings.

Theorem 2.3. Let \((M^n, g)\) be a \(W_4 \)-birecurrent manifold. Then the scalar curvature \(s \) of \((M^n, g)\) cannot be a nonzero constant.

Proof. Contracting (1.3) over \(i \) and \(l \), and then contracting the relation obtained thus over \(j \) and \(k \), we have
\begin{equation}
s_{;qp} = A_{pq}s.
\end{equation}
If \(s = \text{constant}(\neq 0) \), then we have from (2.7) \(A_{pq} = 0 \), which is inadmissible because of the defining condition for the \(W_4 \)-birecurrent manifold. Therefore the scalar curvature \(s \) of \((M^n, g)\) cannot be a nonzero constant.

Theorem 2.4. Let \((M^n, g)\) be a \(W_4 \)-birecurrent manifold. If the scalar curvature \(s \) of \((M^n, g)\) is nonzero, then the relation \(A_{pq} = \frac{1}{s}s_{;qp} \) holds.

Proof. By virtue of (2.7) and \(s \neq 0 \) (and so nonconstant by Theorem 2.3), we have \(A_{pq} = \frac{1}{s}s_{;qp} \), which completes the proof.

Let \((M^n, g)\) be a Riemannian manifold satisfying the condition
\begin{equation}
R_{ijkl;q} = 0.
\end{equation}
Then the manifold is said to be locally symmetric.

Now we can state the following.

Theorem 2.5. Let \((M^n, g)\) be a \(W_4 \)-birecurrent manifold. If \((M^n, g)\) is locally symmetric, then the manifold is flat.
Proof. Taking account of Theorem 2.1 and (2.8), we have
\[0 = A_{pq}R_{ijkl}, \]
which yields \(R_{ijkl} = 0 \) because the associated tensor \(A \) is nonzero. This completes the proof. \(\Box \)

3. \(W_4 \)-birecurrent Einstein manifolds

Let \((M^n, g) \) be a Riemannian manifold satisfying the relation
\[r_{jk} = \frac{s}{n} g_{jk}. \] (3.9)
Then we call the manifold an Einstein manifold. It is well known that the scalar curvature \(s \) of an Einstein manifold is constant \([1]\).

A Riemannian manifold is said to be a \(W_4 \)-birecurrent Einstein manifold if the manifold is simultaneously an Einstein manifold and a \(W_4 \)-birecurrent manifold.

Concerning a \(W_4 \)-birecurrent Einstein manifold, we have

Theorem 3.1. Let \((M^n, g) \) be a \(W_4 \)-birecurrent Einstein manifold. Then the Ricci tensor \(r \) of \((M^n, g) \) is zero.

Proof. Taking account of Theorem 2.3 and \(s = \text{constant} \), we have from (3.9) \(r_{jk} = 0 \), which completes the proof. \(\Box \)

Theorem 3.2. Let \((M^n, g) \) be a \(W_4 \)-birecurrent Einstein manifold. Then either the manifold is flat or \(A^q_i A_{pq} = 0 \).

Proof. By virtue of Theorem 2.1 and the second Bianchi identity, we get
\[0 = R_{ijklq} + R_{ijlqk} + R_{ijqklp} \]
(3.10)
\[= A_{pq}R_{ijkl} + A_{pl}R_{ijqk} + A_{pk}R_{ijlq}. \]
Contracting (3.10) over \(i \) and \(l \) and using the fact of the vanishing Ricci tensor by Theorem 3.1, we obtain
\[A^q_i R_{ijqk} = 0 \]
or equivalently
\[A^q_i R_{qkji} = 0 \] (3.11)
Multiplying \(A^q_i \) to (3.10), we get
\[0 = A^q_i A_{pq}R_{ijkl} + A^q_i A_{pl}R_{ijqk} + A^q_i A_{pk}R_{ijlq}. \] (3.12)
From (3.11) and (3.12), it follows that
\[A^q_i A_{pq} R_{ijkl} = 0, \]
which yields either \(A^q_i A_{pq} = 0 \) or \(R_{ijkl} = 0 \). This completes the proof. \(\square \)

4. Vector fields and \(W_4 \)-birecurrent manifold

A vector field \(V \) on a Riemannian manifold \((M^n, g)\) is said to be concurrent if it satisfies the relation
\[
V^i_{;j} = \rho \delta^i_j
\]
where \(\rho = \text{constant} \neq 0 \) and \(\delta^i_j \) denotes the Kronecker delta.

Now we can state the following.

Theorem 4.1. Let \((M^n, g)\) be a \(W_4 \)-birecurrent manifold admitting a concurrent vector field \(V \). If the scalar curvature \(s \) of \((M^n, g)\) is nonzero, then we have \(A_{ij} V^i V^j = 6 \rho^2 \).

Proof. By virtue of (4.13) and the Ricci identity, we have
\[
0 = V^i_{;jk} - V^i_{;kj} = V^i R^i_{hjk}.
\]
Contracting (4.14) over \(i \) and \(k \), we obtain
\[
V^h r_{hj} = 0.
\]
Differentiating (4.15) covariantly, we obtain
\[
V^h r_{hj} + V^h r_{hj;l} = 0.
\]
From (4.13) and (4.16), it follows that
\[
\rho \delta^h_l r_{hj} + V^h r_{hj;l} = 0.
\]
Multiplying \(g^{lj} \) to (4.17) and contracting with respect to the indices, we get
\[
\rho s + V^h r_{hj;l} g^{lj} = 0.
\]
Taking account of (4.18) and the second Bianchi identity, we have
\[
\rho s + \frac{1}{2} V^h s_{;h} = 0.
\]
Differentiating (4.19) covariantly, we get from (4.13)
\[
2 \rho s_{;m} + V^h s_{;hm} + \rho \delta^h_m s_{;h} = 0,
\]
which reduces to
\[
3 \rho s_{;m} + V^h s_{;hm} = 0.
\]
Multiplying V^m to (4.20), we have

$$3\rho s_m V^m + V^h V^m s_{hm} = 0,$$

which yields from (2.7) and (4.19)

$$-6\rho^2 s + V^h V^m A_{mh} s = 0$$

or equivalently

$$(4.21) \quad (A_{mh} V^h V^m - 6\rho^2) s = 0.$$

Hence from (4.21) and $s \neq 0$, we have

$$(4.22) \quad A_{mh} V^m V^h = 6\rho^2,$$

which completes the proof. \(\square\)

A vector field V on a Riemannian manifold (M^n, g) is called parallel if it satisfies

$$V^i_{ij} = 0.$$

Consequently we have

Corollary 4.2. Let (M^n, g) be a W_4-birecurrent manifold admitting a parallel vector field V. If the scalar curvature s of (M^n, g) is nonzero, then we have $A_{ij} V^i V^j = 0$.

Proof. By virtue of (4.13), (4.22) and (4.23), we have $A_{ij} V^i V^j = 0$, which completes the proof. \(\square\)

On the other hand, we can state the following.

Theorem 4.3. Let (M^n, g) be a W_4-birecurrent manifold admitting a parallel vector field V. If the scalar curvature s of (M^n, g) is nonzero, then we have $A_{pq} V^q = 0$.

Proof. By virtue of the Ricci identity, we have

$$0 = V^h_{ijk} - V^h_{kji} = V^i R^h_{ijk}.$$

Contracting (4.24) over h and k, we obtain

$$V^i r_{ij} = 0.$$

On the other hand, differentiating (4.24) covariantly, we have from $V^i_{;i} = 0$

$$V^i R^h_{ijk;l} = 0.$$

Contracting (4.26) over h and k, we have

$$V^i r_{ijl} = 0.$$
Taking account of (4.26) and the second Bianchi identity, we have
\begin{equation}
V^i R^h_{lkji; i} = 0.
\end{equation}
(4.28)
Contracting (4.28) over \(h \) and \(j \), and then contracting the relation obtained thus over \(l \) and \(k \), we get
\begin{equation}
V^i r_{lk; i} = 0
\end{equation}
(4.29)
and
\begin{equation}
V^i s_{; i} = 0.
\end{equation}
(4.30)
Taking account of \(V^i_{; m} = 0 \), (4.28) and (4.29), we have
\begin{equation}
V^i R^h_{lk; ijm} = 0
\end{equation}
(4.31)
and
\begin{equation}
V^i r_{lk; ijm} = 0.
\end{equation}
(4.32)
Multiplying \(V^q \) to (1.3), we have from (1.1), (4.31) and (4.32)
\begin{equation}
0 = V^q W_{4ijkl; qp} = V^q A_{pq} W_{4ijkl}.
\end{equation}
(4.33)
Contracting (4.33) over \(i \) and \(l \), and then contracting the relation obtained thus over \(j \) and \(k \), we obtain
\begin{equation}
0 = V^q A_{pq} r_{jk}
\end{equation}
(4.34)
and
\begin{equation}
0 = V^q A_{pq} s.
\end{equation}
(4.35)
By virtue of \(s \neq 0 \), we have from (4.35) \(A_{pq} V^q = 0 \), which completes the proof.

Acknowledgements. The author would like to express his sincere thanks to the referee for valuable suggestions towards the improvement of this paper.

References

Jaeman Kim
Department of Mathematics Education, Kangwon National University, Chunchon 200-701, Kangwon Do, Korea.
E-mail: jaeman64@kangwon.ac.kr