Abstract Control Theory for continuous-time system has been well developed. Due to the development of computer technology, digital control scheme are employed in many areas. When delays are in control systems, it is hard to control the system efficiently. Delays by controller-to-actuator and sensor-to-controller deteriorate control performance and could possibly destabilize the overall system. In this paper, a new approximated discretization method and digital design for control systems with multiple state, input and output delays and a generalized bilinear transformation method with a tunable parameter are also provided, which can re-transform the integer time-delayed discrete-time model to its continuous-time model. Illustrative example is given to demonstrate the effectiveness of the developed method.

Key Words: time-delay, Hankel matrix, Singular Value Decomposition, Generalized Bilinear Transformation

I. Introduction

Time delay is one of the key factors influencing the overall system stability and performance. In particular, as the different effects of actuator, sensor and controller exist in control systems, delays are often formulated as state time delays, input time delays as well as output time delays in a continuous-time or discrete-time framework [1], [2-4]. To digitally simulate and design a continuous-time delayed control system, it is often required to obtain an equivalent discrete-time model. The digital modeling of continuous-time systems with input delays can be found in a standard textbook [5]. For improving the
performance of a continuous–time system with multiple time delays, several advanced control theories and practical design techniques have been proposed \cite{6-8}. Recently, a discretization method via the Chebyshev quadrature formula together with a linear interpolation method to construct an equivalent discrete–time model from the continuous time multiple time–delayed system was developed in \cite{9}. Despite the significant progress that has been made on continuous/discrete time systems with multiple time delays, yet the digital modeling of a continuous–time system with multiple fractional/integer time delays in state, input and output is far from fully explored \cite{4}. In this paper, we propose a new approximated discretization method and a generalized bilinear transformation method.

II. Modeling of Continuous–Time System using Generalized Bilinear Transformation

1. Problem formulation and model transformation

Consider a controllable, observable and stable \cite{3} continuous–time multiple–input, multiple–output (MIMO) system with multiple state, input and output time delays described by

\[
\dot{x}(t) = \sum_{i=0}^{J} A_i x(t - \delta_i) + \sum_{i=0}^{K} B_i u(t - \gamma_i),
\]

\[
y(t) = \sum_{i=0}^{M} C_i x(t - \zeta_i)
\]

where \(x(t) \in \mathbb{R}^n\) is the state with \(x(t) = \phi(t)\) for \(t \in [t_0 - \max \{\delta_i, \zeta_i\}, t_0]\), \(u(t) \in \mathbb{R}^m\) is the control input and \(y(t) \in \mathbb{R}^p\) is the output of the system. Here \(n\) is the order of the system, \(m\) is number of inputs and \(p\) is number of outputs of the system (1). Also, \(\delta_i \geq 0, \ i = 0, 1, \cdots, J\), are the state delays, \(\gamma_i \geq 0, \ i = 0, 1, \cdots, K\), are the input delays and \(\zeta_i \geq 0, \ i = 0, 1, \cdots, M\), are the output delays. These delays can be fractional or integer multiple of the sampling time \(T\). The function \(\phi(t) \in C[t_0 - \max \{\delta_i, \zeta_i\}, t_0]\) is a continuous vector–valued initial condition. The system matrices \((A_i, B_i, C_i)\) are sets of real matrices defined with \(A_i \in \mathbb{R}^{n \times n}, i = 0, 1, \cdots, J, B_i \in \mathbb{R}^{n \times m}, i = 0, 1, \cdots, K, C_i \in \mathbb{R}^{p \times n}, i = 0, 1, \cdots, M\).

The discrete–time model is shown in (2) as follows

\[
x(kT+ T) = Gx(kT) + Hu(kT)
\]

\[
y(kT) = Cx(kT)
\]

where \(G = \sum_{n=0}^{-1/2} R_n H_n S_n \sum_{n=0}^{-1/2} R_n\),

\[
H = \sum_{n=0}^{-1/2} S_n T_n E_m, \quad E_m = [I_0 0 \cdots 0],
\]

\[
\hat{C} = \beta C, \quad \hat{C} = E_p T_n \sum_{n=0}^{-1/2} E_p, \quad \sum_{n=0}^{-1/2} E_p = [I_0 0 \cdots 0],
\]

\[
\beta = \text{diag}(\sigma_1, \cdots, \sigma_n).
\]

\(\beta\) is a modification factor which can adjust the steady–state value of the system (2) to match the original continuous–time system (1).

After applying linear transformation, we get a Discrete–time Delay Difference Equation (DDDE) with integer delays as described in expressions shown below:

\[
x_{01}(kT+ T) = \hat{G}_0 x_{01}(kT) + \hat{G}_{02} x_{01}(kT-T) + \hat{H}_{01} u(kT-T),
\]

\[
y(kT) = \hat{C}_0 x_{01}(kT) + \hat{C}_{02} x_{01}(kT-T) + \hat{D}_{01} u(kT-T),
\]

where,

\[
\hat{G}_0 = -G_{01}, \quad \hat{G}_{01} = -G_{02}, \quad \hat{H}_{01} = H_{01}, \quad \hat{H}_{01} = H_{02},
\]

\[
\hat{C}_0 = C_{01}, \quad \hat{C}_{01} = -C_{02} C_{02}, \quad \hat{D}_{01} = C_{02} H_{02}.
\]

2. Generalized Bilinear Transformation

From the discrete–time multiple integer time–delayed system represented by (3) we can obtain a continuous–time multiple integer time–delayed model via a generalized bilinear transformation method.
Continuous-time systems with non-integer time-delays are not convenient for conventional multi-variable controller designing procedures and hence it is advantageous to obtain an equivalent continuous-time model with integer time-delays. Also it is easy to design controller and observer for continuous-time integer delay systems for digital control of sampled data systems. The procedure for computation of a continuous-time integer delay model from a given discrete-time integer time-delay state equation is discussed as below.

Consider a simple example of given a discrete-time system with a single state delay and appropriate system dimensions as represented in (4).

\[
x(kT + T) = G_0 x(kT) + G_1 x(kT - T) + H_0 u(kT)
\]

where, \(u(kT)\) is a piecewise-constant input signal.

We want to find an equivalent continuous-time model with integer delay as shown in (5).

\[
\dot{x}(t) = A_0 x(t) + A_1 x(t - T) + B_0 u(t)
\]

where, \(u(t) = u(kT)\) for \(kT \leq t < (kT + T)\).

Integrating equation (5) with limits \(t=kT\) to \(t=kT+T\) gives:

\[
\int_{kT}^{kT+T} \dot{x}(t) dt = \int_{kT}^{kT+T} A_0 x(\lambda) d\lambda + A_1 \int_{kT}^{kT+T} x(\lambda - T) d\lambda + B_0 \int_{kT}^{kT+T} u(\lambda) d\lambda \\
= A_0 \int_{kT}^{kT+T} x(\lambda) d\lambda + A_1 \int_{kT}^{kT+T} x(\lambda) d\lambda + B_0 \int_{kT}^{kT+T} 1 d\lambda + u(kT)
\]

The first and second integral terms in the right-hand side of equation (6) can be approximated by the generalized bilinear transformation method or a generalized trapezoidal-rule method as follows:

\[
\int_{kT}^{kT+T} x(\lambda) d\lambda = T[\alpha x(kT + T) + (1 - \alpha) x(kT)]
\]

and

\[
\int_{kT}^{kT- T} x(\lambda) d\lambda = T[\alpha x(kT) + (1 - \alpha) x(kT - T)]
\]

(7)

where, \(0 \leq \alpha \leq 1\). Note that when \(\alpha = 0.5\), the generalized bilinear transformation method reduces to the standard bilinear transformation method.

Substituting (6) and (7) into (5) gives:

\[
x(kT+ T) - x(kT) = A_0 [\alpha x(kT + T) + (1 - \alpha) x(kT)] T + A_1 [\alpha x(kT) + (1 - \alpha) x(kT - T)] T + B_0 Tu(kT)
\]

Comparing equations to find the expressions for \(G_0, G_1, \) and \(H_0\) as

\[
G_0 = (I - \alpha A_0 T)^{-1} [I + (1 - \alpha) A_0 T + \alpha A_1 T], \quad G_1 = (I - \alpha A_0 T)^{-1} [1 - \alpha] A_1 T, \\
H_0 = (I - \alpha A_0 T)^{-1} B_0 T
\]

From above expressions, we now calculate the system matrices of the continuous-time system with integer delays for different values of \(\alpha\).

Remark 1: For \(0 < \alpha < 1\), the system matrices for continuous-time system with integer delays in (5) are as shown below.

\[
A_0 = \frac{1}{T} \left[(G_0 - \frac{\alpha}{1 - \alpha} G_1 - I)[\alpha G_0 + (1 - \alpha) I - (\frac{\alpha^2}{1 - \alpha}) G_1]^{-1} \right], \quad A_1 = \frac{1}{T} \left[(\frac{1}{1 - \alpha}) I - \alpha A_0 T G_1 \right], \\
B_0 = \frac{1}{T} (I - \alpha A_0 T) H_0.
\]

(9)

Remark 2: If \(\alpha = 0.5\), then the system matrices in (9) reduces to standard bilinear transform as shown in equations below.
Digital Modeling of a Time delayed Continuous–Time System

\[A_0 = \left(\frac{2}{T} \right) [I_2 - (G_0 - G_1)][I_2 + (G_0 - G_1)^{-1}] \]

\[A_1 = \frac{2}{T} [I_2 - (A_0 (\frac{T}{2}))]G_1, \]

\[B_0 = \frac{1}{T} [I_2 - (A_0 (\frac{T}{2}))]H_0. \]

(10)

The expressions represented in (10) are expressions for the system matrices of the continuous–time system with integer delays.

III. Simulation and Results

A digital model obtained by the proposed SVD approach is compared with the digital model designed using the bilinear transformation method [9]. In this example, we discuss the accuracy of the proposed method (SVD approach) over the previous method of digital modeling (bilinear transformation). For comparison, we consider the following continuous time system with a state delay as described by

\[\dot{x}(t) = A_0 x(t) + A_1 x(t - T_x) + Bu(t), \]

\[y(t) = C x(t) \]

(11)

where,

\[A_0 = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}, A_1 = \begin{bmatrix} 0 & 0 \\ 0.2 & 0.1 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \]

the delay time \(T_x = 0.2 \text{s} \), and the sampling period is \(T = 0.15 \text{s} \), \(n = 2 \).

Following the computation steps, let \(E_{\bar{n}} < 1\% \), the singular value matrix \(\sum_{n} \) is obtained as follows.

\[\sum_{n} = \text{diag}(0.7884 \quad 0.3177 \quad 0.0012 \quad 0.0009). \]

So the appropriate order for the digital model is \(\bar{n} = 2n \), and the extended discrete–time model (2) is obtained as

\[G = \begin{bmatrix} 0.9597 & 0.0492 & 0.0057 & 0.0001 \\ -0.1285 & 0.7745 & 0.0341 & 0.0003 \\ 0.0076 & 0.0387 & 0.0831 & -0.0926 \\ -0.0001 & -0.0003 & 0.0927 & -0.0923 \end{bmatrix}, \]

\[H = \begin{bmatrix} 0.2508 \\ 0.3357 \\ -0.0254 \\ 0.0002 \end{bmatrix}, \]

\[\hat{C} = \begin{bmatrix} 0.2282 & -0.1405 & -0.0029 & -0.0001 \\ 0.0822 & 0.3213 & -0.0276 & -0.0002 \end{bmatrix}. \]

The observable canonical form transformation matrix \(T_0 \) is picked as \(T_0 = [GC_0^T \ C_0^T] \).

where \(\hat{C}_0 = \begin{bmatrix} \hat{C}G \\ \hat{C} \end{bmatrix} \), so that the output vector \(y(kT) \) is equal to the state vector \(x_{01}(kT) \).

So the matrices of the integer time-delayed discrete–time model are

\[\hat{G}_0 = \begin{bmatrix} -2.6361 & 0.4752 \\ -38.1408 & 4.3611 \end{bmatrix}, \]

\[\hat{G}_0 = \begin{bmatrix} 3.6344 & 0.2155 \\ -38.1043 & 2.6001 \end{bmatrix}, \]

\[\hat{H}_0 = \begin{bmatrix} 0.0101 & -0.0080 \\ 0.1292 & -0.00835 \end{bmatrix}, \]

\[\hat{C}_0 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad \hat{C}_0 = [0_2 \ 0_2], \quad \hat{L}_0 = [0_2]. \]

The equivalent digital model of the given continuous–time system with a state delay represented by (11), is calculated based on the bilinear transformation method as

\[x_{\delta}(kT + T) = G_0 x_{\delta}(kT) + G_1 x_{\delta}(kT - T) + G_2 x_{\delta}(kT - 2T) + H_0 u(kT) \]

(12)

\[y_{\delta}(kT) = x_{\delta}(kT) \]

with,

\[G_0 = \begin{bmatrix} 0.9901 & 0.1293 \\ -0.1231 & 0.7436 \end{bmatrix}, \quad G_1 = \begin{bmatrix} 0.0015 & 0.0008 \\ 0.0002 & 0.0001 \end{bmatrix}, \]

\[G_2 = \begin{bmatrix} 0.0013 & 0.0006 \\ 0.0102 & 0.1291 \end{bmatrix}, \quad H_0 = \begin{bmatrix} 0.0015 & 0.0008 \\ 0.0002 & 0.0001 \end{bmatrix}. \]
In Fig. 1, the state responses of the continuous-time system represented by (11), the digital model using the proposed method, described by (2), and the digital model determined by the bilinear transformation, represented in (12) are compared. The output response by the proposed method is more accurate than the bilinear transformation. Fig. 2 shows enlargement of a part of step responses of the continuous-time system and the digital model using the proposed method.

![Fig. 1 Comparison of Step responses](image1)

Fig. 1 Comparison of Step responses

그림 1. 계단 응답의 비교

![Fig. 2 Enlargement of a part of Step responses](image2)

Fig. 2 Enlargement of a part of Step responses

그림 2. 계단 응답의 부분 확대

IV. Conclusion

In this paper, a new approximated state-space discretization scheme for a multivariable continuous-time system with multiple state, input and output delays has been presented. And a generalized bilinear transform method for a multiple integer time-delayed systems is also proposed. As a result, the infinite-dimensional continuous-time control system can be converted into a finite dimensional sampled-data system, and a direct digital design of the sampled-data closed-loop system can be adopted.

References

[9] Y. P. Chang, L. S. Shieh, C. R. Liu, and P. Cofie,

※ 본 논문은 2011학년도 청운대학교 교내연구비에 의하여 지원되었음.

 저자 소개

박 종 진(정회원)

- 제11권 2호 참조
- 2012년 현재 청운대학교 인터넷학과 교수
 <주관심분야 : 지능시스템, 임베디드 시스템, 인터넷 프로그래밍>

최 규 석(종신회원)

- 제9권 6호 참조
- 2012년 현재 청운대학교 컴퓨터학과 교수
 <주관심분야 : 인공지능, 이동통신, 이동컴퓨팅>

강 정 진(종신회원)

- 제10권 5호 참조
- 2012년 현재 중부대학교 컴퓨터학과 교수
 <주관심분야 : 영상처리 인공지능>

- 1991년 3월 - 2012년 현재 동서울대학교 정보통신과 교수
- 2007년 2월 - 2010년 2월 미시간주립대학교 전기컴퓨터공학과 교환교수
- 1991년 8월 - 2005년 8월 건국대학교 전자정보통신공학과 외래교수(대학원 및 학부, 강의 및 논문지도)

- 2012년 현재 Marquis Who’s Who in the world 인명록 등재
 <주관심분야 : Smart & Cloud Convergence, RFID/USN, Smart device, Mobile Communication & Computing, Antenna & Electromagnetic Wave, Intelligent Control >