인간 팔의 형태학적·신경학적 분석 기법에 기반한 휴머노이드 로봇 팔 설계

The Design of Humanoid Robot Arm based on the Morphological and Neurological Analysis of Human Arm

최형윤, 배영철, 문용선
(Hyeong-Yoon Choi, Young-chul Bae, and Yong Soon Moon)

Abstract: There are few representative humanoid robots including Japanese ASIMO from Honda and HUBO from KAIST. We cannot consider ASIMO and HUBO the perfect humanoid robots, however. The basic principles when developing humanoid robot is to make it to work in a similar way as human's movement of arm. In this paper, we proposed method of designing humanoid robotic arms based on the morphological·neurological analysis of human's arm for robot's arm to work in a similar way as human's arm, and we also implemented arm movement control system to humansoid robot by using SERCOS communication.

Keywords: humanoid robot, robot arm, morphological analysis, neurological analysis

I. 서론

1960년대에 최초로 산업용 로봇이 출현했을 때 로봇은 단지 정체된 작업만을 반복하는 장치의 개념인 매니퓰레이터(manipulator)로서 사용되었다. 20년이 지난 1980년대 이후 마이크로프로세서의 등장과 함께 로봇에 대한 많은 연구가 시작되면서 로봇은 단순 작업만을 반복하는 장치가 아닌 다양한 목적 및 용도로 가지고 개발되기 시작했다. 로봇에 대한 기술 및 인식이 다양하게 변화하면서 인간의 정차 로봇과 인간을 연관시키기 시작하였으며, 이로부터 인간을 닮고 인간의 행위를 모방할 수 있는 로봇을 지정하는 휴머노이드 로봇(humanoid robot)이 등장하게 되었다(1-3).

휴머노이드 로봇은 1990년대 후반에 등장, 소니 등의 기업들과 여러 연구기관들이 중심으로 개발되기 시작하면서 일반인들의 호기심을 끌어 시장시가하였다. 그러나 일반 사람들은 생각하는 로봇의 형태 및 기능들은 종종 복잡한 로봇은 기술의 한계 때문에 2020년 이후에 본격적인 상용화를 예상하고 있다.

현재 개발된 대표적인 휴머노이드형 로봇으로는 일본 혼다의 아시모(ASIMO)와 한국과학기술원의 휴보(HUBO)가 있다(4,5). 아시모와 휴보의 경우도 완전한 휴머노이드 로봇이라고 할 수는 없고 정차로 완전한 것으로 볼 수 없다. 휴머노이드형 로봇 개발 때 기본적인 개념은 사람의 움직임과 유사하게 동작하도록 하는 것이다.

이에 본 논문에서는 사람의 움직임과 유사하게 동작하도록 하기 위한 인간 팔의 형태학적·신경학적 분석 기법을 기반으로 한 휴머노이드 로봇 팔 설계 기법을 제시하고 SERCOS 통신을 이용하여 구현함으로서 그 타당성을 확인하였다.

II. 인간 팔의 형태학적·신경학적 분석[6-11]

1. 인간 팔의 형태학적 분석

휴머노이드 로봇 팔의 개발을 위하여, 본 논문에서는 먼저 인간 팔의 구조 및 동작과 유사한 로봇의 팔의 구성을 위한 인간 팔의 형태학적 구조에 대한 로봇의 매핑 개념을 적용하였다. 이를 위하여 그림 1에 인간 팔의 형태학적 구조에 대한 인간 팔 로봇 매핑 개념도를 나타내었다.

형태학적 관점을 보면 인간의 팔은 크게 어깨관절, 쭉延伸관절, 손목관절인 3개의 관절로 정다면 된다. 어깨관절은 3가지 방향으로 움직이는 3차도, 광폭을 포함한 꽃꿀치관절은 2차도, 손목관절은 2차도로서 최종적인 인간의 팔은 7차도로 구성되어 있다.

 인간 팔의 관절들 중 가장 많은 움직임을 가진 어깨관절은 Sterno-Clavicular(SC) 관절, Acromio-Clavicular(AC) 관절

![Brain Processor]

[그림 1. 인간-로봇 형태학적 매핑 개념]

인간 몸의 형태학적인 구조에 대한 분석 과정을 통하여 직관적으로 유도한 인간 몸의 자유도 및 운동 범위에 대한 분석 결과는 표 1과 같다.

팔꿈치관절은 extension/election 운동을 실시하는 1 자유도의 관절로, pronation/supination 운동은 1 자유도의 관절을 포함한 2 자유도로 구성되어 있다. 물론 자유도 기술관련에 따라 관절을 손목관절로 포함시켜서 팔꿈치 관절을 1 자유도로 기술하기도 한다.

손목관절은 flexion/extension, radial/ulnar 정의되는 2 자유도의 운동을 가져가면서 팔꿈치 관절처럼 관절을 포함한 3 자유도로 사용하기도 한다.

표 1에서 기술하는 인간의 자유도 및 운동은 인간 해부학적 용어로서 실제 로봇으로 좌표로 작성하기는 어렵기 때문에 표준화된 좌표시스템으로 변화 과정이 필요하다. 본 논문에서는 인간 운동계의 로봇 작동을 위한 좌표계로서 현재 로봇좌표 시스템으로 사용되는 피치(pitch), 롤(roll), 요 주(yaw) 좌표 시스템을 사용하며 이에 대한 결과는 표 2와 같다.

표 2. 일반적인 로봇 좌표계와 인간 골 운동계와의 매핑 결과.

Table 2. The mapping result between the frame of reference for a general robot and the motion system of human arms.

<table>
<thead>
<tr>
<th>Joint name</th>
<th>Movement</th>
<th>Movable angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoulder (3DOF)</td>
<td>Flexion/Extension</td>
<td>-180°/50°</td>
</tr>
<tr>
<td>Elbow (2DOF)</td>
<td>Flexion/Extension</td>
<td>-145°/90°</td>
</tr>
<tr>
<td>Wrist (2DOF)</td>
<td>Flexion/Extension</td>
<td>-75°/70°</td>
</tr>
</tbody>
</table>

그림 2. 인간-로봇 신경학적 매핑.

Fig. 2. Human-robot neurological mapping.

표 3. 뇌에 대한 신경학적 분석[6-11].

Table 3. The neurological analysis of the brain.

<table>
<thead>
<tr>
<th>joint name</th>
<th>movement</th>
<th>angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoulder (3DOF)</td>
<td>Pitch</td>
<td>-180°/50°</td>
</tr>
<tr>
<td>Elbow (2DOF)</td>
<td>Pitch</td>
<td>-145°/70°</td>
</tr>
<tr>
<td>Wrist (2DOF)</td>
<td>Pitch</td>
<td>-75°/70°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Brain Stem</th>
<th>joint name</th>
<th>movement</th>
<th>angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 후두뇌 (Occipital lobe)</td>
<td>- 눈으로 통해 들어오는 정보 수용영역</td>
<td>- 눈부 움직임 및 반사기능 운동편리</td>
<td></td>
</tr>
<tr>
<td>- 두뇌 (Brain Stem)</td>
<td>- 앞에서 위치한 수축줄의 여러 부위와 함께 수축의 시동을 연속하는 신경로가 지나가</td>
<td>- 후두뇌의 세포화 섬유, 전신적 반사반상</td>
<td></td>
</tr>
<tr>
<td>- 소뇌 (Cerebellum)</td>
<td>- 수학적 운동에 관한 정보</td>
<td>- 두뇌와 동물간의 유동 균형 유지</td>
<td></td>
</tr>
</tbody>
</table>
라 신경계는 뇌(brain), 척수(spinal cord), 감각 및 운동기
(serosinotor)로 구성되는데 이것은 로봇의 제어를 담당하는
프로세서의 기능적인 모델화에 매칭될 수 있다.
그림 2는 인간 신경계를 구조에 대한 로봇 패턴의 개념
도이다.

인간의 뇌는 각각 신호인식, 운동명령, 기억저장, 사고과
정에 대한 추론 등의 같은 인간의 모든 행동 및 행위에 대
한 제어를 관리하는데 이러한 인간의 뇌 기능들은 로봇 프
로세서의 구조 및 기능을 결정하는 기준으로서 사용된다.
뇌의 세부적인 역할 및 기능에 대한 내용은 표 3과 같다.

인간의 뇌신경과 마찬가지로 인체의 큰 신경의 한 영역을 구
성하는 추측신경은 인간의 뇌기능을 동작시키기 위해 요구되
는 신호를 가장 최상위 신경인 뇌로부터 정보를 입력받아
가장 하위신경으로 정보를 전달한다. 신경을 사이에 중계역
활을 담당하는 인간의 추측신경계의 구조는 로봇의 통신
네트워크로 설계된다. 운동 및 감각 기능을 담당하는 각
각의 신경신경은 뇌의 추측자극을 전달하거나 전달받으
며 이러한 구조는 로봇을 구성하는 센서 및 엔터페이스의
구성 및 인터페이스로 정의한다.

III. 휴머노이드 로봇 패 모델링
1. 휴머노이드 로봇 패의 기본 요구 조건

본 절에서는 2장의 로봇 패의 분석과 화의 형태학적 분
석을 통하여 나타낸 휴머노이드 로봇 패에 대한 요구조건
들을 기반으로 개발한 휴머노이드 로봇 패에 대한 설계 모
델을 개발한다[12]. 표 4는 현재 개발된 국내의 휴머노이드
로봇 패의 구조에 대한 분석과 인간 형태학적 구조에 대한
분석을 통하여 유도되는 휴머노이드 로봇 패에 대한 기본
요구 조건을 나타낸다.

2. 휴머노이드 로봇 패 구조 및 시스템

2장의 인간 형태학적 구조를 통하여 알 수 있듯이 인간
의 자극도는 모두 7자유도로 구성이 되어있으며. 그러나 올
직적 발생 시 자극도 사이에는 어느 정도 중첩이 발생함으
로 휴머노이드 로봇 패의 관절 자극도 설계에 인간의
모든 자극도를 동일하게 사용할 필요는 없다[8].

표 4. 휴머노이드 로봇 패의 구조를 위한 요구조건.
Table 4. The requirements for implementation of Humanoid robot arms.

<table>
<thead>
<tr>
<th>항목</th>
<th>요구조건</th>
<th>이론</th>
</tr>
</thead>
<tbody>
<tr>
<td>관의 형태</td>
<td>모두 구조</td>
<td>외구조</td>
</tr>
<tr>
<td>자유도</td>
<td>5~7자유도</td>
<td>인간 구조 기반의 최적 행위 구현</td>
</tr>
<tr>
<td>인체레이저</td>
<td>AC</td>
<td>조절도 제어 및 관절의 역학적인 사용</td>
</tr>
<tr>
<td>제어네트워크</td>
<td>고속 비트로크</td>
<td>주전도 비트로크</td>
</tr>
<tr>
<td>시리얼비트로크</td>
<td>인간 신경계 구조, 제어 및 판매 제어,</td>
<td>모션 데이터</td>
</tr>
<tr>
<td></td>
<td>로컬화 구현</td>
<td></td>
</tr>
</tbody>
</table>

그림 3. 인간의 관동은기 기반의 휴머노이드 로봇 패 구조.
Fig. 3. The structure of Humanoid robot arm based on human arms motion system.

본 논문에서는 휴머노이드 로봇 패의 관절 자유도를 사
람의 7자유도 중 운동에 큰 관여를 하지 않는 손목과
관련된 2개의 자유도(shoulder/ulnar or flexion/extension) 운동
을 제외한 5자유도 가지도록 구성한다. 그리고 휴머노이드
로봇 패의 제어네트워크 및 제어시스템은 기존의 휴머노이드
로봇 시스템의 문제점을 극복할 수 있는 내
로운 방식의 구조인 모션제어 SERCOS 통신과 고정도 AC
서보모터를 이용한 로봇 패 제어시스템으로 구성한다.
그림 3은 구현한 휴머노이드 로봇의 자유도 구조에
대한 개념을 나타낸다.

그림 3의 휴머노이드 로봇 패와 관련된 개념도를 통하여
인간의 7자유도에서 이동반경이 가장 혼잡하여 운동체의
구형은 미치지 않는 손목관절의 2자유도를 제외한 여게
3자유도, 불상치 1자유도, 손목 1자유도를 가지는 5자유도
의 휴머노이드 로봇 패를 구현하며 무작고 2자유도에 대해

表 5. 휴머노이드 로봇 패의 관절범위
Table 5. The motion scope of each joint of the Humanoid robot arms.

<table>
<thead>
<tr>
<th>Arm joint</th>
<th>Movable range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoulder (3Dof)</td>
<td>Roll</td>
</tr>
<tr>
<td>Pitch</td>
<td>$-180^\circ < P < 60^\circ$</td>
</tr>
<tr>
<td>Yaw</td>
<td>$-90^\circ < Y < 90^\circ$</td>
</tr>
<tr>
<td>Elbow (1Dof)</td>
<td>Pitch</td>
</tr>
<tr>
<td>Wrist (1Dof)</td>
<td>Yaw</td>
</tr>
</tbody>
</table>

表 6. 인간의 표준 크기.
Table 6. The standard size of the human arms.

<table>
<thead>
<tr>
<th>제형 내용</th>
<th>남성(mm)</th>
<th>여성(mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stature</td>
<td>1783</td>
<td>1607</td>
</tr>
<tr>
<td>Arm Length</td>
<td>583</td>
<td>536</td>
</tr>
<tr>
<td>Shoulder Length</td>
<td>138</td>
<td>128</td>
</tr>
<tr>
<td>Upper-arm Length</td>
<td>338</td>
<td>309</td>
</tr>
<tr>
<td>Forearm Length</td>
<td>245</td>
<td>227</td>
</tr>
<tr>
<td>Hand Length</td>
<td>186</td>
<td>175</td>
</tr>
</tbody>
</table>
서는 연결된 모션체어를 통하여 극복할 수 있도록 한다. 표 5는 구현한 휴머노이드 위한 자유도 및 이동범위에 대한 구성품을 나타낸다.

휴머노이드 로봇의 전체 절길이는 표 6의 국내 표준 날짜의 팔 길이에 적용하여 구현을 하였다. 그리고 각 빌립벌 길이는 인간과 동일한 관절 위치의 사용을 통한 기구적인 제작으로 인하여 약간의 차이를 가진다.

IV. SERCOS 통신을 이용한 휴머노이드 로봇 팔 제어 시스템 구현

휴머노이드 로봇 팔의 구현은 현재의 휴머노이드 로봇에 레벨로된 카이로 내장칩과, 낮은 통신 속도 문제, 동기화 간섭 문제, 제어성능 문제가 등을 해결할 수 있는 시스템 구조인 SERCOS(Serial Real-time Communication System) 네트워크와 AC 서보 모터를 사용한 네트워크 기반 휴머노이드 로봇 제어시스템으로서 구현한다. SERCOS 통신은 국제 표준 모션제어 전용 프로토콜(protocol)로서 16Mbps의 고속의 데이터 처리가 가능하며 실시간음도 운동제어 및 다축 동기화 기능을 지원하여 기존 휴머노이드 로봇의 시스템적인 문제점을 해결한다. 또한 AC 서보모터의 경우 DC 모터와는 달리 브리케이지장비가 존재하지 않으므로 모터의 장시간 사용이 가능하며, 제어의 성능이 우수하다는 장점을 가지고 있다(13-15).

그림 4는 본 논문을 통하여 개발한 SERCOS 네트워크 기반 휴머노이드 로봇 팔 제어시스템의 구조를 나타낸다.

그림 4의 SERCOS 네트워크 기반의 휴머노이드 로봇 팔 제어시스템은 기존의 마이크로프로세서 환경에서의 로봇은 제어하는 방식과는 달리 PC 상에서 기존의 실시간 제어환경을 구축하여 제어하는 방식인 SoftPLC(Software Progran-

Table 7. System configuration of SERCOS based Humanoid robot arm.

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master controller</td>
<td>- 휴머노이드 로봇 팔의 운동제어를 담당하는 부분으로서 SERCOS 통신을 통하여 하위의 드라이버들과 통신한다.</td>
</tr>
<tr>
<td>SERCOS NIC</td>
<td>- 제어기와 모터드라이버들을 통신을 연계하여 주는 인터페이스 기능을 담당한다.</td>
</tr>
<tr>
<td>SERCOS Servo system</td>
<td>- 휴머노이드 로봇 팔의 관절 구동부로서 SERCOS 통신을 통하여 휴머노이드 로봇 팔 구동 및 제어한다.</td>
</tr>
<tr>
<td>SERCOS I/O</td>
<td>- SERCOS 통신을 기반으로 휴머노이드 로봇 팔의 모든 입력/ 출력 신호들을 관리한다.</td>
</tr>
<tr>
<td>Limit & Home sensor</td>
<td>- 휴머노이드 로봇 팔의 초기화 및 관절 이동 리미트 기능을 담당한다.</td>
</tr>
</tbody>
</table>

그림 4. 휴머노이드 로봇 팔 제어시스템 구조

Fig. 4. The control system configuration of the Humanoid robot arm.
V. 결론
본 논문에서는 사람의 움직임과 유사하게 동작하도록 하기 위한 인간과의 형태학적 - 신경학적 분석 기법을 기반으로 한 휴머노이드 로봇의 설계 기법을 제시하고 SERCOS 통신을 이용하여 이를 구현함으로써 그 다양한성을 검증하였으며 구현된 로봇 영역의 형태학적 - 신경학적으로 인간과 유사하게 동작할 가능성을 알아 놓았다.

참고문헌

최 형 용

문 용 선

배 영 천