Chirp Spread Spectrum 거리 측정을 이용한 이동 로봇의 위치 추정

Localization for Mobile Robot Based on Chirp Spread Spectrum Ranging

조현우, 이영훈, 김상우
(Hyeonwoo Cho, Younghun Lee, and Sang Woo Kim)

Abstract: CSS (Chirp Spread Spectrum) specified in IEEE 802.15.4a can be used for ranging applications. In this paper, we apply the CSS to estimate the coordinates of a mobile robot. Four anchor nodes are installed at known positions and a tag node is attached to the target mobile robot. By CSS ranging, we measure the distances between each anchor and the tag node. Based on the measured distances, the coordinates of the mobile robot can be calculated by the method of trilateration. However the calculated coordinates are not accurate because of the errors of the measured distances. Therefore we propose an algorithm for reducing the effect of the errors. The proposed algorithm is executed with the extended Kalman filter. Through localization experiments, we show the performance of the proposed algorithm and the accuracy of the estimated position.

Keywords: chirp spread spectrum, localization, extended Kalman filter, trilateration, measurement error

I. 서론
유비쿼터스 환경을 구현함에 있어서 목표가 되는 대상의 위치 추정이 중요한 문제로 부각되고 있다[1]. 특히 사용자에게 다양한 서비스를 제공하기 위한 목적으로 사용되는 지능형 이동 로봇의 경우, 자율 주행을 가능하게 하기 위해 자신의 위치 정보를 획득하는 것이 매우 중요하다.

이러한 필요성에 따라 다양한 위치 추정 시스템 및 알고리즘이 개발되어 왔다. 그 중 GPS (Global Positioning System) 시스템은 기반으로 한 연구가 있다[2,3]. 하지만 저가의 GPS 시스템의 경우 오차가 커 이동 로봇의 위치 추정에 적합하지 않으며, RTK (Real Time Kinematic)-GPS의 경우 정확한 위치 좌표를 얻을 수 있지만 고가의 장비이므로 비용에 민감한 이동 로봇에는 적용하는데 어려움이 있다[2]. 또 다른 문제점 중 하나로 GPS는 실내에서 활용할 수 없다는 점이다. 따라서 실내 환경에서도 음이온이 가능한 위치추적 방법이 요구된다.

실내 이동 로봇의 위치 추정을 위한 시스템 중 초음파를 이용한 시스템이 있다[4,5]. 먼저 U-SAT 시스템은 GPS와 생성과 유사하게 실내에 설치된 초음파 체계라는 개념을 이용하여, GPS위치의 RF신호를 사용하는 것과 달리 초음파 체계의 신호를 이용하고 이를 통해 각 방향과 대상 간의 거리를 측정한다. 이를 바탕으로 하여 이번 초음파 체계의 좌표와 함께 대상의 위치를 계산하는 방식을 이용한다[4]. Cricket 시스템 또한 초음파를 이용하는 시스템으로서, 사전에 알려진 좌표 점들에 다수의 초음파 센서 노드를 배치하고, 이 노드들은 서로간의 신호 간섭을 피해 초음파를 방출한다. 이 초음과 신호를 수신한 대상은 센서 노드간의 거리를 측정하고, 이를 이용하여 자신의 위치를 계산하는 방식이다[5]. 이러한 초음과 기반의 위치 추정 시스템들은 위치 추정의 정확도가 높으며 실내 환경에서 사용가능하다는 장점이 있다. 하지만 초음과 신호의 적신호에 의해 신호가 도달하지 못하는 음영지역이 존재하므로 초음과 센서를 배치하여 현장적 요소를 고려한 고장이 필요하다. 또한 초음과 신호는 전달 속도가 RF신호에 비해 매우 느리기 때문에 하나의 거리를 적정하게 측정하는데 걸리는 시간, 즉 셀룰딩 주기가 길다. 이러한 장점의 위치가 빠르게 변한 경우 위치 추정의 정확성을 떨어뜨리는 단점으로 작용할 수 있다. 따라서 거리 값 셀룰딩 주기가 짧아질수록 음영지역 발생 문제를 해결할 수 있는 위치 추정 기법이 요구된다.

본 논문에서는 이러한 문제점을 해결하기 위하여 CSS (Chirp Spread Spectrum)를 이용한 위치 추정 시스템을 제안하였다. CSS는 IEEE 802.15.4a에 정의된 근거리 무선 통신 표준으로서, RF신호의 TOF (Time-of-Flight)를 이용하여 거리 측정(ranging)이 가능하다는 특징이 있다[6]. CSS는 RF신호를 이용하여 진 방향 안테나를 사용할 경우 음영지역을 해소할 수 있다. 또한 초음과에 비해 CSS신호의 속도는 매우 빠르므로 거리 측정값을 적정하게 측정하는데 걸리는 시간이 초음파보다 짧다. 따라서 CSS는 초음파 시스템의 단점을 극복할 수 있을 것이라고 기대된다.

CSS기반의 위치 추정 시스템은 이동 로봇에 적용하기에 앞서 CSS 시스템으로부터 측정된 거리의 특성을 분석한 후 위치 추정 오차를 감소시키는 방법을 제안한다. 또한 EKF (Extended Kalman Filter)를 기반으로 한 이동 로봇의 위치 추정 방법을 소개한다. 마지막으로 이동 로봇의 위치 추정 실행을 통해 얻은 결과를 바탕으로 CSS 위치 추정 시스템의 정확도 및 실제 적용 가능성에 대해 평가하고자 한다.
II. CSS거리 측정 및 식각 측량

1. CSS기반 거리 측정의 개념

근거리 무선 통신 표준인 IEEE 802.15.4a의 물리 계층에 녹은 IR-UWB (Impulse Radio Ultra Wide Band) 및 CSS가 정의되어 있다[7]. IR-UWB와 CSS는 모두 RF의 TOF를 기반으로 거리를 측정할 수 있다. 이 중 본 연구에서는 초점을 맞춘 CSS를 신호를 사용하기 때문에 비교적 다중경로에 강한 특성을 가지고 있으며 그림 1에 나타난 바와 같이 SD-TWR (Symmetric Double Sided Two Way Ranging)를 이용하여 거리측정을 수행한다.[7,8]

그림 1에서 보듯이 거리를 측정하고자 하는 두 CSS노드 A, B가 각각 신호를 보낸 후 응답확인신호 (acknowledgment)를 받은 때 까지 걸리는 시간을 측정하는 TWR (Two Way Ranging)를 서로 대칭히 되도록 수행한다. 두 번의 TWR로 의해 얻어진 시간을 통해 최종적으로 결정되는 두 노드 간 신호전달시간 T_{d}는 식 (1)과 같이 계산된다.[8]

$$T_{d} = \frac{1}{4} \left(T_{A} - T_{A,B} + T_{B} - T_{B,A} \right), \quad (1)$$

여기서 T_{A}, T_{B}는 각각 노드 A, B에서 측정한 신호 round time이며, $T_{B,A}$, $T_{B,A}$는 각각 노드 A, B에서 응답확인신호를 보낸 때까지 소요된 처리 시간이다. 이러한 SD-TWR 방식은 TWR를 기반으로 하므로 두 노드간의 시간 동기화 없이 거리를 측정하는 것이 가능하며, SD의 장점은 두 노드간의 클락 드리프트 (clock drift)에 의한 오차를 줄일 수 있다[8]. 본 논문에서 다루는 이동 모델의 위치 측정은 이러한 CSS에 의한 거리 측정 값을 기반으로 이루어졌다.

2. 식각 측량 및 EKF를 통한 위치 계산

상각 측량은 위치 좌표가 이미 알려진 기준 노드 (anchor node)들과 위치를 계산하고자 하는 대상 노드 (target node)간의 거리를 각각 측정하고, 이를 바탕으로 대상의 위치를 계산하는 방법이다[9]. CSS 시스템은 TOF를 바탕으로 거리를 측정할 수 있으므로, 상각 측량은 CSS 기반의 위치 추정에 매우 적합하다. 그림 2는 평면상의 상각 측량에 대한 기본

그림 2. 평면 좌표에서의 삼각 측량 개념

Fig. 2. Conceptual scheme of the trilateration on a plane.

의 개념이다. 여기서 k번째 기준 노드의 2차원 좌표를 $a_{k} = [a_{k,1}, a_{k,2}]^{T}$로, 대상 노드의 2차원 좌표를 $x = [x_{1}, x_{2}]^{T}$와 같이 벡터로 표현할 경우, 기존 노드 k와 대상 노드간의 거리 h_{k}는 다음과 같이 나타낼 수 있다.

$$h_{k} = \| x - a_{k} \|_{2}, \quad (2)$$

여기서 $\| \cdot \|_{2}$는 2-norm을 의미한다. 기존 노드 a_{k}와 그에 대응되는 거리 h_{k}의 값이 최소 3개 이상 존재할 경우 식 (2)를 연립하여 대상 노드의 2차원 좌표 x를 구하는 것이 가능하다[10]. 그러나 실제의 경우 거리 h_{k}는 실제 거리가 아닌 측정에 의해 얻어지므로 값에 오차가 포함되어 있다. 이 문제를 해결하기 위해서 연립방정식을 벡터-행렬 형태로 변환한 후 LS (Least Square) 방법을 사용할 수도 있다[10]. 하지만 실시간 위치 추정을 위하여 대상의 좌표 x를 상태 벡터 (state vector)로 하는 비선형 상태 방정식을 기술한 후 이를 EKF에 적용하여 상태 추적을 추정할 수 있다[11].

식 (3)과 (4)는 $N \times 1$ 시스템 잡음 (system noise) 벡터 v_{i}와 $M \times 1$ 측정 잡음 (measurement noise) 벡터 w_{i}를 포함하는 일반적인 형식의 비선형 상태 방정식 (nonlinear state space equation)이다[12].

$$x_{i+1} = f(i, x_{i}) + w_{i}, \quad \text{with initial state of } x_{0}. \quad (3)$$

$$y_{i} = h(i, x_{i}) + v_{i}. \quad (4)$$

여기서 $f(i, x_{i})$와 $h(i, x_{i})$는 각각 비선형 상태 전이 행렬 (nonlinear state transition matrix function)의 비선형 측정 행렬 함수 (nonlinear measurement matrix function)이며, i는 몰입측 시각이다. $N \times 1$ 벡터 x_{i}와 $M \times 1$ 벡터 y_{i} 각각 시각 i에서의 상태 벡터 (state vector)와 측정 벡터 (measurement vector)로 한다. 또한 w_{i}와 v_{i}는 자기 상관 행렬 (auto correlation matrix)을 각각 S_{i}와 Q_{i}로 나타낸다. N은 상태 (state)의 차원이며, M은 측정값 (measurement)의 차원이다.

식 (3)과 (4)의 같은 비선형 상태 방정식으로 상태 추적 및 로봇의 위치 좌표의 관계를 모델링하기 위하여, 먼저 시각 i에서의 대상의 2차원 위치 좌표를 상태 벡터 $x_{i} = [x_{i}, x_{i}(t)]^{T}$로 정의한다. 이와 같이 정의된 상태 벡터에 대해, 일반적인 시스템 방정식 (3)은 대상 로봇의 위치 변화를 기술하기 위한 식 (5)로 표현된다.

$$x_{i+1} = x_{i} + \delta x_{i} + w_{i}, \quad \text{with initial state of } x_{0}. \quad (5)$$
여기서 Δx는 한 샘플마다 추정된 이동 로봇의 위치 변화를 의미한다. 즉, Δx는 일반적으로 로봇이 가진 엔코더와 같은 센서를 통해 추정된 이동 로봇의 속도 및 진행 방향의 변화를 통해 구해질 수 있으며, 그 값에 포함된 측정 값을 ν로 표현한 관계식이 시스템 방정식 (5)이다. 다음과 측정 방정식 (4)은 상관 관계 관계식 (2)을 이용하여 다음과 같이 주어진다.

$$y(i) = h(x(i)) + v(i) = \| x(i) - a(i) \| + v(i)$$

여기서 $y(i)$는 측정 벡터 y의 i번째 요소로서 시각 i에서의 기존 노드 x와 대상 간 측정된 거리이며, $v(i)$는 그 측정값에 더해지는 임수로서 벡터 u의 i번째 요소이다. $h(x(i))$는 벡터 함수 $h(i,x(i))$의 i번째 요소이다. 즉, 식 (5)과 (6)은 이동 로봇의 위치를 상태 벡터로 하는 비선형 상태 변환식으로서 싱가 측량 및 로봇의 위치 좌표 변화를 모델링 한 것이다. 이러한 비선형 상태 반영식에 대한 EKF 알고리즘은 상태 벡터 x를 추정하기 위해 사용되며, 식 13에서 주어진 추정된 상태 벡터 초기 값 $\hat{x}(0)$이에 따라 다음과 같은 정성식(update equations) (7)-(12)를 반복한다(12).

$$K = P_{i-1} H^T [H P_{i-1} H^T + Q]^{-1}$$

(7)

$$\begin{align}
\dot{e}_i &= y(i) - h_i(\dot{x}(i-1)) \\
\dot{\hat{x}}(i) &= \dot{x}(i-1) + K e_i \\
\hat{x}(i) &= \dot{x}(i-1) + K e_i \\
\dot{P}(i) &= [I - KH] P(i-1) \\
\dot{P}(i) &= P(i-1) K^T H + S_i
\end{align}$$

여기서 행렬 F_i와 행렬 H는 각각 식 (13)-(14)와 같이 정의된 Jacobian 행렬이다.

$$F_i = gf(x(i)/nx(i))$$

(13)

$$H = \frac{\partial}{\partial x(i)}(x(i)/nx(i))$$

(14)

또한 행렬 I는 단위행렬(identity matrix)이며, $\dot{x}(i)$은 주어진 시스템 변환식을 기반으로 한 시간 간격(time update)에 대한 추정 값이며, $\dot{x}(i)$는 측정값을 기반으로 측정 갱신(measurement update)에 대한 추정값이다. EKF는 새로운 측정값에서 현재까지의 추정치가 갖는 정보량을 이용하여 이를 측정 갱신에 반영하여, 추정값이 보다 정확한 값으로 수렴하도록 한다. EKF는 장시간 동안 측정값의 변동성이 있더라도 이를 처리할 수 있는 능력이 있으므로 위치 측정에 적용하기에 매우 적합한 방법이라고 할 수 있다.

III. CSS 측정값이 가지는 문제점 및 제한 알고리즘

1. 측정 점검이 가지는 문제점

앞서 언급한 일반적인 EKF는 잡음 w, v의 평균이 0인 경우에는 위에서 유의한라(12). 식 (6)에 나타난 점검 $v(i)$는 CSS 거리 측정값에 더해지는 잡음으로서 측정 값에 Δx.
CSS 노드 A, B, C, D가 존재한다고 가정하자. 또한 이때 노드 A, B와 노드 C, D는 각자 맺어 이루 저 거리를 유도하며 노드 A, B사이의 거리와 노드 C, D사이의 실제 거리는 동일하다고 가정한다. 만약 거리 측정이 이루어지는 환경이 매우 불규칙한 특성을 가진다면 노드 A, B간의 측정된 거리와 노드 C, D간의 향상을 이루는 평균 오차가 서로 다른 것이다. 이는 노드 A, B와 노드 C, D사이의 신호가 통과하는 경로의 성질이 서로 다르다는 것을 의미한다. 각 노드 싱은 실제로 거리를 측정한 거리의 평균이 각각 다른 평균오차에 의해 서로 다르게 측정되다면 실제 거리는 알지 못하는 상황에서 다른 추 가적인 장치 없이 그 오차 보정을 하는 것이 사실상 불가능하다. 본 논문은 CSS의 추가적인 장비 없이 정확한 위치 측정이 가능하도록 하는 것을 목적으로 하며, 이러한 성능이 복제하였다. 따라서 다음과 같은 환경을 가정하여 알고리즘을 개발하였다. 거리 측정을 시도하는 두 CSS 노드 간의 신호가 통과하는 경로는 점을 유용하게 평균 오차를 발생시키기는 그 오차의 정도도 두 노드가 어떤 위치에서 거리를 측정하는지에 관계없이 두 노드의 거리가 동일하게 유지되고 동일 시간에 측정된다면 유사한 오차를 발생시킨다. 또한 측정 거리가 길어지면 점말이 많은 경우, 해당 평균 오차 역시 유사한 바풀로 커지거나 줄어들다고 가정한다. 이를 빠르게 점말이 오차를 발생시키지 않게 손실 그 정도가 극단적인 가정이다. 이러한 가정은 실제 CSS 거리 측정을 수행하는 장면 관찰된 결과보다 더욱 타당성이 있다고 평가된다.

이러한 가정 하에서 거리 측정값 벡터와 각 측정 거리에 포함되어 있는 점의 평균 오차의 값을 다음과 같이 설명할 수 있다. 먼저 논의의 편의를 위해 2개의 거리 측정값 평균값 2차원 벡터 \(\bar{v} \)로 표현한다. 즉, \(\bar{v} = [\bar{v}_t, \bar{v}_u]^T \)이다. 여기서 \(\bar{v}_t, \bar{v}_u \)은 각 고정 노드와 대상 간 측정된 거리를 의미한다. 또한 각 고정 노드와 대상 간 실제 거리 벡터를 \(\text{vec}_t = [t_1, t_2]^T \)라고 정의한다. 즉 \(t_1, t_2 \)는 측정 거리 \(v_t, v_u \)에 대응되는 실제 거리를. 그리고 실제 거리에 미치지는 잡음의 평균 오차 벡터를 \(\bar{v}^* = [\bar{v}_t^*, \bar{v}_u^*]^T \)로 나타낸다. 즉 \(\bar{v}_t^* \)는 실제 거리 \(t_1 \)에 대응되는 평균 오차를 의미한다. 이러한 정의에 따라 벡터 \(\bar{v}^* \)는 다음과 같이 벡터 \(\bar{v} \)와 \(\bar{v}^* \)의 함으로 나타낼 수 있다.

\[
\bar{v} = \bar{v} + \bar{v}^*
\]

(15)

만약 실제 거리 벡터 \(\bar{v} \)가 그림 4와 같이 주어진다면 앞서 언급한 가정에 따라 평균 오차 \(\bar{v}^* \)는 실제 거리에 따라 유사한 바풀로 나타날 것이므로 \(\bar{v}^* \)는 그림 4와 같이 표현된다.

그림 4에 나타난 \(\bar{v} \)을 통해 우리는 \(\bar{v} \)의 방향은 실제 거리 벡터 \(\bar{v} \)과 유사하면 그 크기는 평균 오차 \(\bar{v}^* \)가 더 짧게 따라가며 크기가 차이가 날 수 있다. 따라서 EKF에서 사용될 추정 거리 벡터 \(\bar{v}_j \)의 크기 정보를 제고하고 각도 정보만 취하는 방법을 이용하여 CSS 측정값이 가진 평균 오차, 즉 점말의 평균을 제거하도록 할 것이다.

측정값 벡터 \(\bar{v}_j \)가 가진 크기 정보를 벡터에 의해 먼저 EKF의 갱신 식 중 \(\bar{v}_j \)를 구하는 식 (8)에 적용해야 한다. 벡터 \(\bar{v}_j \)은 실제 측정된 거리와, EKF에 의해 추정된 위치 \(\hat{z}_{j-1} \)로부터 계산된 추정된 거리의 차이에 해당한다. 이는 \(\bar{v}_j \)가 가진 정보 중, 현재까지의 추정치 \(\hat{z}_{j-1} \)에 반영되지 못한 새로운 정보만을 추출하는 것에 있다. 따라서 \(\bar{v}_j \)는 이 노비에이라센(innovation)이라 부른다. 그리고 평균 오차를 가진 \(\bar{v}_j \)를 그대로 반영할 경우 오차에 해당하는 정보가 새로운 정보를 취득되는 것이며, 그 결과 추정결과가 잘못되기 때문이다. 앞서 언급한 바와 같이 오차는 \(\bar{v}_j \)의 크기 정보를 크게 변형 시키므로 우리는 먼저 \(\bar{v}_j \)를 정규화(normalize) 하여 크기 정보를 제거한 후, 이를 이용한 새로운 노비에이라센(innovation) \(\bar{v}_j \)은 다음과 같이 계산한다.

\[
\bar{e}_j = \frac{1}{2} \left(h_i(\hat{z}_{j-1}) \right) \left(\frac{\bar{v}_j \| \bar{v}_j \|_2 - h_i(\hat{z}_{j-1}) \|_2}{h_i(\hat{z}_{j-1}) \|_2} \right).
\]

(16)

즉, 정규화한 \(\bar{v}_j \)과 \(h_i(\hat{z}_{j-1}) \)의 차이를 구한 후에 크기 정보가 제거된 노비에이라센을 얻고, 다시 \(h_i(\hat{z}_{j-1}) \)의 크기 정보를 제거한 크기 정보로 제거된 크기 정보로 별개의 방식이 된다. 벡터 \(\bar{e}_j \)의 크기와 마찬가지로, \(h_i(\hat{z}_{j-1}) \)의 크기 역시 실제 거리 벡터와는 다르다. 하지만 \(h_i(\hat{z}_{j-1}) \)는 측정값이 아닌 모델에 의해 계산된 값이며, 특히 EKF에 의해 추정된 위치인 \(\hat{z}_{j-1} \)에 실제 위치에 접근함에 따라 실제 거리 벡터로 사용하게 되므로, 이러한 방식은 적합성을 갖는다. 또한 식 (16)은 다음과 같이 다시 쓸 수 있다.

\[
\bar{e}_j = \bar{v}_j - h_i(\hat{z}_{j-1}).
\]

(17)

여기서 \(\bar{v}_j \)는 식 (18)과 같이 주어진다.

![그림4. 측정된 거리 벡터 및 실제 거리 벡터와 평균 오차 벡터의 관계. Fig. 4. The relationship among the measured distance vector, the true distance vector and the average error vector.](image-url)
\[y' = \frac{\| h(i, \tilde{x}_{ii-1}) \|_2}{\| y' \|_2} y. \]

즉, 제안한 알고리즘은 버터 \(y' \)에 \(\| h(i, \tilde{x}_{ii-1}) \|_2 \)와 \(\| y' \|_2 \)의 비율을 곱함으로써 보정된 버터 \(y \)을 구하는 것이라고 할 수 있다.

지금까지 소개한 상각 측량 모델 및 제안한 알고리즘을 적용한 최종적인 EKF 개선 식은 아래와 같이 정리할 수 있다.

\[K_i = P_{i-1} H^T \left(H P_{i-1} H^T + Q \right)^{-1} \]
\[y_i = \frac{\| h(i, \tilde{x}_{ii-1}) \|_2}{\| y' \|_2} y. \]
\[e_i = y_i' - h(i, \tilde{x}_{ii-1}) \]
\[\tilde{x}_{ii} = \tilde{x}_{ii-1} + K_i e_i \]
\[x_{i+1|i} = \tilde{x}_{ii} + \tilde{z}_i \]
\[P_{i|i} = \left[I - K_i H \right] P_{i-1} \]
\[P_{i+1|i} = F P_{i|i} F^T + S_i \]

식 (20)와 (21)이 제안한 알고리즘에 관련된 부분이며 각론의 EKF와 차이점에 해당한다.

IV. 실험 결과

본 논문에서 제안한 CSS기반의 이동 로봇의 위치추정 시스템의 평가를 위해 이동 로봇의 위치 추정에 관한 실험을 다음과 같이 진행하였다. 실험은 실내 실내에서 진행되었으며, 그림 5의 바닥이 9m x 9m의 2차원 직교 좌표를 활용하였다. 활용된 좌표의 [4.5m, 4.5m], [-4.5m, 4.5m], [4.5m, -4.5m], [4.5m, -4.5m] 지점에 4개의 기준 노드를 각각 배치하였다. 또한 그림 5의 바닥과 같이 좌표 평면상의 중심을 순환하는 경로 설정하고, 그 경로에 자기 태이프를 부착하여 guideline을 만들었다. 이에 대한 실험 환경은 그림 6에 나타나 있다.

그림 6. 기준 노드와 이동 로봇을 배치한 실제 실험 환경.
Fig. 6. Actual experimental environment with anchor nodes and the mobile robot.

그림 7. 실험에 사용된 Pioneer 3 AT 이동 로봇.
Fig. 7. Pioneer 3 AT mobile robot for experiment.

실험에서 사용된 로봇은 그림 7에 나타난 Mobile Robot 사에서 제조한 Pioneer 3 AT가 사용되었으며 해당 로봇에 자기 센서를 부착하여 바닥에 걸러진 자기 태이프의 자기장위를 얻어 로봇의 guideline을 따라가 수 있도록 하였다. 또한 로봇에는 이동 CSS 노드가 장착되어 있어, 로봇이 경로를 따라 이동하는 동안 지속적으로 고정된 4개의 노드와 순차적인 거리 측정이 가능하도록 하였다. 또한 각 CSS 노드는 Nanotron사에서 만든 CSS 송수신 RF칩인 nanoloc TRX Transceiver (NASTRI)를 사용한 제품을 이용하였다.

그림 8은 실험을 위한 로봇 및 CSS 노드, 자기 센서 간 신호의 호흡을 보여주고 있다. 주 모듈(main module)은 로봇이 자기 태이프로 이동되면서 guideline을 따라 이동할 수 있도록 하기 위한 제어 부분과 본 논문의 핵심인 EKF를 이용한 로봇의 위치 추정 알고리즘 부분으로 구성되어 있다. 4개의 기준 노드(ANCHOR NODE)와 이동 노드(TAG NODE) 간 측정된 거리는 EKF의 측정 거리 벡터 \(y \)를 구성하며, 제안된 알고리즘에 의해 그 값이 보정된다. 실험에서 사용한 로봇 Pioneer 3 AT는 내장된 바디웨어 (firmware)가 있어 로봇의 엔코더로부터 얻은 데이터를 처리하여 자동적으로 자신의 위치 계산한다. 이 값은 논문에서 dead reckoning 권한 로봇의 위치가 된다. 사용자는 이 위치값...
그림 8. 로봇 및 CSS 노드와 자기 센서 간 신호 호흡을 나타낸 스케치.
Fig. 8. Block diagram of signal flowing among the mobile robot, CSS nodes and a magnetic sensor.

울 로봇이 제공하는 라이브러리 함수를 이용하여 얻을 수 있다. 또한 본 실험에서는 식 (23)의 매 정점을 주기 동안 변화한 로봇의 위치 값 벡터 \(\mathbf{x}_t \)을 firmware가 계산한 로봇의 이전 위치와 현재 위치 간의 차이를 이용하여 계산하였다. 앞서 언급한 바와 같이 일반적인 방법의 \(\mathbf{x}_t \) 계산은 엔코더 데이터로부터 얻은 로봇의 속도 및 진행 방향 등과 관련된 로봇의 시스템 모델에 의해 계산되어야 한다. 이 경우 상태 벡터에 로봇의 속도 및 진행 방향과 같은 물리량이 포함되기는 보통이지만 상태 벡터와 \(\mathbf{x}_t \)는 밀접한 관계가 있다. 하지만 본 논문에서는 추정된 로봇의 위치값에 초점을 맞추기 위하여 로봇의 2차원 좌표값으로 상태 벡터 \(\mathbf{x}_t \)를 정의하였기에 로봇의 위치 변화 \(\Delta \mathbf{x}_t \)는 상태 벡터와 직직적인 관계가 없다. 또한 \(\mathbf{x}_t \)는 매 시간마다 firmware로부터 얻은 값을 바탕으로 계산되므로 상태 벡터를 변화시키는 일종의 시스템 입력으로 간주할 수 있다. 따라서 이 경우 행렬 \(\mathbf{F}_t \)는 식 (13)의 정의에 따라 단위행렬 (identity matrix)이 된다.

본 실험에서 EKF의 추정 위치의 초기값으로는 \(\mathbf{x}_{10} = \mathbf{0} \)를 임의 초기 위치로 설정하였다. 시스템 및 측정 임의의 자기 센서값의 초기값으로는 \(\Delta \mathbf{x}_0 = \mathbf{0} \)로 설정하였다. 이는 각각의 단위행렬을 의미한다. 로봇은 1m, 2.25m에서 출발하여 경로를 시계방향으로 회전하도록 하고 속도는 25cm/sec으로 설정하였다. 우리는 항상 길_CHANGED에 의해 계산된 로봇의 위치와 CSS 거리 측정값을 바탕으로 한 제한된 알고리즘에 의한 위치를 비교하고자 한다. Dead reckoning은 로봇의 초기 위치를 알고 있어야 가능하므로 로봇 출발 시 초기 위치 좌표를 dead reckoning에 제공하였다.

2. 실험 결과

앞서 설명한 실험 환경에서 로봇을 시계 방향으로 경로를 3회 회전하도록 한 실험결과를 그림 9에 나타내었다. 실험 로봇이 이동한 경로는 검은색의 실선으로 표시되어 있다. 이 경로는 실제 자기 데이터가 설치된 경로와 일치한 다. 동그라미 기호와 함께 표시된 붉은색 실선은 로봇의 엔코더 기반으로 한 dead reckoning을 통해 계산한 로봇의 위치 값을 표시한 것이다. 초기 출발위치가 dead reckoning을 위해서 정확히 제공되었기 때문에 초기에는 비교적 정확한 위치 값을 가진다. 하지만 측정 경로를 통과하기 위하여 로봇의 진행 각도가 변경될 때마다 일정한 오차가 누적되는 것을 볼 수 있다. 따라서 경로를 순환하는 회수가 증가함수로 계산된 위치 값과 실제 이동 경로의 차이가 점점 커지는 것을 알 수 있다. 가위표 기호와 함께 표시된 붉은색 실선은 본 논문에서 논의한 측정 거리의 오차를 줄이기 위한 알고리즘을 적용한 CSS 시스템에서 산출한 추정 결과를 나타낸 것이다. 그림 10에서와 같이 EKF가 주어진 초기값 \(\mathbf{x}_{10} = \mathbf{0} \)에서 로봇의 위치로 수렴하는 부분을 제외

그림 9. 로봇의 실제 경로 및 계산한 알고리즘을 적용한 CSS 시스템에 의해 추정된 위치와 dead reckoning에 의해 계산된 위치.
Fig. 9. The actual path of the mobile robot and the estimated coordinate by the CSS system with the proposed algorithm and by the dead reckoning.

그림 10. 로봇의 실제 경로 및 계산한 알고리즘을 사용하지 않은 CSS 시스템에 의해 추정된 위치.
Fig. 10. The actual path of the mobile robot and the estimated coordinate by the CSS system without the proposed algorithm.
그림 10은 CSS 시스템에서 측정한 거리를 보정하지 않고 EKF에 적용한 후 업은 추정된 이동 로봇의 좌표를 보여주고 있다. 이 결과의 증가는 10에 가까운 가위와 함께 표시된 붉은색 실선으로 나타나 있으며 알고리즘을 적용한 경우인 그림 9의 추정치와 비교하였을 때 오차가 매우 크다는 것을 알 수 있다. 이 경우 실제 이동 경로에서 1-2m 정도 벗어난 위치 값이 계산되는 등 결과가 부정확하다. 따라서 본 논문에서 제안한 측정거리의 오차 보정 알고리즘의 효과적임을 알 수 있다.

그림 11은 그림 9와 그림 10에 나타난 결과에서 x_1 방향의 추정된 좌표를, 그림 12는 x_2 방향의 추정된 좌표를 마다 iteration에 대해 나타낸 것이다. 그림 11과 12의 각 추정치는 제안한 알고리즘을 적용한 EKF의 추정치, 제안한 알고리즘을 사용하지 않은 EKF의 추정치 그리고 dead reckoning의 의해 계산된 좌표이다. 그림 11과 12의 2.25m와 2.25m를 표현한 선은 본 실험 시청에 따른 로봇의 위치 좌표 변화의 최대값과 최소값에 해당한다. 그림 11과 12에 나타난 바와 같이 dead reckoning에 의해 계산된 위치는 시간이 지남수록 차이, 최소값에서 점점 멀어져 오차가 누적된다는 것을 확인할 수 있다. CSS 거리 측정값을 변형으로 한다면 EKF에 의해 추정된 좌표는 시간이 지남수록 오차가 누적되지 않는다. 하지만 제안한 알고리즘을 적용한 경우의 추정치가 최대 최소값에 더욱 접근하여도 알 수 있는 것이다. 지금까지 실험 결과를 바탕으로 CSS 위치 추정 시스템은 상대 로봇을 특정 위치에서 다른 위치로 이동시키기 위해 네비게이션에 사용 가능한 것이다. 특정 위치에 이동 로봇을 정확히 편지하는 것은 목표 위치 근방에 beacon을 두고 이를 활성화하는 것이 가능하며, CSS 시스템과 다른 추정기간 범위를 연동할 경우 더욱 활용 가능한 것으로 보인다. 또한 본 논문의 실험 결과를 추정치를 이와 같이 나타낸 것으로서, 실제 유효한 경우 로봇의 이동 속도 등을 고려하여 현재 속도와는 실질 볼 수 있는 CSS 거리 측정값 혹은 추정된 위치 값의 변동을 모니터링하여 추정한다면 더욱 훨씬한 결과를 얻을 수 있을 것이다. 따라서 본 논문은 CSS 기반 위치 추정 시스템에서의 정확도를 향상시킬 수 있는 알고리즘을 제안하였고 이를 이동 로봇에 적용하였다. 위치 추정 방식은 삼각 측량 모델을 비선형 상태 방정식으로 표현하고 이를 EKF에 적용한 기존의 연구를 참고하였다. CSS 거리 측정값의 정확도를 기술적 문제로 0이 아닌 값을 적용한 실험에 기존에 발생한 문제를 바탕으로 보였고, 그러한 거리 측정값의 EKF에 대해 연동할 경우, EKF에 의해 추정된 위치가 좋을 수 있음을 실험하였다. 이에 따라, 거리 측정값의 정확성은 오차에 해당하는 값의 평균을 제거하고자 측정 거리 벡터를 정규화하여 EKF의 이노베이션을 구하는 알고리즘을 제안하였다. 제안한 방법은 본 EKF에 의해 추정된 위치는 기본으로 계산된 거리 벡터와 측정된 거리 벡터의 크기 비교를 측정거리에 따라서는 보정법으로 측정거리의 변화를 보정하는 것이 있다. 또한 이를 이용한 실제 실험을 통하여 추정된 로봇의 위치가 dead reckoning을 이용한 방법에 비해 정확하고 실제 적용 가능성이 있음을 보였다.

V. 결론
본 논문은 CSS 기반 위치 추정 시스템에서의 정확도를 향상시킬 수 있는 알고리즘을 제안하였고 이를 이동 로봇에 적용하였다. 위치 추정 방식은 삼각 측량 모델을 비선형 상태 방정식으로 표현하고 이를 EKF에 적용한 기존의 연구를 참고하였다. CSS 거리 측정값의 정확도를 기술적 문제를 0이 아닌 값을 적용한 실험에 기존에 발생한 문제를 바탕으로 보였고, 그러한 거리 측정값의 EKF에 대해 연동할 경우, EKF에 의해 추정된 위치가 좋을 수 있음을 실험하였다. 이에 따라, 거리 측정값의 정확성은 오차에 해당하는 값의 평균을 제거하고자 측정 거리 벡터를 정규화하여 EKF의 이노베이션을 구하는 알고리즘을 제안하였다. 제안한 방법은 본 EKF에 의해 추정된 위치는 기본으로 계산된 거리 벡터와 측정된 거리 벡터의 크기 비교를 측정거리에 따라서는 보정법으로 측정거리의 변화를 보정하는 것이 있다. 또한 이를 이용한 실제 실험을 통하여 추정된 로봇의 위치가 dead reckoning을 이용한 방법에 비해 정확하고 실제 적용 가능성이 있음을 보였다.

참고문헌
[3] 편저욱, 박동수, 김현수, 송학중, 홍성훈 "간접 일반 필터 기반의 신호보강을 이용한 실시간 주행 이동 로봇의 의미 추정," 제어·로봇·시스템학회 논 문지, 제14

조 현 우

이 영 훈

김 상 우