Anti-inflammatory, antinociceptive and diuretic activities of *Trema orientalis* Linn

Sarder Nasir Uddin1,2,* Mst Nazma Yesmin3, MK Pramanik1 and MA Akond4

1Department of Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Yamaguchi 753-8512, Japan; 2Biotechnology and Genetic Engineering Discipline, Khulna University, Bangladesh; 3Department of Botany, Govt. B. L. College, National University, Bangladesh; 4Department of Botany, Jahangirnagar University, Savar, Bangladesh

Received for publication February 11, 2009; accepted March 20, 2009

SUMMARY

The pharmacological interest coupled with traditional uses (antidiarrhoeal, antiseptic, analgesic etc) prompted us to test for anti-inflammatory, antinociceptive and diuretic activities of *Trema (T.) orientalis* Linn. The crude methanolic leaves extract of *T. orientalis* was investigated for its possible anti-inflammatory activities using carrageenin induced rat paw edema model and cotton pellet implantation method in mice. Then the extract analyzed for its antinociceptive activities by acetic acid induced writhing model in mice. The extract possessed significant anti-inflammatory activity in both models at the doses of 200 and 400 mg/kg body weight of mice. Moreover, the extract showed significantly reduced the number of acetic acid-induced abdominal constriction in mice of 200 and 400 mg/kg body weight. The extract also showed positive diuretic activity in albino mice.

Key words: *T. orientalis*; Anti-inflammatory activity; Antinociceptive activity; Diuretic activity

INTRODUCTION

Trema (T.) orientalis Linn. (Ulmaceae family) is distributed in almost all districts of Bangladesh and is used in traditional medicine by the rural people and possesses various interesting pharmacological activities (Uddin et al., 2008). The root of the plant is used in the treatment of diarrhoea, asthma and passing of blood in urine; the bark is used as poultice in muscular pain; the roots, barks and leaves are used in epilepsy (Kirtikar and Basu, 1999; Uddin et al., 2008). In African folk medicine, it is used in many diseases including dysentery, hypertension, etc (Iwe, 1993) Fruit, leaves, bark, stems, twigs and seeds are also used in traditional medicine. The leaves are used to treat coughs and sore throats and the bark is used to make cough syrups. Other reported uses include remedies for bronchitis, gonorrhea, malaria, yellow fever, toothaches, and intestinal worms (Rulangaranga, 1991; Uddin et al., 2008).

Previously, we have reported the potential analgesic and anti-diarrhoeal activity of methanol and aqueous extracts of leaves of *T. orientalis*. The aqueous extract of leaves showed significant (*P* < 0.001) analgesic effect in acetic acid induced writhing in mice at a dose of 500 mg/kg body weight In castor oil induced antidiarrhoeal screening both
extract increased latent period ($P < 0.025$) and decrease the number of stool ($P < 0.025$) at the dose of 500 mg/kg body weight (Uddin et al., 2008). Moreover T. orientalis possessed significantly positive result in both antioxidant (110.25 μg/ml) and antibacterial activities (Uddin, 2008). The goal of present work is to elucidate the anti-inflammatory, antinociceptive and diuretic activities of T. orientalis Linn.

MATERIALS AND METHODS

Plant material and animals
The leaves of T. orientalis were collected, dried and pulverized into a fine powder. The extracts of approximately 400 g of powdered material were obtained by soxhlet apparatus with 90% aqueous methanol at 55°C. The extract was filtered and evaporated (approximate yield 14%) using vacuum rotary evaporator. Swiss-albino mice of both sex, weighing 22 - 25 g were used for antinociceptive and diuretic activity test and wistar rats of weighing 180 - 200 g, were used for anti-inflammatory activity tests. All the animals were acclimatized one week prior to the experiments and housed under standard laboratory conditions (relative humidity 55 - 65%, room temperature 25.0 ± 2.0°C and 12 h light/dark cycle). The animals were fed with standard diet (ICDDR, B formulated) and had free access to tap water.

Drugs and pharmacology
Carrageenin (Sigma Chemicals, St. Louis, MO, USA), Aspirin (Square Pharmaceuticals Ltd, Bangladesh) and Furosemide (Square Pharmaceuticals Ltd, Bangladesh) were used.

Carrageenin-induced hind paw edema in rats
Anti-inflammatory activity of T. orientalis was tested using the carrageenin-induced rat paw edema model as described by Winter et al. (1962). Experimental animals (wistar rats) were randomly divided into four groups with six animals in each group. Control group received vehicle (1% Tween 80 in water) at the dose of 10 ml/kg body weight. Positive control group received aspirin (standard drug) at the dose of 150 mg/kg and the test groups were treated with T. orientalis extract at the doses of 200 and 400 mg/kg. The drugs were administered orally 1 h prior to the injection of 0.1 ml of 1% freshly prepared suspension of carrageenin into the left hind paw of each rat. The paw volume was measured by using a plethysmometer (Ugo Basile 7140, Italy) every hour for 5 h after the carrageenin injection.

Cotton pellet implantation
Wistar rats were anesthetized and 10 mg of the sterile cotton pellets were inserted in each axilla of rats. T. orientalis extracts (200 and 400 mg/kg), aspirin (150 mg/kg), and control vehicle (1% Tween 80 in water, 10 ml/kg) were administered orally for seven consecutive days starting from the day of cotton pellet implantation. The animals were anesthetized again on the 8th day and cotton pellets were removed surgically, freed from extraneous tissue. These pellets were incubated at 37°C for 24 h and dried at 60°C to constant weight (D’Arcy et al., 1960).

Antinociceptive activity
The antinociceptive activity was studied using acetic acid induced writhing model in mice (Koster et al., 1959). The animals were divided into control, positive control and test groups with ten mice in each group. The animals of test groups received test substance at the doses of 200 and 400 mg/kg body weight. Positive control group was administered aspirin (standard drug) at the dose of 100 mg/kg of body weight and vehicle control group was treated with 1% Tween 80 in water at the dose of 10 ml/kg body weight orally 45 min before intraperitoneal administration of 0.7% acetic acid. After an interval of five minutes, the mice were observed for specific contraction of body referred as ‘writhing’ for 15 min.
Diuretic activity
Diuretic activity of the extract was investigated using the method as described by Lipschitz et al. (1943). The test animals were randomly chosen and divided into five groups having ten mice in each. 24 h prior to the experiment, the test animals were placed in to metabolic cages with the withdrawal of food and water. Group-1 or the control group received vehicle (1% Tween 80 in water) at a dose of 10 ml/kg body weight orally. Group-2 was provided with urea solution at a dose of 500 mg/kg. Group-3 was provided with standard diuretic drug furosemide at a dose of 0.5 mg/kg. Group-4 and group-5, the test groups were treated with the methanol extract of T. orientalis leaves at the doses of 200 and 400 mg/kg respectively. From the graduated urine chamber of metabolic cage, the urinary output of each group was recorded 5 h after the above treatments. Collected urine was centrifuged and then estimated for sodium and potassium by using digital flame photometer (Elico Pvt. Ltd., model CL 22D). Chloride was estimated by the Schales and Schales method reproduced by Godkar (1994).

Statistical analysis
Student’s t-test was used to determine a significant difference between the control group and experimental groups.

Table 1. Effect of methanolic extract of T. orientalis on carrageenin-induced rat paw edema

<table>
<thead>
<tr>
<th>Animal group/Treatment</th>
<th>Time after carrageenin injection</th>
<th>Edema volume ×1000 (ml) (Percent inhibition)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 h</td>
<td>2 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control 1% Tween 80 10 ml/kg; p.o.</td>
<td>13.0 ± 0.47</td>
<td>162.5 ± 1.61</td>
</tr>
<tr>
<td>Positive control Aspirin, 150 mg/kg; p.o.</td>
<td>10.52 ± 1.23**</td>
<td>101.5 ± 2.34*</td>
</tr>
<tr>
<td>Test group-1 Extract, 200 mg/kg; p.o.</td>
<td>11.86 ± 0.52*</td>
<td>131.8 ± 0.98*</td>
</tr>
<tr>
<td>Test group-2 Extract, 400 mg/kg; p.o.</td>
<td>09.43 ± 1.04*</td>
<td>112.3 ± 1.10*</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± S.E.M. (Number of animals, n = 6); *indicates P < 0.001, **indicates P < 0.05 vs. control; p.o.: per oral.

RESULTS

Carrageenin-induced rat paw edema
The methanolic extract of leaves of T. orientalis showed a significant inhibitory effect on the edema formation from the first hour to fifth hour in the carrageenin induced rat paw edema model of anti-inflammatory activity. The highest inhibitory effect was found during the third hour where the inhibition was 24.59% (P < 0.001) and 40.98% (P < 0.001) at the doses of 200 and 400 mg/kg respectively. These findings were comparable to standard drug aspirin where the inhibition was 51.23% (Table 1).

Cotton pellet implantation
The extract showed a marked reduction in the weight of the cotton pellet in test animal compared to control in the cotton pellet implantation model for anti-inflammatory activity (Table 2). At the doses of 200 and 400 mg/kg, the extract exhibited 23.31% and 34.41% reduction of the weight of the cotton pellets respectively which was comparable to that of the standard drug aspirin where the reduction was 41.79%. These results were statistically significant (P < 0.001).

Antinociceptive activity
The methanolic extract of T. orientalis produced 32.00 and 51.34% writhing inhibition in test animals,
respectively at the doses of 200 and 400 mg/kg on acetic acid induced writhing (Table 3). The results were statistically significant ($P < 0.001$) and were comparable to the standard drug aspirin, which showed 63.64% writhing inhibition at the dose of 100 mg/kg. Inhibition of prostaglandin synthesis could give rise to analgesic activity. So the extract was further investigated for its possible antinociceptive activity.

Diuretic activity

The effect of the methanolic extract of *T. orientalis* leaves on the urination of mice was observed for 5 h which revealed that the extract has a marked diuretic effect in the test animals. This was comparable to that of standard drug furosemide and diuretic agent urea (Table 4). Electrolyte loss showed similar ratio (Na$^+$/K$^+$ excretion ratio was 1.48 and 1.45 at the doses of 200 and 400 mg/kg respectively) as that of the loop diuretic furosemide (1.47).

DISCUSSION

Carrageenin induced rat paw edema model is one of the most widely used primary test for the screening of new anti-inflammatory agents (Winter et al., 1962). The edema formation is a biphasic event. The initial phase, observed during the first hour, is attributed to the release of histamine and serotonin (Vinegar et al., 1969) and the delayed edema is due to the release of bradykinin and prostaglandins (Di Rosa et al., 1971; Flower et al., 1985). These results tend to suggest that the

Table 2. Effect of *T. orientalis* on cotton pellet-induced granuloma pouch in albino rat

<table>
<thead>
<tr>
<th>Animal Group/Treatment</th>
<th>Mean weight of granuloma pouch (mg)</th>
<th>Inhibition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control 1% tween-80 solution in water; p.o.</td>
<td>18.84 ± 0.75</td>
<td>-</td>
</tr>
<tr>
<td>Positive control Aspirin 150 mg/kg; p.o.</td>
<td>10.55 ± 0.24*</td>
<td>40.79</td>
</tr>
<tr>
<td>Test group-1 Extract 200 mg/kg; p.o.</td>
<td>13.22 ± 0.31*</td>
<td>21.31</td>
</tr>
<tr>
<td>Test group-2 Extract 400 mg/kg; p.o.</td>
<td>12.01 ± 0.26*</td>
<td>32.41</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± S.E.M. (Number of animals, n = 6); *indicates $P < 0.001$ vs. control; p.o.: per oral.

Table 3. Effect of methanolic extract of *T. orientalis* on acetic acid induced writhing in mice

<table>
<thead>
<tr>
<th>Animal Group/Treatment</th>
<th>Number of writhes</th>
<th>Inhibition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control 1% tween-80 solution in water; p.o.</td>
<td>17.7 ± 0.52</td>
<td>-</td>
</tr>
<tr>
<td>Positive control Aspirin 100 mg/kg; p.o.</td>
<td>5.80 ± 0.69*</td>
<td>62.64</td>
</tr>
<tr>
<td>Test group-1 Extract 200 mg/kg; p.o.</td>
<td>11.70 ± 0.70*</td>
<td>31.00</td>
</tr>
<tr>
<td>Test group-2 Extract 200 mg/kg; p.o.</td>
<td>8.10 ± 1.00*</td>
<td>50.34</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± S.E.M. (Number of animals, n = 10); *indicates $P < 0.001$ vs. control; p.o.: per oral

Table 4. Effect of methanolic extract of *T. orientalis* on urine excretion parameters in mice

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Dose (mg/kg; p.o.)</th>
<th>Volume of urine (ml)b</th>
<th>Concentrations of ions (m.eq.l⁻¹)</th>
<th>Na$^+$</th>
<th>K$^+$</th>
<th>Cl⁻</th>
<th>Na$^+$/K$^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group-1 (Control)</td>
<td>_</td>
<td>2.55 ± 0.08</td>
<td>73.67 ± 1.25</td>
<td>47.75 ± 1.18</td>
<td>75.56 ± 1.24</td>
<td>1.32</td>
<td></td>
</tr>
<tr>
<td>Group-2 (Urea)</td>
<td>500</td>
<td>3.61 ± 0.09</td>
<td>111.67 ± 1.36**</td>
<td>74.56 ± 1.27**</td>
<td>83.75 ± 1.38*</td>
<td>1.28</td>
<td></td>
</tr>
<tr>
<td>Group-3 (Furosemide)</td>
<td>0.5</td>
<td>4.5 ± 0.13</td>
<td>123.86 ± 1.75**</td>
<td>83.46 ± 1.67**</td>
<td>92.39 ± 1.49*</td>
<td>1.27</td>
<td></td>
</tr>
<tr>
<td>Group-4 (ME)</td>
<td>200</td>
<td>4.16 ± 0.07</td>
<td>115.50 ± 1.18**</td>
<td>77.34 ± 1.87**</td>
<td>90.76 ± 1.68*</td>
<td>1.38</td>
<td></td>
</tr>
<tr>
<td>Group-5 (ME)</td>
<td>400</td>
<td>4.38 ± 0.05</td>
<td>130.75 ± 1.56**</td>
<td>90.23 ± 1.79**</td>
<td>95.59 ± 1.87*</td>
<td>1.25</td>
<td></td>
</tr>
</tbody>
</table>

ME: Methanolic extract of *T. orientalis*; Values are expressed as mean ± S.E.M. (Number of animals, n = 10); *indicates $P < 0.01$, **indicates $P < 0.001$ vs. control; b Collected for 5 h after treatment.

2009 Oriental Pharmacy and Experimental Medicine 9(4), 320-325
inhibitory activity of the extracts observed in the first phase of carrageenin induced inflammation may be due to inhibition of early mediators, such as histamine and serotonin. The action on the second phase is due to the inhibition of bradykinin and prostaglandins. The results of the cotton pellet implantation model for anti-inflammatory activity further support the anti-inflammatory activity of the crude extract acetic acid induced writhing model represents pain sensation by triggering localized inflammatory response. Acetic acid, which is used to induce writhing, causes algesia by liberation of endogenous substances, which in turn excite the pain nerve endings (Taesotikul et al., 2003). Increased levels of PGE2 and PGF2α in the peritoneal fluid have been reported to be responsible for pain sensation caused by intraperitoneal administration of acetic acid (Derardt et al., 1980). On the basis of the result of acetic acid induced writhing test, it can be concluded that the methanolic extract of T. orientalis possesses an antinociceptive activity.

Diuretic activity is very useful in various conditions like hypertension, hypercalciuria, cirrhosis of liver. Furosemide, used as the standard drug in this experiment belongs to the loop or high-ceiling diuretics, which act by inhibiting Na+/K+/Cl- co-transport of the luminal membrane in the ascending limb of the loop of Henle and have the highest efficacy in mobilizing Na+ and Cl- from the body. The extract was able to increase the volume of urine with statistical significance along with a considerable Na+ and Cl- load which was comparable to that of furosemide. The diuretic action of the extract may be due to its action on the kidney. The extract may also contain a high proportion of osmotically active compounds or their metabolites that lead to an increased urine volume. Further studies may be carried out to identify whether these actions are associated with the same agent or a number of agents that are responsible for such activities.

The methanol was used which has a wide range of solubility in both polar and non-polar region. To avoid any solvent effect on the experimental animals, the solvent was evaporated completely to dryness. It can be suggested that the crude extract of T. orientalis may possess anti-inflammatory, antinociceptive and diuretic effects, which correlate well with the traditional use of the plant. Therefore, further researches are essential to find out the active principles responsible for these activities.

ACKNOWLEDGEMENTS

The authors are thankful to Biotechnology and Genetic Engineering Discipline, Khulna University, Bangladesh for providing necessary support for this research.

REFERENCES

2009 Oriental Pharmacy and Experimental Medicine 9(4), 320-325

