Characteristics of p-Cu$_2$O/n-Si Heterojunction Photodiode made by Rapid Thermal Oxidation

Raid A. Ismail

Abstract—Transparent Cuprous oxide film was deposited by rapid thermal oxidation (RTO) of Cu at 500 °C/45s condition on textured single-crystal n-Si substrate to form Cu$_2$O/n-Si heterojunction photodiode. The Hall effect measurements for the Cu$_2$O films showed a p-type conductivity. The photovoltaic and electrical properties of the junction at room temperature were investigated without any post-deposition annealing. I-V characteristics revealed that the junction has good rectifying properties. The C-V data showed abrupt junction and a built-in potential of 1 V. The photodiode showed good stability and high responsivity in the visible at three regions: 525 nm, 625-700 nm, and 750 nm denoted as regions A, B, and C, respectively.

Index Terms—Cuprous oxide, thin film, rapid thermal oxidation, heterojunction

I. INTRODUCTION

Cuprous oxide (Cu$_2$O) film is a p-type semiconductor having a direct band gap of 2.1 eV and cubic crystal structure with lattice constant of a = 4.27 Å [1]. It offers the potential advantages of non-toxicity, low cost production processing, and abundant raw material [2]. Several studies showed the potential use of Cu$_2$O for gas sensing [3], photo-degradation of dye molecule [4], CO oxidation [5], and solar cells [6]. Thin films of Cu$_2$O had been grown by many techniques, such as electrodeposition [7], spraying [8], CVD [9], thermal oxidation [10], MBE [11], plasma based ion implantation and deposition [12] and reactive sputtering [13]. The potential application of Cu$_2$O-based heterojunctions film in electronics requires understanding its physical properties and transport mechanism. Cu$_2$O/Si heterojunction is one of the important structures, although very little data had been reported on it. Drobny and Pulfrey fabricated Cu$_2$O/Si heterojunction solar cells by reactive sputtering [14]. In their study of the photoelectrochemical properties of the Cu$_2$O/n-Si, Yoon and Choi confirmed its good rectifying properties. In the present study, the fabrication and characterization of anisotype Cu$_2$O/Si heterojunction photodiode prepared by RTO is presented and analyzed.

II. EXPERIMENT

The substrate used was (111)-textured n-type, Cz single crystal silicon with a resistivity of (1-3) Ωcm. Random pyramid texturing was made on the silicon surface using KOH solution containing a small amount of isopropyl, as wetting agent, for 10min. High purity (99.99%) Cu thin film was deposited on the textured Si substrate by thermal evaporation at 10$^{-7}$ torr. A 200 nm thick Cu$_2$O thin film was grown on Si by rapid photothermal oxidation of deposited Cu film using a halogen lamp 500 °C for 45s in static air. The experimental set-up and details are given elsewhere [15]. The ohmic contacts of the photodiode were made by depositing a thick film of In-Ga on the back surface of the silicon and Al thick film on the Cu$_2$O film through special mask. The planar photosensitive area of the photodiode was around 16 mm2. Fig. 1 shows a cross-section of Cu$_2$O/Si heterojunction structure.

The conductivity type of the film and its mobility were investigated using Hall measurements. The white light response of the photodiode was tested by placing it under
illumination of a 100 W tungsten filament lamp, placed 15 cm away. The J-V characteristics were measured using a DC power supply and Keithley electrometer. The spectral responsivity of the photodiode was measured for the spectral range (450-900) nm using a calibrated monochromator. C-V measurements at a frequency of 25 kHz were made using an (hp) LCZ meter. All measurements were carried out at room temperature.

III. RESULTS AND DISCUSSION

Fig. 2 revealed the optical micrograph of textured silicon surface; it is obvious from this figure that the pyramids are formed on the silicon surface. In textured silicon surface some light rays will be reflected from one angle surface merely to strike another, resulting in an improved probability of absorption, and therefore reduced reflection comparing to the non-textured silicon surface.

The positive sign of Hall coefficient obtained confirms the p-type conductivity of the Cu$_2$O. Film mobility was estimated to be 12.4 cm2/Vs. This result agrees well with that for Cu$_2$O film prepared by magnetron sputtering [16]. The dark semi-log J-V characteristics of the photodiode heterojunction in the forward and reverse directions are depicted in Fig. 3. It demonstrates good rectification characteristics. The turn-on voltage observed from forward curve is approximately 1 V. Soft breakdown was noticed at a reverse voltage of 4 V. The ideality factor (β) was calculated as follows:

$$\beta = \frac{q}{nKT} \ln \frac{\Delta J}{\Delta J_o}$$

(1)

The saturation current density J_o of the heterojunction was obtained from extrapolating the linear part of the forward curve to zero applied voltage. It was found to be as low as 2 μA/cm2.

The high value of leakage current density of the photodiode can be ascribed to interface defects resulting from high mismatch of lattice constant between Cu$_2$O and Si (-21.4%) [17]. The value of ideality factor was found to be 1.5, indicating that the current transport mechanism is a mixture of trap-assisted tunneling and thermionic emission. Shown in Fig. 4 is the reciprocal of square capacitance versus reverse bias voltage plot deduced from C-V characteristics (inset of Fig. 4). The linear relationship of $1/C^2$-V curve suggests that the junction is abrupt type, and the interception of $1/C^2$ with voltage is the diffusion potential which found to be 1 V within Cu$_2$O side. This value is close to that of the turn-on voltage obtained from I-V characteristics. Fig. 5 exhibits dark and illuminated semi-log J-V characteristics of the heterojunction photodiode. The photodiode exhibited good photo-response with a photocurrent density of 10 mA/cm2 and a dark current density of 0.15 mA/cm2, measured at -2 V reverse bias.

By varying the incident white light power density, an
quantum efficiency are competitive to those for common ZnO/Si heterojunction photo-detectors [19,20]. The low value of the photodiode responsivity in the absence of bias voltage may be due to the recombination defects occurring at the depletion region and/or at the junction interface. The measurements were repeated after three months of storing in normal environment and no remarkable degradation was observed.

IV. CONCLUSIONS

P-Cu$_2$O/n-Si heterojunction photodiode was fabricated by rapid thermal oxidation after depositing an undoped Cu$_2$O thin film on (111) textured silicon substrate without a buffer layer. The photodiode exhibited good rectifying characteristics and the turn-on voltage was around 1 V. The C-V measurements showed an abrupt type junction and a diffusion potential of 1 V. The photodiode operated in photoconductive mode demonstrated good photoresponse in visible and near infrared regions. The responsivity of the photodiode exhibited three distinct regions around the wavelengths 525 nm, 625 nm and 750 nm. The responsivity and quantum efficiency for these regions were 0.22 A/W and 54.3%, 0.27 A/W and 53.6% and 0.28 A/W and 46%, respectively. The technique of growing Cu$_2$O layer by rapid photothermal oxidation for optoelectronic devices is relatively new, simple, cheap, and reliable. We are in the process of improving the performance of photodetector by postoxidation annealing of Cu$_2$O and/or by deposition of buffer layer.

REFERENCES

Raid A. Ismail received the B.Sc degree in physics from Al-Mustansiriya university, Iraq in 1986 and M.Sc and Ph.D degrees in Applied Physics from University of Technology, Iraq in 1991 and 1996 respectively. From 1998 to 2002, he worked as assistant professor in applied science department University of Technology. From 2003 to 2005, he worked as professor in Applied Science department. From 2006 till now he is professor of physics at university of Hadhramout. His research interest includes fast laser detectors, heterojunctions, thin films and solar cells. He published more than 95 papers in local and international journals and 30 M.Sc and Ph.D thesis carried out under his supervision. He is member of editorial board of many peer review scientific journals.