RF MOSFET을 위한 SPICE 기판 모델의 스케일링 정확도 분석

(Scaling Accuracy Analysis of Substrate SPICE Model for RF MOSFETs)

이현준*, 이성현**

(Hyun-Jun Lee and Seonghearn Lee)

요 약

RF 직렬 추출 방법을 통해 얻은 정확한 MOSFET 기판 파라미터를 이용하여 기판저항만을 가진 BSIM4 모델은 스케일링 부정확성 때문에 넓은 영역의 게이트 길이에 적용하기에는 물리적으로 맞지 않는다는 것이 증명됐다. BSIM4의 비물리적인 문제점을 제거하기 위해서 추가적인 유전체 기판 캐패시터를 가진 수정된 BSIM4 모델이 사용되었고, 이 모델의 물리적 타당성은 우수한 게이트 길이 scalability를 관찰함으로써 증명되었다.

Abstract

Using accurate MOSFET substrate parameters obtained by a RF direct extraction method, it is demonstrated that a BSIM4 model with only substrate resistances is not physically valid to apply in the wide range of gate length because of scaling inaccuracy. In order to remove the unphysical problem of the BSIM4, a modified BSIM4 model with additional dielectric substrate capacitance is used and its physical validity is verified by observing excellent gate length scalability.

Keywords: MOSFET, RF, Modeling, SPICE model, substrate model, scalable model, parameter extraction

I. INTRODUCTION

For the accurate SPICE RF circuit simulation, the Berkeley short-channel IGFET model 4 (BSIM4) has been widely recognized as a standard MOSFET model[1]. Since substrate modeling becomes quite important in designing output matching circuits for RF ICs[2∼3], BSIM4 provides a flexible substrate model with resistance network. Generally, a scalable SPICE RF model in the wide range of the gate length L_g should be developed to apply for a wide use of RF IC design, but a scaling validity of the BSIM4 substrate resistance model with regard to L_g in the high frequency region has not been reported yet.

Therefore, in this paper, a scaling accuracy of the BSIM4 substrate model in terms of L_g is physically analyzed in detail. The modified BSIM4 substrate model is proposed to improve the L_g scaling accuracy in the high frequency region.
II. EXTRACTION AND ANALYSIS

S-parameters are measured on multi-finger N-MOSFETs (unit finger width $W_u = 5 \mu m$ and the number of gate finger $N_f = 16$) with different L_g of $0.13 \mu m$, $0.18 \mu m$ and $0.25 \mu m$. An accurate de-embedding procedure was carried out to remove pad and interconnection parasitics from each measured S-parameters$^{[4]}$.

Since a five substrate resistance network in BSIM4 is too complex to be directly determined, a simple substrate model with single resistance$^{[5]}$ is generally used. Fig. 1(a) shows an AC equivalent circuit of the simple BSIM4 model with the substrate resistance R_{BPB} at $V_{gs}=0V$. The substrate equivalent circuit of Fig. 1(b) is defined by $Y_{d}^{22}+Y_{d}^{12}$ of Fig. 1(a) for $R_{BPB} \gg R_s$ and R_g, where Y_{d}-parameters are obtained by subtracting the drain resistance R_d from measured S-parameters. Fig. 1(b) is represented by the simple circuit block of the parallel resistance R_p and capacitance C_p. Using the direct method$^{[6]}$, R_d is extracted from y-intercepts of high-frequency $\text{Real}(Z_{22}-Z_{12})$ versus ω^{-2} at $V_{gs}=0V$.

To extract R_p and C_p accurately, an RF direct method$^{[7]}$ is performed using the following equations derived from Fig. 1(b):

$$R_p = \frac{1}{\text{Real}(1/Z_s)}$$ \hspace{1cm} (1)

$$C_p = \frac{1}{\omega} \text{Imag}(1/Z_s)$$ \hspace{1cm} (2)

where

$$Z_s = \frac{1}{Y_{d}^{22}+Y_{d}^{12}} - \frac{1}{\omega_0 C_{jd}}$$ \hspace{1cm} (3)

As shown in Fig. 2, the drain junction capacitance C_{jd} in (3) is extracted by the following equation derived from Fig. 1(b) at low-frequencies (LF):

$$C_{jd} \approx \frac{1}{\omega} \text{Imag}(Y_{d}^{22}+Y_{d}^{12})_{LF}$$ \hspace{1cm} (4)

![Graph](image-url)
This direct extraction method for R_p and C_p is much simpler than the previous ones using two different data in the high and low frequency region[8]. The extracted values of R_p and C_p seem to be frequency-independent up to 30 GHz as shown in Fig. 3, verifying the extraction accuracy.

In a simple BSIM4 model of Fig. 1(a), $R_p \approx RBPB$ and $C_p = C_{gb} + C_{js}$, where C_{gb} is the gate-bulk capacitance and C_{js} is the source junction capacitance. The value of C_{gb} is extracted at $V_{ds} = 0$ using low-frequency data of the following equation[9].

$$C_{gb} \approx \left(\frac{1}{\omega}\right) \text{Imag}(Y_{11} + 2Y_{12})_{LF}$$

As shown in Fig. 4(a), the extracted values of C_{gb} increase linearly as a function of L_g. Using (2) and (5), C_{js} data are extracted by $C_{js} = C_p - C_{gb}$ and plotted as a function of L_g in Fig. 4(b). Theoretically, as L_g is longer, C_{gb} increases but C_{js} is unchanged. However, the extracted C_{js} data show an abrupt decrease with increasing L_g which is not physically acceptable. This unphysical extraction of C_{js} indicates that the simple substrate model in Fig. 1(a) is invalid. Even if five substrate resistances offered in BSIM4 are fully used, this unphysical scaling problem of C_{js} extraction still occurs, because of the connection of these resistances to C_{js}.

In order to avoid this unphysical scaling problem of C_{js} vs. L_g in Fig. 4(b), we propose a modified BSIM4 model that includes parallel substrate capacitances(C_{subd}, C_{subb})[2-3, 8] to represent a lossy dielectric Si substrate region in Fig. 5(a). Also, the substrate equivalent circuit of Fig. 5(b) is defined by $Y_{22}^{s} + Y_{12}^{s}$ of Fig. 5(a) at $V_{gs} = 0V$.

R_{subd} and C_{subd} are extracted by (1) and (2), respectively. In Fig. 6, extracted R_{subd} values are...
Fig. 5. (a) Modified BSIM4 Macro model using a lossy dielectric substrate circuit. AD=AS=PD=PS=0 is set to remove internal source and drain junction diodes. (b) The substrate equivalent circuit of \(Y_{d_{22}^+} + Y_{d_{12}^-} \).

Proportional to \(L_g \), while \(C_{subd} \) values are inversely proportional to \(L_g \). This \(L_g \) scalability is physically valid because the MOSFET lossy substrate region between the drain and bulk contacts is shown to be longer with increasing \(L_g \). This verifies the \(L_g \) scaling accuracy of the lossy dielectric substrate model in Fig. 5(a).

Fig. 7 shows AC equivalent circuits of the simple and modified BSIM4 models in the saturation region. In order to extract other intrinsic model parameters directly without any optimization, the equivalent circuits without \(C_{bs} \) neglected in the low frequency region are used to derive the following equations\(^{[8,10]}\).

\[
C_{gs} = \frac{1}{\omega} \text{Imag}(Y_{11} + Y_{12}') \\
C_{gd} = -\frac{1}{\omega} \text{Imag}(Y_{12}') \\
r_{ds} = \frac{1}{\text{Real}(Y_{22}')} \\
g_{mo} = Y_{21}' - Y_{12}'
\]

where \(Y_{i} \)-parameters of the intrinsic MOSFET are obtained by subtracting \(C_{bs} \) substrate parameters,
Fig. 7. AC equivalent circuit of BSIM4 model in the saturation region. (a) Simple model (b) Modified model

R_s and R_g from measured Y^d-parameters. Using the direct method\cite{6}, R_g and R_s are extracted from y–intercepts of high–frequency $\text{Real}(Z_{11}–Z_{12})$ and $\text{Real}(Z_{12})$ versus ω^{-2} at $V_{gs}=0V$, respectively.

In Fig. 8, the scaling accuracy of a modified BSIM4 model in Fig. 7(b) is reconfirmed by finding better agreement between measured and modeled S_{22} -parameter than a simple one of Fig. 7(a) at $L_g=0.25\mu m$.

III. CONCLUSIONS

RF MOSFET substrate parameters are accurately extracted using a RF direct method. The original BSIM4 model with only substrate resistances is proved to be physically unacceptable for the L_g scaling. The L_g scaling accuracy of a modified BSIM4 model including the dielectric substrate capacitance is justified by observing the physical validity that R_{sub} and C_{sub} in a lossy dielectric substrate is proportional to L_g and $1/L_g$, respectively. The simulated S–parameters of the modified BSIM4 model have better agreements with
measured ones than a simple BSIM4 model, verifying the scaling accuracy of its model.

참고문헌

저자 소개

이현준 (학생회원)
2012년 한국외국어대학교 전자공학과 학사 졸업.
2012년~현재 한국외국어대학교 전자정보공학과 석사과정.
주관실분야 : RF CMOS 소자모델링

이성현 (정회원) 교신저자
1985년 고려대학교 전자공학과 학사 졸업.
1989년 미국 University of Minnesota 전기공학과 석사 졸업.
1992년 미국 University of Minnesota 전기공학과 박사 졸업.
1992년~1995년 한국전자통신연구원 설임연구원
1995년~현재 한국외국어대학교 전자공학과 교수
주관실분야 : CMOS 및 바이폴라 소자 모델링