Nonvolatile Memory Characteristics of Double-Stacked Si Nanocluster Floating Gate Transistor

Abstract—We have studied nonvolatile memory properties of MOSFETs with double-stacked Si nanoclusters in the oxide-gate stacks. We formed Si nanoclusters of a uniform size distribution on a 5 nm-thick tunneling oxide layer, followed by a 10 nm-thick intermediate oxide and a second layer of Si nanoclusters by using LPCVD system. We then investigated the memory characteristics of the MOSFET and observed that the charge retention time of a double-stacked Si nanocluster MOSFET was longer than that of a single-layer device. We also found that the double-stacked Si nanocluster MOSFET is suitable for use as a dual-bit memory.

Index Terms—Double-stacked Si nanocluster, LPCVD, dual-bit memory, floating gate nonvolatile memory

I. INTRODUCTION

Nanocrystal-based charge-storage memory devices have recently attracted much attention because of their potential to overcome the limitations of current floating gate memories with poly silicon or silicon nitride film as their charge storage layers. The nanocrystal memory devices offer several advantages, such as short program/erase times and low program/erase voltages, including the potential to use a very thin tunnel oxide without sacrificing non-volatility. Forming the thin tunnel oxide layer is the first step toward enabling quick and efficient charge transfer to and from the floating gate. There are other advantages as well. The nanocrystal memory devices suffer less from the drain-induced-barrier-lowering, so that absence of the drain-to-floating gate coupling derives that these memory devices have intrinsically better punchthrough characteristics than that of conventional one. However, current nanocrystal memory devices have a relatively low density of charge storage, and consume a great deal of power to operate on/off, so these problems need to be solved for that they can be used in practical applications.

Recently, the use of memory devices with multi-level charge storage were suggested in various literatures [1, 2], where they fabricated the multi-level memory devices by using low energy plasma immersion implantation and post annealing. Here, we suggest the use of the Low Pressure Chemical Vapor Deposition (LPCVD) method in order to fabricate a multi-level charge storage memory device. This method is a promising way to mass-produce such memory devices, because it is compatible with current Si processing technology. In the multi layer Si nanocrystal structures, multi-bit operation can be performed by adjusting the number of Si nanocrystal layers and the control oxide thickness. The multi-bit operation increases the memory capacity over the conventional single-bit device, as it creates two different transistor operations out of one transistor. In addition, since the charge leakage between the upper Si nanocrystal layer and the channel can be suppressed because of the Coulomb repulsion from the lower Si nanocrystal layer, the retention time can be enhanced.

Manuscript received Feb. 29, 2008; revised Mar. 11, 2008.
* Department of Nano Engineering, University of Seoul, Seoul 130-743, Korea
** Department of Nano Science & Technology, University of Seoul, Seoul 130-743, Korea
E-mail : kwpark@uos.ac.kr
II. EXPERIMENT

The MOSFET with Si nanocluster floating gate layers were fabricated on p-type (100) Unibond SOI wafers with a 100-nm thick top Si layer and a 200-nm thick buried oxide layer. The active Si region, which consists of the channel and the source/drain, was defined by photolithography and reactive ion etching. A 5 nm-thick SiO$_2$ film was thermally grown in a dry oxidation furnace to make a tunneling oxide layer. We then formed Si nanoclusters on the tunneling oxide layer by using the pulse-type gas-feeding technique in the LPCVD system. The details of pulse-type gas-feeding technique were described in the previous work. [3] A pure SiH$_4$ gas was used as a source gas. A double-stacked structure of Si nanocluster was produced by depositing a 10-nm thick SiO$_2$ using the LPCVD at 400 °C with mixed gases of SiH$_4$ and O$_2$, followed by an additional deposition of the Si$_2$H$_6$ gas. The surface density of the Si nanoclusters that had an average diameter of 7 nm was approximately 7 x 1011 cm$^{-2}$. The nanocluster stacks were then covered by a control oxide layer that was deposited with SiH$_4$ and O$_2$ at 400 °C by using an LPCVD method. We deposited a poly-Si layer for a gate electrode on the control oxide with SiH$_4$ at 640 °C, and the gate electrode was then patterned. Finally, the phosphorus plasma doping method was used at 500 °C to carry out source/drain/gate doping.

![Fig. 1. A schematic diagram MOSFET with double-stacked Si nanocluster floating gate.](image)

III. RESULTS AND DISCUSSION

Fig. 2 demonstrates the program/erasing behaviors under different gate voltages with various pulse widths ranging from 1 µs to 1 s. In Figure 2 (a), two plateaus were observed, which corresponded to the threshold voltages of -0.4 V and 0.3 V. The increment of the threshold voltage in the second shift than in the first one along the electron charging time. Threshold voltage shifts of 1.0 V and 1.7 V were achieved at 18 V for 1 ms and 100 ms, respectively.

For a simple MOSFET structure with double-stacked floating gate, the threshold voltage shift was correlated with the dielectric property and thickness of the control oxide, and trapped charge. [4, 5]

$$
\Delta V_{th} = \frac{\varepsilon_m \varepsilon_0}{\varepsilon_{Si}} (d_1 + \frac{\varepsilon_m}{2\varepsilon_{Si}}r_{ox} + d_2 + \frac{\varepsilon_m}{2\varepsilon_{Si}}r_{ox})
$$

where ΔV_{th} is the threshold voltage shift, n_{dot} is the density of the nanocrystals, d_N is the control oxide thickness of the Nth layer, ε_m is the permittivity of the control oxide, and r_{ox} was the diameter of the nanocrystals.

Each of the Si nanocluster layers has a different control oxide thickness. The control oxide thickness of the first and second layer was 40 nm and 30 nm, respectively, and the diameter of Si nanoclusters was 7 nm. We assumed that...
each layer had the same density of the Si nanoclusters, i.e., it had the same trap charge. We estimated from equation (1) that the respective threshold voltage shifts were proportional to 41.15:71.15 = 1:1.73. This ratio was nearly the same as the measured values, where the position of the two plateaus showed a ratio of 1:1.7. The result shows the presence of a Double-Bit Cell in which the first layer and the second layer are programmed separately.

As shown in Fig. 2 (b), the threshold voltage shift caused by the hole charging is different from that caused by the electron charging. The memory window of the hole charging (~2.4 V) is larger than that of the electron charging (~1.7 V). The increased memory window in the hole charging is thought to result from the larger shift of the energy level in the conduction band than that in the valence band by the quantum confinement effect. [6] Therefore, the tunneling barrier height for the stored electron is small compared to that for the stored hole, which may cause a long retention time for the stored holes. For the hole charging, two plateaus were observed which are located at -1.7 V and -3.8 V, but the extent of the threshold voltage shift was different from that of the electron charging. As we used p-type Si substrates, the tunneling barrier height is higher for the hole transfer than with the electron transfer to the Si nanoclusters. To inject holes into the valence band of Si nanoclusters, a higher voltage is required than that needed to inject electrons, thus hole charging may commence at the second layer before charging the first layer fully.

We investigated the effect of the double-stacked structure on the charge retention by comparing the threshold voltage changes of the single layer and of the double layer devices after they had been fully charged. The threshold voltage change with time is shown in Fig.

![Fig. 3. Retention characteristics for the double-stacked Si nanocluster floating gate transistor and single layer floating gate transistor.](image)

3. We found that the charge retention of double layer memory was better than that of the single layer memory. The increased retention time of the double layer memory is explained by the suppression of the charge leakage that is caused by the Coulomb repulsion from the lower nanocluster stack between the upper nanocluster stack and the channel.

The endurance characteristics of the double-stacked Si nanocluster floating gate MOSFET devices are shown in Fig. 4. The gate voltage pulse height and width for program/erase were ±18 V and 100 ms, respectively. The drain voltage was set to V_D = 50 mV. At room temperature, a drift of 0.5 V in the program/erase threshold voltage was observed after 10^4 program/erasing cycles. The drift-up in the threshold voltage is attributed to the electron trapping in the oxide layer.

IV. SUMMARY

In summary, MOSFETs with double-stacked Si nanoclusters were fabricated. The performance of the double layers memory devices was characterized by measuring the threshold voltage under various gate bias conditions. The plateaus in the threshold voltage shift suggested the possibility of the Double-Bit operation. Because of the Coulomb repulsion from the lower nanocluster stack, charge leakage in the upper nanocluster stack was suppressed and the charge retention of the double layer memory was better than that of a single layer memory.

ACKNOWLEDGMENTS

This work was accomplished with the generous support of the National Research Program for the 0.1

REFERENCES

Junghyun Sok received the B.S. and M.S. degree in Physics from Seoul National University, Seoul, Korea, in 1984 and 1986 respectively, and the Ph.D. in Physics from Iowa State University, Ames, Iowa, USA, in 1995. From 1995 to 2002, he worked at ISTEC in Japan and SAIT in Korea, where he researched on the fabrication and characterization of high-Tc superconducting devices and magnetic memory devices. In 2002, he joined Sejong University in Seoul as an assistant professor in the Department of Nano Engineering. From 2004, he is currently associate professor in the Department of Nano Science and Technology, University of Seoul. His current research interests include nano-electronic devices using metal oxide films, spin-polarized electron transport in magnetic multilayer, and application of carbon nanotube. He has authored or coauthored over 50 papers, book chapters, and conference publications.

Wan-Shick Hong received a B.S. degree in Inorganic Materials Engineering from Seoul National University, Seoul, Korea, in 1984, the M.S. and the Ph.D. degrees in Materials Science from University of California, Berkeley, USA, in 1991 and in 1995, respectively. After his doctorate degree, Dr. Hong conducted research on radiation detector systems at Lawrence Berkeley National Laboratory, Berkeley, USA. Later he joined Samsung Electronics, Korea, for developing next-generation flat-panel display devices. He is presently an associate professor in the Department of Nano Science and Technology at University of Seoul, Korea. His current research interests include flexible electronics, ultra low temperature thin film processes, and nano-photonics. He is also interested in introducing Nanotechnology in undergraduate and K-12 education. He has authored or coauthored over 60 papers, conference publications, and international patents.
Sungghan Won received the B.S. degree in the Physics from The king Sejong University, Seoul, Korea in 1999, and the M.S. and Ph.D. degrees in Information Display from Kyunghee University, Seoul, Korea, in 2001 and 2005, respectively. From 2005 to 2007, he was a PostDoc. associateat Material Science & Eng in the Cornell University, USA, where he worked on low temperature Poly Si TFT and DNA sensor. In the spring of 2007, he joined the Department of Nano-Science and Technology at University of Seoul, where he is now a Research Professor. His research interests include Flexible Display, Organic TFT, and NFGM. Dr. Won is a member of several societies, such as SID, KVS, and KPS.

Eunkyeom Kim received the B.S. degrees in physics from University of Seoul, Seoul, Korea, in 2005, and M. E. degrees in nano science and technology from University of Seoul, Seoul, Korea, in 2007. He is currently Ph. D. course of University of Seoul, Seoul, Korea. His research interests include metallic and silicon nanocrystal floating gate nonvolatile memory devices, and tunneling barrier engineered nonvolatile memory devices.

Kyung Min Kim was born in Korea on March 21, 1981. He received the B.S. degree in department of physics and M.E. degree in department of nanoscience & technology from University of Seoul, Seoul, Korea, in 2005 and 2007, respectively. Since 2007, he has been pursuing the Ph.D degree in department of nano-engineering at the same university. His current research interest is the characterization of nonvolatile floating gate memory devices using the Si nano-clusters.

Daeho Son was born in Korea, on January 1, 1980. He received the B.S. degree in physics from Hanyang University, Seoul, Korea, in 2006. He is currently working on a master’s degree in Nano Science & technology at University of Seoul and is presently involved in research on tunneling barrier memory. His research interests include processing and analysis of nanoscale MOSFETs, SB-MOSFETs, and the next generation Nonvolatile Memory structure.

Jeongho Kim was born in Seoul, Korea, in 1981. He received the B.S. degree in physic from University of Seoul, Seoul, Korea in 2006. He has been working toward M. E. degree at University of Seoul since 2007. His research interest is in the area of the nonvolatile memory using nanocrystals.

Kyungsu Lee was born in Chungcheongnam-do, Korea, in 1980. He received the B.S. degree in physics from the Department of Physics, University of Seoul, Seoul, Korea, in 2007. He is currently pursuing the ME degree at University of Seoul, Seoul, Korea. His research interests mainly include the optoelectric device and thin film growth.