AlN Based RF MEMS Tunable Capacitor with Air-Suspended Electrode with Two Stages

Seong J. Cheon, Woo J. Jang, Hyeon S. Park, Min K. Yoon, and Jae Y. Park

Abstract—In this paper, a MEMS tunable capacitor was successfully designed and fabricated using an aluminum nitride film and a gold suspended membrane with two air gap structure for commercial RF applications. Unlike conventional two-parallel-plate tunable capacitors, the proposed tunable capacitor consists of one air suspended top electrode and two fixed bottom electrodes. One fixed and the top movable electrodes form a variable capacitor, while the other one provides necessary electrostatic actuation. The fabricated tunable capacitor exhibited a capacitance tuning range of 375% at 2 GHz, exceeding the theoretical limit of conventional two-parallel-plate tunable capacitors. In case of the contact state, the maximal quality factor was approximately 25 at 1.5 GHz. The developed fabrication process is also compatible with the existing standard IC (integrated circuit) technology, which makes it suitable for on chip intelligent transceivers and radios.

Index Terms—Tunable capacitor, RF MEMS, aluminum nitride, air-gap, wide tuning range, capacitance

I. INTRODUCTION

A Micro electro mechanical systems (MEMS) technology enabling the batch fabrication of miniaturized mechanical structures, devices, and systems has been originated from the Integrated circuit (IC) technology [1]. The MEMS technology has become more important for the development of radio frequency (RF) and microwave communication systems since it can be used to implement the free-standing or movable three-dimensional (3-D) microstructures and hence achieve higher quality-factor (Q-factor) than many conventional IC devices. RF MEMS components that are currently under development in laboratories and industries around the world include switches, tunable capacitors, MEMS inductor with high Q factor [2], film bulk acoustic resonators (FBARs), and MEMS resonators and filters [3-5].

For instance, various MEMS based tunable capacitors have been applied in the RF front-end building blocks of the modern RF/microwave communication systems, such as voltage controlled oscillators (VCOs) [6-8], tunable filters [9-13], and impedance matching networks [14]. These MEMS tunable capacitors should have wide-tuning range [15], high Q-factor [16] and low driving voltage [17] for being successfully commercialized. Among all the micromachined tunable capacitors developed to date, the parallel-plate configuration using electrostatic actuation is most commonly used. The parallel-plate capacitor can be fabricated using surface micromachining processes established well. However, the tuning range of such capacitors is limited to 50% by the pull-in effect. The pull-in instability, due to which only 33% of the gap between plates could be covered smoothly, greatly reduces the useful dynamic range of MEMS tunable capacitors.

In this paper, a RF MEMS tunable capacitor is newly designed and fabricated by using aluminum nitride
dielectric film and a movable electrode with two different air gap structures. This design keeps the simplicity of conventional two-parallel-plate configuration, while overcoming its low tuning range. In addition, an aluminum nitride film is used as a high dielectric layer in order to increase a tuning range, decrease an operating voltage, and be integrated with FBAR (Film Bulk Acoustic Resonator) device for on chip tunable filters and intelligent radios.

II. DESIGN

Fig. 1 shows a 3-dimensional geometrical structure of the proposed MEMS tunable capacitor. The proposed tunable capacitor has the structure of 2-port network using a shunt capacitor with air-suspended metal and fixed signal electrodes. As shown in Fig. 2, the conventional parallel-plate variable capacitor with single gap-spacing, that is g_1 or g_2, and its maximum tuning range is theoretically limited to 50%. To substantially enhance the maximum tuning range of the tunable capacitor, two air gap structure was adopted with one-to-three ratio of the g_1 ranging from 1 to 2 µm and g_2 with 3 µm. The structure with two air gap was simply implemented using the double exposure process of photolithography and electroplating technique. At first, the area of air-suspended metal electrode with the distance of g_1 was contacted onto the fixed signal electrode due to the electrostatic force by V_{DC}. Moreover, in this case, the capacitance of the proposed tunable capacitor was smoothly increased, because the height of g_1 was lower than a third height of g_2, which is the height by pull-in voltage.

In an initial state, the capacitance could be obtained by using an effective dielectric constant, ε_{eff} [14]

$$\sqrt{\varepsilon_{\text{eff}}} = \left[1 + \left(a_i - b_i \ln \left(\frac{w}{b}\right)\right)\left(\frac{1}{\sqrt{\varepsilon_r}} - 1\right)^3\right]$$ \hspace{1cm} (1)

where w is the width of the conductor line and ε_r is the relative dielectric constant of the aluminum nitride film in the designed MEMS tunable capacitor. The coefficients a_i and b_i are calculated by the relationship between a of the thickness of silicon substrate and b of the air gap. The coefficients a_i and b_i are specified by

$$a_i = 0.155 + 0.505\left(\frac{a}{b}\right)$$ \hspace{1cm} (2)

$$b_i = 0.023 + 0.1863\left(\frac{a}{b}\right) - 0.194\left(\frac{a}{b}\right)^2$$ \hspace{1cm} (3)

In the initial state, the calculated capacitance of the designed MEMS tunable capacitor was 0.217 pF by using the above equations. In the contact state, the calculated capacitance was 0.593 pF by using the measured relative dielectric constant of 8.2.

Fig. 3 shows the 3-D EM simulated capacitance results of the proposed tunable capacitor at an initial and a contact states. As shown in Fig. 3, the proposed tunable capacitor without any bias voltages had the capacitance about 0.278 pF. After being contacted by applying the operation voltage, the tunable capacitor exhibited the capacitance of approximately 0.78 pF due to the fringing capacitance occurred between two electrodes.

Another important characteristic parameter of the MEMS tunable capacitor is the Q-factor. For the
improvement of the Q-factor, this study adopted a high resistivity silicon substrate (2 k to 10 k Ω-cm) to reduce effectively the RF loss occurred form the substrate.

III. Fabrication

Fig. 4 shows the detailed fabrication sequences of the proposed RF MEMS tunable capacitor with an air-suspended movable electrode with two stages. The proposed MEMS tunable capacitor was fabricated on high resistivity silicon substrate (2- to 10-kΩ-cm) of 525 μm in thickness for reducing the substrate loss. After depositing silicon oxide film as an insulator on the substrate, bottom electrodes of platinum and aluminum nitride film were deposited and patterned in sequence with the thickness of 0.35 μm and 0.2 μm, respectively. As shown in Fig. 4(c), AZ7220 photoresist with the thickness of 3 μm was then double-coated and patterned as a sacrificial layer for forming the air-suspended movable electrode by double expose etch technique. A gold material with the thickness of 0.2 μm for seed layer and a Ti material with the thickness of 500 \AA for adhesion layer were then sputtered on the top of the patterned sacrificial layer. After forming the thick photoresist molds for electroplating process, Au was electroplated to form thick air-suspended movable electrode with the thickness of 4 μm for improvement of reliability of RF MEMS tunable capacitors. Finally, after making etch holes on the thin gold seed layer, the sacrificial layer was finally removed by using acetone and critical point dryer (CPD) process.

Fig. 5(a) and (b) shows a scanning electron microscope (SEM) photograph and a close-up view of the fabricated RF MEMS tunable capacitor. The formed height between SiO$_2$ layer and movable metal-plate was approximately 3 μm. Moreover, the formed height between AlN dielectric material and movable metal-plate
The measured frequencies were ranged from 1 to 8 GHz for commercial RF and microwave applications. The applied actuation voltage was ranging from 0 to 75 V.

Before fabricating the proposed tunable capacitor, the MIM capacitors with the aluminum nitride film were first fabricated, measured, and characterized. Fig. 6 shows the capacitance and the quality factor behaviors of the capacitor with the area of 80 µm × 80 µm at commercial radio frequencies. The maximal quality factor was higher than 30 and the capacitance density was 270 pF/mm². The measured dielectric constant and dielectric loss of the fabricated aluminum nitride were 8.2 and 0.01, respectively.

Fig. 7 shows the measured capacitances of the fabricated MEMS tunable capacitor at the frequency of 2 GHz. When the operation voltage was not applied, the fabricated capacitor had the capacitance of 0.317 pF, as

![Image](image_url)

Fig. 5. A SEM photograph (a) and its close-up view, (b) of the fabricated RF MEMS tunable capacitor with an air-suspended movable electrode with two stages.

![Image](image_url)

Fig. 6. Measured capacitance and quality factor of the fabricated AlN based MIM capacitor.

![Image](image_url)

Fig. 7. Measured capacitances of the fabricated RF MEMS tunable capacitor at various applied voltages.
expected through the EM simulation. In the contact state, the capacitance was approximately 0.62 pF. The air-suspended movable electrode was contacted on the fixed signal electrode at the applied voltage of 30 V. It was slightly lower than the EM simulated capacitance of 0.78 pF. This discrepancy might be caused by the enlarged etch holes compared with the designed values. As shown in Fig. 7, the capacitance was linearly increased at the applied voltages higher than 30 V due to the zipping effects. The tunable capacitor exhibited a capacitance of 1.19 pF and a capacitance tuning range of 375% at the applied voltage of 75 V, which make it suitable for tunable filter and antenna applications. Fig. 8 shows the measured capacitance and quality factor of the MEMS tunable capacitor. In the contact state, the maximal quality factor of 25 was obtained at 1.5 GHz.

V. CONCLUSIONS

In this paper, a MEMS tunable capacitor with wide tuning range was successfully designed and fabricated by using aluminum nitride film and a gold suspended membrane with two air gap structures for commercial RF applications. The utilized high dielectric aluminum nitride film and two air gap structured membrane were effective to achieve a wide-tuning range and high capacitance density of the MEMS tunable capacitor, as expected. In addition, the developed fabrication sequence was simplified and compatible with the aluminum nitride based FBAR devices resulting in on chip tunable filters and radios with high performances and small size/volumes.

ACKNOWLEDGMENTS

This research was supported by the Intelligent RF Engineering Research Center (ERC) of the Korea Ministry (Grant No. R11-2005-029-06004-0) of Science and Technology. The authors are grateful to the MiNDaP group members for their technical supports and discussions.

REFERENCES

Seong J. Cheon received B.S. and M.S. degrees in the Electronic Engineering from Kwangwoon University, Seoul, Korea, in 2006 and 2008, respectively. He is currently working toward a Ph. D. degree in the Department of Electronic Engineering from Kwangwoon University. His current research interests are in the areas of RF micro-electromechanical systems (MEMS) actuators, microelectronic devices, RF front-end modules, embedded passive devices (EPDs), and system on packaging (SOP).

Woo J. Jang received the B.S. and M.S. degree in the Electronic Engineering from Kwangwoon University, Seoul, Korea, in 2010 and 2012, respectively. He is currently working at Research and Division in Samsung Electronics Co., Ltd. His current research interests are RF MEMS switches and tunable filters.

Hyeon S. Park received the B.S. degree in the Electronic Engineering from Kwangwoon University, Seoul, Korea, in 2012. He is currently working toward the M.S. degree in the Electronic Engineering at Kwangwoon University. His current research interests are RF MEMS switches and tunable filters.
Min K. Yoon received B.S. degree in the Dept. of Electronic Engineering from Kwangwoon University, Seoul, Korea, in 2012. He has been working toward the M.S. degree in MEMS based devices in the Department of Electronic engineering from Kwangwoon University. His research focuses on various MEMS actuators, such as electrostatic MEMS switches, tunable devices and RF passive devices.

Jae Y. Park received the M.S.E.E. and Ph.D. degree in electrical and computer engineering from Georgia Institute of Technology, Atlanta, in 1995 and 1997, respectively. He worked at the Packaging Research Center, Georgia Institute of Technology as a Research Engineering for two years. He has also worked at the Micro-System Group in the LG Electronics Institute of Technology as a Team Leader of RF MEMS Research for six years. In September 2004, he joined the faculty of the Department of Electronics Engineering, Kwangwoon University, Seoul, Korea. He has published more than 170 journal articles and conference proceedings and field more than 95 patents. His current research interests include micro-electromechanical systems (MEMS, micro-actuators for optical and RF applications), micro-system packaging (wafer level packaging, SOP, SOC, multichip modules), micro/nano electro-chemical sensors, smart dust, and RF MEMS components.