Design Optimization of a Type-I Heterojunction Tunneling Field-Effect Transistor (I-HTFET) for High Performance Logic Technology

Abstract—In this work, a tunneling field-effect transistor (TFET) based on heterojunctions of compound and Group IV semiconductors is introduced and simulated. TFETs based on either silicon or compound semiconductors have been intensively researched due to their merits of robustness against short channel effects (SCEs) and excellent subthreshold swing (SS) characteristics. However, silicon TFETs have the drawback of low on-current and compound ones are difficult to integrate with silicon CMOS circuits. In order to combine the high tunneling efficiency of narrow bandgap material TFETs and the high mobility of III-V TFETs, a Type-I heterojunction tunneling field-effect transistor (I-HTFET) adopting Ge-Al$_x$Ga$_{1-x}$As-Ge system has been optimized by simulation in terms of aluminum (Al) composition. To maximize device performance, we considered a nanowire structure, and it was shown that high performance (HP) logic technology can be achieved by the proposed device. The optimum Al composition turned out to be around 20% (x=0.2).

Index Terms—Tunneling field-effect transistor (TFET), Type-I heterojunction, narrow bandgap material, high mobility, simulation, nanowire, high performance (HP) logic technology

I. INTRODUCTION

Recently, tunneling field-effect transistors (TFETs) are gaining popularity due to their subthreshold swing (SS) and transconductance characteristics outperforming the conventional FETs [1-3]. On the other hand, it has been pointed out that silicon-based TFETs have rather low on-state current (I_{on}), which makes it less competitive in high performance (HP) applications. This weakness can be mostly overcome by switching silicon to narrower bandgap material for higher tunneling efficiency at the source side and the channel material to semiconductor of high electron mobility [4-6]. In order to integrate these materials with silicon CMOS circuits, lattice mismatches should be resolved above all. Ge is a good material because of its integratability with silicon (by using a Si$_x$Ge$_{1-x}$ buffer layer) and its small bandgap for improving tunneling efficiency so that it can be used for a source side material. The device active region, Al$_x$Ga$_{1-x}$As can be grown by metal-organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE) to obtain a crystalline channel of high mobility. Al$_x$Ga$_{1-x}$As can be grown directly on Ge since their lattice constants are very similar, $5.6533 + 0.0078x$ Å and 5.658 Å, respectively. There can be three types of
heterojunction structures and the interface of Ge-AlxGa1-xAs forms a straddling one, Type-I, where $E_C(M_1)<E_C(M_2)$, $E_V(M_1)>E_V(M_2)$, and $E_G(M_1)<E_G(M_2)$. E_C, E_V, and E_G mean conduction band minimum, valence band maximum, and bandgap energy, respectively. Fig. 1 shows an energy band diagram for a Type-I heterojunction. This scheme realizes a TFET device with an enhanced I_{on} and a suppressed off-state current (I_{off}). In this work, a comparative study on Type-I heterojunction TFET (I-HTFET) with homojunction TFETs based on various materials and an optimum design for an I-HTFET of Ge-AlxGa1-xAs-Ge system were performed by 3D device simulation to meet the HP requirements predicted by the most recent technology roadmap [7, 8].

II. STRATEGIES IN DEVICE DESIGN

Fig. 2 illustrates a schematic view of the proposed I-HTFET device. Source and drain (S/D) junctions are made from Ge and the vertical channel from AlxGa1-xAs. Table I summarizes the process parameters and critical dimensions of the device.

The channel length, radius of the nanowire, and gate oxide thickness were 50 nm, 10 nm, and 2 nm, sequentially, which were invariantly used while other parameters might be controlled in simulation works. p + source and n + drain were doped with a concentration of 1×10^{20} cm$^{-3}$, and the channel was lightly doped with p-type 1×10^{14} cm$^{-3}$ to be nearly intrinsic. The primary design parameter was Al composition (x) and it was varied from 0 (GaAs) to 0.4 with 0.05 step. A composition higher than 0.4 resulted in severe degradation of I_{on}, or equivalently, impermissibly high threshold voltage (V_{th}) for HP applications, which was the reason that an upper limit of 0.4 was considered. For higher reliability of device simulation results, multiple mobility models were included, and quantum tunneling and nonlocal band-to-band tunneling (BTBT) models capable of accurate and consistent prediction of BTBT currents without adjusting model parameters were used [9]. Drain currents (I_D’s) were normalized by a unit width in all the I_D-V_{GS} curves. For simple conversion, a device width was presumed to be the circumference of a nanowire. V_{th}’s were extracted by a constant-current method which is more practical for evaluating HP logic devices compared with other methods. The reference read current was assumed to be $I_{D, ref}=10^{-7}$ A/μm.

III. SIMULATION RESULTS

1. Advantages over Homojunction TFETs

Fig. 3 compares the I_D-V_{GS} curves from homojunction TFETs of which materials are Si, Ge, and GaAs. Also, a simulated transfer curve from a heterojunction TFET having p+ Ge source, Si$_{0.6}$Ge$_{0.4}$ channel, and Si drain in a previous research has been brought to make comparisons with the proposed device [10]. The channels of all the TFETs are intrinsic while S/D have different doping concentrations.

As shown in Table I, p+ and n+ Ge S/D doping...
concentrations was 1×10^{20} cm$^{-3}$. However, the devices in the comparison group were made to have different doping concentrations with intent. For Si and Ge TFETs, S/D junctions were doped with p-type 10^{20} cm$^{-3}$ and n-type 10^{18} cm$^{-3}$, respectively, and for a GaAs TFET, p-type 10^{20} cm$^{-3}$ and n-type 10^{19} cm$^{-3}$ were doped. Also, the SiGe HTFET had S/D junctions doped with p-type 10^{20} cm$^{-3}$ and n-type 10^{17} cm$^{-3}$, respectively. For some devices, even a lower doping concentration in either source or drain junction demonstrates a better performance. For this reason, S/D doping concentrations were intentionally controlled for each device to demonstrate its highest I_{on}/I_{off} ratio with invariance in I_{on} by suppressing I_{off} effectively, by which more reliable and fair comparisons among the devices in their best states were made possible. In Fig. 3, Ge TFET shows the highest I_{on} compared with the other homojunctions TFETs. The E_G’s of Si, Ge, and GaAs are 1.12 eV, 0.66 eV, and 1.42 eV, in sequence. Since a smaller E_G boosts the BTBT efficiency and the electron mobilities of Ge and Si are $3,900$ cm2/V·s and $1,400$ cm2/V·s (upper limits), respectively, I_{on} of a Ge TFET is much higher than that of a Si device. On the other hand, there is little difference between the performances of Si and GaAs TFETs. Although GaAs has a much higher electron mobility, $8,000$ cm2/V·s, than Si, I_{on} of a GaAs TFET is more or less the same with that of a Si device since the larger E_G of GaAs substantially degrades the BTBT probability. SiGe is also gaining much popularity as a channel material for HTFET devices [10, 11]. Ge source for higher tunneling efficiency and Si drain for suppressing I_{off} more effectively can be grafted to improve the device performances [10]. In that case, I_{on} converges to that of Ge TFET while I_{off} is kept as low as that of Si TFET as shown in Fig. 3, which is the best performance achievable by the group-IV semiconductor materials. The proposed device with Ge-AlGaAs-Ge heterojunctions shows performances comparable to those of SiGe HTFET. For a good comparison, no Al composition was introduced to match the E_G where the minimum I_{off}’s appear. The proposed device shows higher I_{on} and steeper switching. I_{on} is determined by the combinational effect of magnitude of E_G for BTBT at the source-to-channel junction and electron mobility in the channel. One drawback of Ge TFET is high I_{off} as confirmed by Figs. 3 and 4. A smaller E_G of Ge increases the tunneling current by gate-induced drain leakage (GIDL) at the channel-to-drain junction when a negative gate voltage is applied. Fig. 4 shows I_{on}/V_{GS} curves for a Ge TFET and the proposed I-HTFETs based on Ge-Al$_x$Ga$_{1-x}$As system for $x=0, 0.15$, and 0.3, where the Ge-GaAs I-HTFET shows the even higher I_{on}. The current drivability is degraded as x increases. For $x=0.15$, I_{on}’s of a Ge TFET and a Ge-Al$_x$Ga$_{1-x}$As-Ge I-HTFET are comparable but I_{off} of the latter is much lower, only a few fA/µm. By introducing more Al atoms, E_G gets larger, which is strategic for suppressing I_{off} but on the other hand, the electron mobility is degraded, which lowers I_{on}. It is known that the electron mobility is monotonically decreased up to $x=0.45$ [12, 13].

Fig. 5 demonstrates the simulation results for energy band diagrams inside a GaAs TFET and an I-HTFET at a standby mode (V_{GS}, V_{DS})=(0 V, 1 V) and an operating mode, $V_{GS}=V_{DS}=1$ V. p$^+$ Ge source effectively tapers the width of the tunneling barrier at the source-to-channel junction as shown in the right figure. Also, the left...
figure reveals that the effective distance between E_C of n$^+$ drain region and E_V of the intrinsic channel becomes larger for the I-HTFET. This bandgap engineering effectively lowers the BTBT probability for the valence electrons into the n$^+$ drain region, which prominently suppresses I_{off} as previously shown in Fig. 4. Consequently, the analysis results support that introducing a heterojunction formed by Ge and Al$_x$Ga$_{1-x}$As enables to expect improved I_on by higher BTBT probability due to a small E_G of the source-side Ge and high electron mobility of Al$_x$Ga$_{1-x}$As channel while keeping I_{off} sufficiently low by a large E_G of Al$_x$Ga$_{1-x}$As which reduces GIDL at the same time.

2. Design Optimization of the Nanowire I-HTFET

Fig. 6 demonstrates the I_D-V_{GS} curves for I-HTFETs with different Al compositions with $V_{DS}=V_{DD}=1.0$ V. $I_{on}=I_D@V_{DS}=V_{DD}=1.0$ V is degraded as the Al composition increases. I_{off}'s are invariant with x values, but as x increases the voltage window for inhibiting the BTBT leakage, GIDL, is widened from 0.1 V for $x=0$ to a value larger than 0.8 V for $x=0.4$. Only for $x=0$ and 0.05, GIDL currents were observed below $V_{GS}=-0.5$ V. Fig. 7 depicts SS as a function of Al composition. An SS has been extracted at a V_{GS} where d$(\log I_D)/dV_{GS}$ has a local maximum out of the V_{GS} region where a device is completely turned off and shows current fluctuations. By adopting this method, the extracted SS values were made the smallest that the devices might have. It was already shown that the proposed I-HTFETs had better SS characteristics than those of Si, Ge, and GaAs homojunction TFETs in Figs. 3 and 4. The obtained SS values in Fig. 7 were below 20 mV/dec and decreased monotonically up to an Al composition of 0.25, where a local minimum was observed. Although the SS characteristics were drastically degraded at $x=0.4$, it was still a very low value. Fig. 8 plots V_{th} as a function of Al composition. V_{th}'s were extracted at a reference current of $I_{D,ref}=10^{-7}$ A/μm as mentioned previously. The most recent technology roadmap is suggesting that the V_{th}'s be near 200 mV for ultra-thin body (UTB) fully depleted (FD) channel devices aiming HP technologies within...
next five years. The UTB FD device is the category where the proposed I-HTFET device falls into most properly among various types of devices that the roadmap presents. Mapping the V_{th} onto the Al composition through the V_{th}-curve in Fig. 8 reveals that the permissible x values should be limited between 0.2 and 0.3. Fig. 9 shows the I_{on} and I_{off} curves as a function of Al composition drawn with open and rigid circles, respectively. The upper left box indicates the minimum I_{on} required for HP applications, which is 1200 μA/µm by the prediction. 25% is the upper limit in Al composition for the requirement. At the same time, the lower right box indicates the boundary of permissible I_{off} which is defined as I_D at $(V_{GS}, V_{DS})=(0$ V, 1 V), an off-state current at a standby mode. The specified upper limit is 100 nA/µm, which accordingly sets a lower limit in Al composition to be 12%. Finally, The dotted box defines the range of permissible Al compositions, $0.12\leq x\leq 0.25$. Judging from the results made so far on the fundamental direct current (DC) parameters, SS, V_{th}, I_{on}, and I_{off}, it is concluded that the optimum Al composition needs to be around 20%.

IV. CONCLUSIONS

In this work, a Type-I (straddling) heterojunction nanowire tunneling field-effect transistor (I-HTFET) with a channel length of 50 nm based on Ge-Al$_x$Ga$_{1-x}$As-Ge structure has been proposed and simulated for an optimized device design with Al composition as a design variable. The optimum value was found to be around $x=0.2$ in terms of the primary device parameters for HP logic technologies. Due to its silicon-compatibility and capability of achieving high current drivability, extremely low leakage, and excellent swing characteristics, the proposed I-HTFET is believed to be a promising candidate device for the advanced CMOS integrated circuits.

ACKNOWLEDGMENTS

This work was supported by BK21-IT program of Seoul National University and the Nano-System Institute sponsored by the Korea Science and Engineering Foundation (currently, the National Research Foundation of Korea).

REFERENCES

Seongjae Cho received the B.S. and Ph.D. degrees in electrical engineering from School of Electrical Engineering and Computer Science (EECS), Seoul National University (SNU), Seoul, Korea, in 2004 and 2010, respectively. He worked as a student internship member at the Department of System IC of Hynix Semiconductor in 2003. He worked as a process engineer in 2004 and a teaching assistant for semiconductor process education from 2005 to 2007 at Inter-university Semiconductor Research Center (ISRC) in SNU. Also, he worked with the National Institute of Advanced Industrial Science and Technology (AIST) in Tsukuba, Japan, with the support by Korea Science and Engineering Foundation (KOSEF) in 2009. From Mar. 2010 to Sep. 2010, he worked as a postdoctoral researcher at EECS, SNU, and from Oct. 2010, he has been working in the same position at the Department of Electrical Engineering and Center for Integrated Systems (CIS), Stanford University, CA, USA. His research interests include design, fabrication, and characterization of nanoscale CMOS, emerging nonvolatile memory, optoelectronic, and photonic devices for integrated systems. He authored and co-authored more than 130 papers published in journals and presented in conferences. Dr. Cho served as the student chair of the IEEE student branch at SNU from 2007 to 2010. He is a Member of IEEE EDS, a Lifetime Member of the Institute of Electronics Engineers of Korea (IEEK), a Member of the Korean Physical Society (KPS), a Member of the Institute of Electronics, Information and Communication Engineers (IEICE), a Member of Optical Society of America (OSA) and Optical Society of Korea (OSK). He received Distinguished Research Achievement Awards from EECS, SNU, in 2009 and 2010, respectively, and Doyeon Paper Award from ISRC, SNU in 2010.

Min-Chul Sun received the B.S. and M.S. degrees in Chemical Engineering from Yonsei University and Korea Advanced Institute of Science and Technology (KAIST) in 1996 and 2001, respectively. He has been working for the Semiconductor Business Group of Samsung Electronics since then. He joined the IBM-Samsung Joint Development Project at the IBM Semiconductor Research and Development Center in East Fishkill (NY) as Front-End-of-Line (FEOL) Integrator for 65- and 45-nm logic technologies. Currently he is working toward the Ph.D. degree in Electrical Engineering at Seoul National University (SNU) with the support of Samsung Electronics. His current research interests are the ultra-low power nanoelectronics compatible to the conventional CMOS technology, which include the steep subthreshold slope devices, multi-channel MOSFETs, nano-scale transistors with advanced junction, and hybrid channel devices. Mr. Sun is a Student Member of the Institute of Electrical and Electronics Engineers (IEEE).
Garam Kim received the B.S. degree in 2008 from Seoul National University (SNU), Seoul, Korea, where he is currently working toward the Ph.D. degree in electrical engineering. His current research interests include 1-Transistor (1-T) DRAM fabrication, characterization, measurement, and modeling and nanoscale CMOS devices. Mr. Kim is currently a Student Member of the Institute of Electronics Engineers of Korea (IEEK).

Theodore I. Kamins is a Consulting Professor in the Electrical Engineering Department at Stanford University, where he is guiding research on epitaxial Si and Ge deposition for optical interconnects, on photodiode arrays for retinal prosthesis, and on other advanced semiconductor processing. He received his degrees from the University of California, Berkeley and then joined the Research and Development Laboratory of Fairchild Semiconductor, where he worked with epitaxial and polycrystalline silicon before moving to Hewlett-Packard Laboratories, where he worked on numerous semiconductor material and device topics. Most recently at Hewlett-Packard, he was a Principal Scientist in the Information and Quantum Systems Laboratory, where he conducted research on advanced nanostructured electronic and sensing materials and devices. Ted is co-author with R. S. Muller of the textbook “Device Electronics for Integrated Circuits” and is author of the book “Polycrystalline Silicon for Integrated Circuits and Displays.” He is a Fellow of the IEEE and a Fellow of the Electrochemical Society. He has taught at the University of California, Berkeley, and at Stanford University and has been an Associate Editor of the IEEE Transactions on Electron Devices.

Byung-Gook Park received his B.S. and M.S. degrees in electronic engineering from Seoul National University (SNU) in 1982 and 1984, respectively, and his Ph.D. degree in electrical engineering from Stanford University in 1990. From 1990 to 1993, he worked at the AT&T Bell Laboratories, where he contributed to the development of 0.1 micron CMOS and its characterization. From 1993 to 1994, he was with Texas Instruments, developing 0.25 micron CMOS. In 1994, he joined SNU as an assistant professor in the School of Electrical Engineering (SoEE), where he is currently a professor. In 2002, he worked at Stanford University as a visiting professor, on his sabbatical leave from SNU. He was leading the Inter-university Semiconductor Research Center (ISRC) at SNU as the director from June 2008 to June 2010. Currently, he is researching at Stanford University as a visiting professor. His current research interests include the design and fabrication of nanoscale CMOS, flash memories, silicon quantum devices and organic thin film transistors. He has authored and co-authored over 580 research papers in journals and conferences, and currently holds 34 Korean and 7 U.S. patents. He has served as a committee member on several international conferences, including Microprocesses and Nanotechnology, IEEE International Electron Devices Meeting, International Conference on Solid State Devices and Materials, and IEEE Silicon Nanoelectronics Workshop (technical program chair in 2005, general chair in 2007). Also, he has been serving as an editor of IEEE Electron Device Letters. He is currently serving as an executive director of Institute of Electronics Engineers of Korea (IEEK) and the board member of IEEE Seoul Section. He received “Best Teacher” Award from SoEE in 1997, Doyeon Award for Creative Research from ISRC in 2003, Haedong Paper Award from IEEK in 2005, and Educational Award from College of Engineering, SNU, in 2006. Also, he received Haedong Academic Research Award from IEEK in 2008.
James S. Harris, Jr. received the B.S., M.S., and Ph.D. degrees in electrical engineering from Stanford University, Stanford, CA, in 1964, 1965, and 1969, respectively. In 1969, he joined Rockwell International Science Center, Thousand Oaks, CA, where he was one of the key contributors to ion implantation, molecular beam epitaxy, and heterojunction devices, leading to their preeminent position in GaAs technology. In 1980, he became the Director of the Optoelectronics Research Department. In 1982, he joined the Solid State Electronics Laboratory, Stanford University, as a Professor of Electrical Engineering, where he was the Director of the Solid State Electronics Laboratory (1984-98), the Director of the Joint Services Electronics Program (1985-99), and is currently the James and Ellenor Chesebrough Professor of Electrical Engineering, Applied Physics, and Materials Science in the Center for Integrated Systems. His research interests include physics and application of ultra-small structures and novel materials to new high-speed and optoelectronic devices and systems. He has supervised more than 105 Ph.D. students, is the author or coauthor of more than 850 publications and holds 28 issued U.S. patents. Dr. Harris is a member of the U.S. National Academy of Engineering and Fellow of the American Physical Society, Optical Society of America and Materials Research Society. He was the recipient of the 2000 IEEE Morris N. Liebmann Memorial Award, the 2000 International Compound Semiconductor Conference Walker Medal, the IEEE Third Millennium Medal, an Alexander von Humboldt Senior Research Prize in 1998 and 2008 International MBE Conference MBE Innovator Award for his contributions to compound semiconductor materials, devices and technology.