Compact Model of a pH Sensor with Depletion-Mode Silicon-Nanowire Field-Effect Transistor

Yun Seop Yu

Abstract—A compact model of a depletion-mode silicon-nanowire (Si-NW) pH sensor is proposed. This drain current model is obtained from the Pao–Sah integral and the continuous charge-based model, which is derived by applying the parabolic potential approximation to the Poisson’s equation in the cylindrical coordinate system. The threshold–voltage shift in the drain–current model is obtained by solving the nonlinear Poisson–Boltzmann equation for the electrolyte. The simulation results obtained from the proposed drain–current model for the Si-NW field-effect transistor (SiNW FET) agree well with those of the three-dimensional (3D) device simulation, and those from the Si-NW pH sensor model also agree with the experimental data.

Index Terms—Silicon nanowire, pH sensor, nonlinear Poisson-Boltzman equation, Poisson’s equation, depletion-mode

I. INTRODUCTION

Ion-selective field-effect transistors (ISFETs) [1] using silicon nanowires (Si-NWs) have recently attracted considerable attention because they can be applied to many fields of healthcare and life sciences for label-free electrical detection of charged biological species such as pH levels, DNA, proteins, and other biomolecules [2-7]. Furthermore, the use of Si-NWs in pH sensors has been demonstrated in literature [2-5]. A compact model for a Si-NW pH sensor has been reported to design and simulate a Si-NW pH sensor system that includes signal amplifying and processing circuits, [8]. A Si-NW field-effect transistor (SiNW FET) operating in the inversion mode in Si-NW pH sensors has been modeled [5, 8], but most SiNW FETs have been operated in the depletion mode [2-4]. Therefore, a compact model of a depletion-mode SiNW FET in the pH sensor needs to efficiently simulate the Si-NW pH sensor and SiNW FET-based integrated systems.

In this paper, we describe a compact analytic model of a depletion-mode Si-NW pH sensor; this drain current model is derived by applying a parabolic potential approximation to Poisson’s equation in the cylindrical coordinate system and using the Pao–Sah integral for the Si-NW. Further, the threshold–voltage shift in the drain–current model is obtained by solving the nonlinear Poisson–Boltzmann equation for the electrolyte. We compare the simulation results obtained from the proposed model with the simulation results of the three-dimensional (3D) device simulator as well as the experimental data, to verify the validity of the proposed mode.

II. MODEL DEVELOPMENT

Fig. 1 shows a schematic diagram of a Si-NW pH sensor. The Si-NW in the pH sensor is covered with a modified surface oxide layer that contains both amino (NH$_2$) and silanol (SiOH) groups. V_{gs}, V_{ds} and V_{s} represent the voltages at the reference side-gate electrode, drain, and source, respectively. The side-gate can be operated as the reference electrode in the pH sensor. As
shown in Fig. 2, the Si-NW pH sensor contains three regions: a cylindrical Si-NW of radius R_{NW}, an insulating native oxide layer of thickness t_{ox} around the Si-NW, and an electrolyte that contains the target molecules. Here, R_D is the effective radius of the conducting cylindrical region inside the nanowire, which is defined as the difference between the radius and the depletion width, and R_O is the distance between the insulator surface and the center of the Si-NW. A semiconductor doped with p-type impurities is used for the Si-NW because most nanowire field-effect-transistor (FET) biosensors have been characterized for the p-type nanowire [2-5]. The metals are used as ohmic contacts for the source and drain.

The potential profile inside the Si-NW in response to the absorbed surface charge is described by the Poisson’s equation in cylindrical coordinates for the doped p-type Si-NW:

$$\frac{1}{r} \frac{d}{dr} \left(r \frac{d\phi}{dr} \right) = \frac{qN_a}{\varepsilon_{si}} \left[1 - \exp\left(-\beta(\phi - V_{ch}) \right) \right],$$

where ϕ is the electrostatic channel potential, ε_{si} is the silicon dielectric constant, N_a is the p-type doping concentration of the Si-NW, r is the cylindrical coordinate along the radial direction, V_{ch} is the electron quasi-Fermi potential, q is the electronic charge, and $\beta = q/k_B T$ is the inverse of the thermal voltage with the Boltzmann constant k_B and the temperature T. In the depletion-mode operating regimes of the Si-NW, the minority carrier concentration (electrons) is negligible in comparison with the hole carrier concentration, in the contrast to the our previously reported inversion-mode model [8]. When the boundary conditions [8] are applied to Eq. (1), there is no known analytical solution to Eq. (1), but the parabolic potential approximation was reported as a simple method to represent the potential in the Si-NW [9], and the following equations are obtained by using the method [9]:

$$V_{gr} - V_a - \eta V_{ch} = \frac{Q_m}{C_{eff}} - \frac{\eta}{\beta} \ln \left(\frac{Q_m}{Q_0} \right) - \eta \ln \left(\frac{Q_m}{Q_{dep}} - 1 \right) \left[\exp \left(\frac{Q_m - Q_{dep}}{Q_0} \right) - 1 \right],$$

(2)

$$V_a = E_{ref} - \Psi_0 + \chi^{sol} - \frac{\Phi_S}{q} + \frac{Q_{dep}}{C_{eff}},$$

(3)

$$Q_0 = \frac{2\varepsilon_{si}}{\beta R_{NW}},$$

(4)

where $1/C_{eff} = \eta R_{NW}/2\varepsilon_{si}$, $C_{ox} = \varepsilon_{ox}/[(R_{NW} + t_{ox})\ln(1+t_{ox}/R_{NW})]$ is the native oxide capacitance [10], η is the interface charge parameter [11], Q_m is the mobile charge density per unit gate area, $Q_{dep} = qN_a R_{NW}/2$ is the depletion charge density per unit gate area, E_{ref} is the constant potential of the reference electrode, Ψ_0 is the electrolyte/insulator interface potential (sensor surface potential) that is shown to be a function of the solution pH, χ^{sol} is the surface dipole potential of the solvent, and Φ_S is the workfunction of silicon. Q_m in Eq. (2) can be solved by the numerical Newton-Raphson iterative method. Eqs. (2)-(4) are the same as the analytic model for the p-type SiNWFT [12] except for E_{ref}, Ψ_0, and χ^{sol} in the threshold voltage of Eq. (3), and they are useful to the surrounding-gate nano-scaled devices [9, 12].

When pH solution is changed, protonation or deprotonation of the modified surface with both NH$_2$ and...
SiOH groups can change the surface charge density, described by the site-binding model [13], and then it can change the thickness of the depletion region in the Si-NW. Since the surface charge acts as an additional gate, the p-type SiNW FET is depleted if the pH is decreased (the proton concentration increased). Using the ISFET model [1] in which the threshold shift due to variation of pH solution is modeled, the threshold voltage in our model includes the electrolyte/insulator interface potential Ψ_0 that depend on the pH value of the electrolyte solution. By solving the nonlinear Poisson–Boltzmann equation, Ψ_0 can be expressed as [8, 10]

$$\Psi_0 = \frac{2}{\beta} \left[\frac{2.303 \alpha \log pH - pK_a}{2} \left\{ \ln(I_0) + c \right\} \right], \quad (5)$$

where I_0 is the ion concentration in molar units, α is the dimensionless sensitivity parameter, $pK_a = -\log\gamma(K_a)$, K_a is the dissociation constant, and

$$c = \ln \left[\frac{qN_F}{\sqrt{2k_T \tau_{eff} N_{av}}} \right], \quad (6)$$

where N_F is the density of the site functionalization groups, ϵ_{av} is the dielectric constant of the electrolyte, and N_{av} is Avogadro’s constant.

An analytical drain–current expression cannot be obtained by integrating the current continuity equation owing to the lack of an analytical integral solution of the last term in Eq. (2). An analytical drain–current model can be obtained by using the following decoupling method of mobile charge [9]: $Q_m = Q_{m \, dep} + Q_{m \, cor}$, where $Q_{m \, dep}$ is the mobile charge in the fully-depleted and semi-depleted regions ($V_{gs} > V_{FB}$), and $Q_{m \, cor}$ is the complementary mobile added to $Q_{m \, dep}$. $Q_{m \, dep}$ and $Q_{m \, cor}$ are independently obtained from the asymptotic behavior of Eq. (2):

$$V_{gs} - V_{TH \, dep} - \eta V_{ch} = -\frac{Q_{m \, dep}}{C_{eff}} - \frac{\eta}{\beta} \ln \left(\frac{Q_{m \, dep}}{Q_0} \right), \quad (7)$$

$$V_{gs} - V_{TH \, cor} - \eta V_{ch} = -\frac{Q_{m \, cor}}{C_{cor} - C_{eff}} - \frac{\eta}{\beta} \ln \left(\frac{Q_{m \, cor}}{Q_0} \right), \quad (8)$$

where $V_{TH \, dep}$ and $V_{TH \, cor}$ are the threshold voltages for $Q_{m \, dep}$ and $Q_{m \, cor}$ in the depletion-mode Si-NW region, respectively, as follows [12]:
where μ_{eff} is the effective hole mobility; L is the effective channel length; $Q_{m, \text{dep}}$ and $Q_{m, \text{dep,d}}$ are $Q_{m, \text{dep}}$ at $V_{ch} = 0$ V and $V_{ch} = V_{ds}$, respectively; and $Q_{m, \text{cor}}$ and $Q_{m, \text{cor,d}}$ are $Q_{m, \text{cor}}$ at $V_{ch} = 0$ V and $V_{ch} = V_{ds}$, respectively.

To implement the current model of the Si-NW pH sensor into SmartSpice [14], it can be employed with Verilog-A language on the basis of Eqs. (7)-(11) [15]. The threshold voltage shift due to variation of pH solution is modeled and implemented with the Verilog-A used in [15]. The SPICE-compatible model of the Si-NW pH sensor can be used for designing intelligent pH sensors or micro-nanosystems that are based on Si-NW pH sensors.

III. Model Verifications

To demonstrate the validity of our model, models of the Si-NW pH sensor and its SiNWFET are compared with the experimental data of a Si-NW pH sensor [2, 15] and the results simulated from the 3D device simulator, ATLAS [16], respectively.

Fig. 3 shows the drain-current–side-gate-voltage (I_{ds}–V_{gs}) characteristics of a depletion-mode p-type SiNWFET at $V_{gs} = 0.01$ V as a function of different radii. Fig. 4 shows the drain-current–drain-voltage (I_{ds}–V_{ds}) characteristics of a depletion-mode p-type SiNWFET at $R_{SW} = 10$ nm for different side-gate voltages. The device parameters in this simulation are as follows: $L = 1$ mm, $t_{ox} = 1$ nm, $N_d = 1 \times 10^{19}$ cm$^{-3}$, $\mu_{eff} = 37$ cm2/V·s, $\eta = 1$, and $T = 300$ K. Symbols and lines denote the experimental data and the model calculations, respectively.

Fig. 5 shows a graph of I_{ds} versus V_{gs} for different pH values for a test electrolyte used in the Si-NW pH sensor [15]. In this device, Al$_2$O$_3$ is used instead of the native oxide layer. The device parameters in this simulation are as follows: $L = 6$ mm, $R_{SW} = 80$ nm, $t_{ox} = 20$ nm, $N_d = 1 \times 10^{18}$ cm$^{-3}$, and $T = 300$ K. The extracted parameters are the mobility $\mu_{eff} = 193$ cm2/V·s, $\eta = 1$, $\alpha = 0.38$, $I_0 = 10^{-3}$ M, $\chi^\text{ref} = 0.003$ V [17], and $E_{\text{ref}} = 4.055$ V. The device parameters are similar to those extracted from Verilog-A model in [15]. As shown in Fig. 5, the model calculations agree well with the experimental data (symbols).

Fig. 6 shows a graph of the zero-bias differential conductance versus V_{gs} at $pH = 7$ for a test electrolyte used in the Si-NW pH sensor [2]. The device parameters in this simulation are as follows: $L = 2$ mm, $R_{SW} = 5$ mm, $t_{ox} = 1.5$ nm, $N_d = 1 \times 10^{18}$ cm$^{-3}$, and $T = 300$ K. The extracted parameters are the mobility $\mu_{eff} = 26$ cm2/V·s, $\eta = 3$, $\alpha = 0.33$, $I_0 = 10^{-3}$ M, $\chi^\text{ref} = 0.003$ V [17], and $E_{\text{ref}} = 4.754$ V. Fig. 7 shows the graph of the zero-bias differential conductance versus pH for three values of V_{gs} for the same device parameters used to plot Fig. 6. The
The extracted parameters were the same as those shown in Fig. 6. As shown in Figs. 6 and 7, the model calculations (lines) agree well with the experimental data (symbols). As the pH increases, the zero-bias conductance increases in the depletion-mode Si-NW pH sensor, as shown in Fig. 7, whereas it decreases in the inversion-mode SiNW pH sensor [5, 8]. Because the resulting pH-dependent electrical surface charge of the insulator leads to the modulation of the channel conductance of the Si-NW pH sensor, it is possible to determine the pH of the test solution by quantitatively measuring the changes in the channel conductance.

IV. CONCLUSIONS

In conclusion, we presented a compact analytic model of a depletion-mode Si-NW pH sensor. This drain current model was obtained by using the Pao-Sah integral and the continuous charge-based model which was derived by applying the parabolic potential approximation to Poisson’s equation in the cylindrical coordinate system. The threshold–voltage shift in the current model was obtained by solving the nonlinear Poisson–Boltzmann equation in the electrolyte. The simulation results obtained from the proposed model agree well with the simulation results of the 3D device simulation and the experimental data. Because advanced physical effects such as short-channel and quantum effects are not included in the proposed model, it is necessary to extend the model by including these effects. The proposed model can easily be applied to commercially available electronic design automation (EDA) tools that are commonly used for integrated circuit design and simulations.

ACKNOWLEDGMENTS

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2011-0009829).

REFERENCES

Yun Seop Yu received the B.S., M.S., and Ph. D. degrees in electronics engineering from Korea University, Seoul, Korea, in 1995, 1997, and 2001, respectively. From 2001 to 2002, he worked as a guest researcher at the Electronics and Electrical Engineering Laboratory in NIST, Gaithersburg, MD. He is now a full Professor with the Department of Electrical, Electronic and Control Engineering at Hankyong National University, Anseong, Korea. His main research interests are in modeling various nano-devices for efficient circuit simulation, and future memory, logic, and sensor designs using those devices. He is also interested in the fabrication and characterization of various nano devices, as well as their future applications in memory, logic, and sensors.