Sub-10 nm Ge/GaAs Heterojunction-Based Tunneling Field-Effect Transistor with Vertical Tunneling Operation for Ultra-Low-Power Applications

Young Jun Yoon1, Jae Hwa Seo1, Seongjae Cho2, Hyuck-In Kwon3, Jung-Hee Lee3, and In Man Kang\textsuperscript{4,*}

Abstract—In this paper, we propose a sub-10 nm Ge/GaAs heterojunction-based tunneling field-effect transistor (TFET) with vertical band-to-band tunneling (BBT) operation for ultra-low-power (LP) applications. We design a stack structure that is based on the Ge/GaAs heterojunction to realize the vertical BBT operation. The use of vertical BBT operations in devices results in excellent subthreshold characteristics with a reduction in the drain-induced barrier thinning (DIBT) phenomenon. The proposed device with a channel length (L_{cb}) of 5 nm exhibits outstanding LP performance with a subthreshold swing (S) of 29.1 mV/dec and an off-state current (I_{off}) of 1.12×10^{-7} A/μm. In addition, the use of the high-k spacer dielectric HfO$_{2}$ improves the on-state current (I_{on}) with an intrinsic delay time (τ) because of a higher fringing field. We demonstrate a sub-10 nm LP switching device that realizes a good S and lower I_{off} at a lower supply voltage (V_{DD}) of 0.2 V.

Index Terms—Tunneling field-effect transistor (TFET), low-power (LP) performance, short-channel effect (SCE), Ge/GaAs heterojunction, vertical tunneling operation

I. INTRODUCTION

For several decades, there have been rapid developments in the area of nano-scale electronic devices, and the miniaturization of devices has increased the density and speed of integrated circuits (ICs) and systems. To satisfy the increasing need for low-power (LP) consumption and low supply voltage (V_{DD}) increases in LP applications, devices are required to have excellent subthreshold characteristics. Conventional metal-oxide-semiconductor field-effect transistors (MOSFETs) are unable to have subthreshold swing (S) below 60 mV/dec because of physical limitations and their principle of operation. Further, for short channel MOSFETs, it is difficult to decrease the subthreshold current because of drain-induced barrier lowering (DIBL) as one of the short-channel effect (SCE). Recently, tunneling FETs (TFETs) have been considered as promising candidates for next-generation LP devices because TFETs that are based on band-to-band tunneling (BBT) operations can realize attractive advantages such as lower off-state current (I_{off}) and superior S [1-5]. However, as the channel length (L_{cb}) decreases below 10 nm, S and I_{off} values of TFETs are degraded drastically because of the drain-induced barrier thinning (DIBT) phenomenon, as well as direct tunneling between the source and drain, which is caused by the SCE in TFETs [6, 7]. Therefore, it is difficult for conventional TFETs with L_{cb} values below 10 nm to obtain outstanding LP performance, and a novel structure and TFET operation principle is required to realize a sub-10 nm LP device.
In this work, we propose and examine a Ge/GaAs heterojunction-based TFET with a vertical tunneling operation to realize a good sub-10 nm LP device. To evaluate the LP performance, we obtain device characteristics such as S, I_{off} and DIBT, and we also compare and analyze the values obtained using a conventional TFET. Moreover, we investigate the effect of spacer dielectrics on the vertical tunneling current in order to improve current performance and intrinsic delay time (τ).

II. DEVICE STRUCTURE AND DESIGN

Fig. 1 shows a schematic cross section of the proposed device structure. The proposed structure is a stack structure consisting of Ge and GaAs layers. A high-quality Ge/GaAs heterojunction layer can be formed by molecular beam epitaxy (MBE) or metal-organic chemical vapor deposition (MOCVD) systems because of a small lattice mismatch. The Ge/GaAs heterojunction has advantages in terms of the on-state current (I_{on}) of TFET. The lower energy band-gap (E_g) and lower electron effective mass (m_e^*) of the Ge material can increase the tunneling current with a high tunneling rate [8, 9]. In addition, because the GaAs material has a higher electron mobility, this property can also augment I_{on} by improving the drift current [10]. The thicknesses of the Ge layer (t_{Ge}) and GaAs layer (t_{GaAs}) are 6 nm and 4 nm, respectively. The doping concentrations of the Ge layer (n_{Ge}) and GaAs layer (n_{GaAs}) are 5×10^{19} cm$^{-3}$ (p-type) in the source and channel regions, and 1×10^{18} cm$^{-3}$ (n-type) in the drain region. Further, the doping concentrations of the GaAs layer are 5×10^{19} cm$^{-3}$ (n-type) in the channel region and 1×10^{18} cm$^{-3}$ (n-type) in the source and drain regions. The channel doping concentrations were designed such that they increase the vertical tunneling probability that exists between the p-type Ge and n-type GaAs channel layers. The gate insulator with a thickness (t_{ox}) of 2 nm and the spacer dielectric consist of hafnium oxide (HfO$_2$), which enhances the current performances because of a higher gate controllability.

We obtained device performance by using the device simulator SILVACO ATLAS [11]. To increase the simulation accuracy, we applied various models including non-local BBT, Shockley-read-hall (SRH) recombination, and trap-assisted tunneling (TAT). The application of the TAT model is significant when simulating TFETs because the subthreshold characteristics of TFETs are influenced by the TAT mechanism that takes place through the trap or defect states in materials [12, 13].

III. RESULTS AND DISCUSSION

Fig. 2 shows the transfer characteristics of the proposed devices with different L_{ch} values at a V_{DS} of 0.2 V depending on the tunneling component.

Fig. 1. Schematic cross-section of the proposed device structure.

![Fig. 1. Schematic cross-section of the proposed device structure.](image1)

![Fig. 2. Transfer characteristics of the proposed device with different L_{ch} values at a V_{DS} of 0.2 V depending on the tunneling component.](image2)
place through the thin tunneling barrier. The transfer curve for the vertical tunneling current shows excellent subthreshold characteristics although L_{ch} is reduced to 5 nm because the vertical tunneling mechanism is unaffected by DIBT. As L_{ch} decreases, the vertical tunneling current decreases slightly because the tunneling area is involved in L_{ch}. In order to confirm accurately the effect of L_{ch} on the vertical tunneling current, the onset voltage for devices with different L_{ch} has been designed as a V_{GS} of 0 V by controlling a metal gate work-function. In terms of lateral tunneling, the transfer curves show lower current performance. As shown in Fig. 3(b), lateral tunneling takes place because of the BBT between the p⁺ Ge channel and the n⁻ Ge drain regions. As V_{GS} increases, the tunneling barrier between the p⁺ Ge channel and the n⁻ Ge drain regions becomes thinner because of fringing field, and the thinning of the tunneling barrier increases lateral current. However, when a high V_{DS} is applied, lateral current at off-state increases because lateral tunneling barrier is influenced by V_{DS}. In other words, lateral tunneling operation is affected by DIBT phenomenon. Thus, in order to minimize the lateral tunneling current with DIBT phenomenon, we designed the device such that is has a lower doping concentration in the Ge drain region. As a result, the proposed device obtained a lower lateral current at both on- and off-state because the tunneling barrier is increased by the lower doping concentration in the Ge drain region. Fig. 4 shows the transfer curves of the proposed device and a conventional TFET. For comparison with the proposed device, we designed the conventional TFET as a Ge/GaAs heterojunction-based nanowire structure with an L_{ch} value of 5 nm and t_{ox} of 2 nm. We chose a nanowire structure to minimize the SCE with a higher gate controllability. The doping concentrations of the Ge source, GaAs channel, and GaAs drain regions are 5×10^{19} (p-type), 1×10^{16} (p-type), and 5×10^{18} cm⁻³ (n-type), respectively. The transfer characteristic of the conventional TFET exhibits a higher I_{off} and more degenerated S compared to that of the proposed TFET. This result indicates that the subthreshold characteristics of the conventional TFET are degraded because of tunneling between the source and drain regions, which is caused by the thin channel layer. On the other hand, the proposed TFET exhibited excellent subthreshold characteristics because although L_{ch} is 5 nm, the dominant tunneling current in the

Fig. 3. (a) Energy band diagrams in the Ge and GaAs channel regions, (b) Energy band diagrams in the Ge channel and Ge drain regions at on- and off-states. Energy band diagrams are extracted following the A-A' and B-B' line in Fig. 1(a).

Fig. 4. Transfer curves in the proposed TFET and the conventional TFET with a nanowire structure. Both devices are designed as Ge/GaAs heterojunction-based structures with an L_{ch} value of 5 nm and t_{ox} of 2 nm.
The proposed TFET is the vertical tunneling operation. Fig. 5(a) shows a comparison of S and DIBT for the proposed TFET and the conventional TFET as a function of L_{ch}. We obtained S as the inverse slope between the point of the off-state voltage and the point of the threshold voltage (V_{th}) in the transfer curve and defined V_{th} as V_{GS} for a drain current (I_{DS}) of 10^{-7} A/μm. We also obtained DIBT by finding the rate of change of V_{th} when V_{DS} was within the range of 0.2 V and 0.05 V [6]. While the values of S and DIBT in the conventional TFET increased dramatically as L_{ch} decreased from 15 nm to 5 nm, the corresponding values in the S and DIBT in the proposed TFET exhibited small changes because of the vertical tunneling operation. The value of S in the proposed device increased slightly, and this was due to a reduction of vertical tunneling area. The proposed TFET for an L_{ch} of 5 nm has a higher I_{on}/I_{off} ratio of 1.27×10^7 with a lower I_{off}, as shown in Fig. 5(b). These characteristics demonstrate the superiority of the proposed device for LP performance.

Fig. 6(a) shows transfer curves for devices with the different spacer dielectrics SiO$_2$ and HfO$_2$. The device with spacer dielectric HfO$_2$ has a higher vertical and lateral tunneling current than that with SiO$_2$ because of a difference in the fringing field effect. The fringing field effect is dependent on the spacer dielectric, and a high

Fig. 5. A comparison of device characteristics in the proposed TFET and the conventional TFET with a nanowire structure as a function of L_{ch} (a) S and DIBT, (b) I_{off} and I_{on}/I_{off}.

Fig. 6. (a) Transfer curves, (b) simulated contour plots of electron vertical BBT rate of devices for different spacer dielectrics SiO$_2$ and HfO$_2$.
The spacer dielectric permittivity increases the fringing field effect [14]. As shown in Fig. 6(b), the source-side spacer dielectric HfO$_2$ extended the vertical tunneling area because vertical tunneling between p$^+$ Ge and the n$^-$ GaAs source regions was occurred by the higher fringing field.

Therefore, the device with HfO$_2$ has an enhanced vertical tunneling current. In terms of the lateral tunneling, the high fringing field also results in an increase in the lateral tunneling current by lowering the energy band in the drain region.

Fig. 7(a) shows the gate capacitances of devices with both SiO$_2$ and HfO$_2$. The device with HfO$_2$ realized the higher gate capacitance (C_{gg}) with an increase in the gate-to-drain capacitance (C_{gd}) and gate-to-source (C_{gs}). C_{gs} is the total gate capacitance as a sum of C_{gd} and C_{gs}. The increases in C_{gs} and C_{gd} were due to the higher permittivity in the spacer dielectric because high-k spacer dielectrics increase the outer fringe capacitance (C_{of}) component [15]. Although the device with HfO$_2$ has the higher C_{gg}, we obtained a lower τ because of the higher current performance, as shown in Fig. 7(b). The value of τ is proportional to the value of C_{gg}/I_{on} [16]. As a result, the device with HfO$_2$ exhibited a lower τ of 0.58 ps for a V_{gs} of 0.5 V.

IV. CONCLUSIONS

We proposed a Ge/GaAs heterojunction-based short-channel TFET with vertical tunneling operation that has an excellent LP performance. The proposed device was unaffected by the impact of the DIBT phenomenon due to vertical tunneling operation. Moreover, by designing a high-k spacer dielectric, we obtained an improved vertical tunneling current as well as a lower τ. The proposed device with $L_{ch} = 5$ nm exhibited excellent characteristics, including an I_{on} of 142 μA/μm, S of 29.1 mV/dec, I_{on}/I_{off} ratio of 1.27×10^7, and τ of 0.58 ps. We confirmed that the proposed device is suitable for ultra LP devices at V_{DS} of 0.2 V.

ACKNOWLEDGMENTS

This work was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST) under Grants 2013-011522 and in part by Samsung Electronics Corporation. This work was also supported by Global Ph.D. Fellowship Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2013H1A2A1034363).

REFERENCES

Young Jun Yoon received the B.S. degree in electrical engineering from the School of Electronics Engineering, Kyungpook National University, Daegu, Korea, in 2013. He is currently working toward the Ph.D. degree in electrical engineering, also at the School of Electronics Engineering, Kyungpook National University. His research interests include the simulation, fabrication, and characterization of nanoscale tunneling FET, GaN-based transistors, and GaN-based circuits.

Jae Hwa Seo received the B.S. degree in electrical engineering from the School of Electronics Engineering (SEE), Kyungpook National University (KNU), Daegu, Korea, in 2012. He is currently working toward the Ph.D. degree in electrical engineering with the School of Electronics Engineering (SEE), Kyungpook National University (KNU). His research interests include the design, fabrication, and characterization of nanoscale CMOS, tunneling FET, III-V compound transistors, and junctionless silicon devices.
Seongjae Cho received the B.S. and Ph.D. degrees in electronic engineering from Department of Electrical Engineering and Computer Science, Seoul National University, Seoul, Korea, in 2004 and 2010, respectively. He worked as an Exchange Researcher at the National Advanced Industrial Science and Technology (AIST), Tsukuba, Japan, in 2009. He worked as a Postdoctoral Researcher at Seoul National University in 2010, and at the Department of Electrical Engineering, Stanford University, from 2010 to 2013. He has been working as an Assistant Professor at the Department of Electronic Engineering and the Department of IT Convergence Engineering, Gachon University, Seongnam-si, Korea, since 2013. His main research interests include nanoscale CMOS devices, emerging memory technologies, photonic devices, and integrated systems.

Jung-Hee Lee received the B.S. and M.S. degrees in electronic engineering from Kyungpook National University, Daegu, in 1979 and 1983, respectively, the M.S. degree in electrical and computer engineering from Florida Institute of Technology, Melbourne, in 1986, and the Ph.D. degree in electrical and computer engineering from North Carolina State University, Raleigh, in 1990. His doctoral research concerned carrier collection and laser properties in monolayer-thick quantum-well heterostructures. From 1990 to 1993, he was with the Compound Semiconductor Research Group, Electronics and Telecommunication Research Institute, Daejeon, Korea. Since 1993, he has been a Professor with the School of Electronics Engineering (SEE), Kyungpook National University, Daegu. He is the author or coauthor of more than 200 publications on semiconductor materials and devices. His current research is focused on the growth of nitride-based epitaxy, the fabrication and characterization of gallium-nitride-based electronic and optoelectronic devices, atomic layer epitaxy for metal-oxide-semiconductor applications, and characterizations and analyses for the 3-D devices such as fin-shaped FETs.

Hyuck-In Kwon received the B.S., M.S., and Ph.D. degrees in electrical engineering from Seoul National University, Seoul, in 1999, 2001, and 2005, respectively. From August 2004 to March 2006, he was a Research Associate with the University of Illinois, Urbana. In 2006, he joined the System LSI Division, Samsung Electronics Company, Korea, where he was a Senior Engineer with the Image Development Team. From September 2007 to February 2010, he worked for the School of Electronic Engineering in Daegu University as a Full-Time Lecturer and an assistant professor. Since 2010, he has been with Chung-Ang University, Seoul, Korea, where he is currently an associate professor in the School of Electrical and Electronics Engineering. His research interests include CMOS active pixel image sensors, oxide thin-film transistors, GaN-based power devices, and silicon nanotechnologies.

In Man Kang received the B.S. degree in electronic and electrical engineering from School of Electronics and Electrical Engineering, Kyungpook National University (KNU), Daegu, Korea, in 2001, and the Ph.D. degree in electrical engineering from School of Electrical Engineering and Computer Science (EECS), Seoul National University (SNU), Seoul, Korea, in 2007. He worked as a teaching assistant for semiconductor process education from 2001 to 2006 at Inter-university Semiconductor Research Center (ISRC) in SNU. From 2007 to 2010, he worked as a senior engineer at Design Technology Team of Samsung Electronics Company. In 2010, he joined KNU as a full-time lecturer of the School of Electronics Engineering (SEE). Now, he has worked as an assistant professor. His current research interests include CMOS RF modeling, silicon nanowire devices, tunneling transistor, low-power nano CMOS, and III-V compound semiconductors. He is a member of IEEE EDS.