전통 민도리식 목구조 화통맞춤의 구조적 특성

유혜란
(공주대학교 건축공학과 박사 후 연구원)
권기혁
(서울시립대학교 건축학부 교수)

주제어: 전통목구조, 민도리식, 화통맞춤, 훅모멘트, 구조적 특성

1. 서론

전통 목조 건축물은 기둥·보 등으로 축부를 고정하고 그 위에 공포를 놓고 지붕기구를 쌓아서 지붕을 지붕을 놓는다. 전통 목구조는 다음과 높이에 의해 결정되는 구조로 주요 구조부재인 기둥·보·도리 등에 의해 가구를 구성하는 데임식 구조에 속한다. 대부분 전통 목구조는 공포 유무에 따라 포식구조와 민도리식 구조로 구분한다.

국내의 전통 목구조는 59,814건(2)이 현존하며, 문화재로 지정된 전통 목구조는 322건(의 0.5%)으로 대부분 사용하지 않는 관람용 건축물이지고 포식 구조이다. 전국에 개별 또는 밀집분포된 전통 목구조는 전체의 96.5%를 차지하며 대부분 민도리식 구조인 일반 민가로 실제 사용되고 있다. 일부 중요한민속문화재로 지정된 민속마을 내의 전통 목구조는 1,644건(의 3%)이며 문화재를 포함하여 전체 전통 목구조의 3.5%만이 정부기관으로부터 관리를 받는다.

<그림 1> 국내 전통 목구조의 분포현황

전통 목구조의 상부 하중은 도리를 통해 직접 기둥에 전달되거나 도리로 받치는 대공을 통해 보를 거쳐 기둥에 전달되기도 한다. 이러한 상부 하중은 도리 방향에는 등분포 하중으로, 보 방향에는 집중하중으로 작용한다. 동일한 크기의 하중이 작용한다고 가정하면 각 부재에 작용하는 최대 정력은 동일하나 최대 훅모멘트는 다르게 나타난다. 또한 방향에 따라 설치되는 부재도 다르다. 도리 방향으로는 하부에 장어, 인반이, 흙벽 등이 설치되지만 보방향에는 기둥 상부에 보안 설치되어 공간을 빌리지 않고 사용된다.

* 교신저자, 이메일: khkwan@uos.ac.kr

1) 무라타 겐이치 저 김철주·임채역 역, 『일본 전통 건축 기술의 이해』, 한국학술정보(주), 2009, 26~30쪽
2) 국토해양부 도시정책관, 『도시·건축 업무편람』, 2009, 302~304쪽
3) 문화재청, 『주요 업무 통계자료집』, 2011, 23/45~47쪽
구성하게 된다.
전통 목구조의 파괴는 취약부인 기둥 사개, 보의 목, 도리의 이음부 등의 결구부에서 주로 발생한다. 다른 부위는 단리 보의 목이 파괴 된다면 건축물의 붕괴로 바로 이어질 수 있다. 주요 구조부재 중 수평부재는 도리에 비해 보의 단면이 크지만, 결구부의 치수는 기둥에 의해 결정되므로 아무리 보의 단면이 크더라도 보의 목은 제한되며, 보의 단면이 클수록 단면 손실부가 커지게 된다. 보의 구조적 성능은 단면이 손실된 보목(숭어턱)에서 결정된다.
전통 목구조에 대한 공학적 연구는 1995년 발생한 고베지진시 목조 가옥이 붕괴됨에 따라 인명피해가 적었던 것을 고려하여 국내 전통 목구조의 내진성능에 관한 연구의 필요성에 의해 시작되었다. 그러나 연구 대상은 대부분 포식구조이며, 보 방향보다는 도리 방향에 대한 연구가 주로 진행되었다.
그리므로 본 연구는 전통 목구조 중 일반 민가의 구조형식인 민도리식 구조를 대상으로 일반적 결구방식인 화통맞춤5)의 구조적 특성을 분석하고자 한다. 화통맞춤의 구조적성을 확인하기 위한 기초적 연구로 주요 부재인 기둥 크기 및 모양, 솟여력 및 두경두께가 구조적으로 어떠한 영향을 미치는지를 분석하는 것을 목적으로 한다.

2. 전통 목구조의 특성

2-1. 주요 구조부재의 크기
문화재수리 등에 관한 법률 중 시행규칙6)에 정의된 전통 목구조의 주요 구조부는 기초부 - 기둥 - 보 - 도리 등이다. 현존하는 전통 목구조의 주요 구조부재 크기(기초부 제외)를 조사한 결과 <그림 2>와 같다.

![그림 2] 주요 구조부재의 크기

4) 서정문·최인길·정일산·이종결·신재철·허태성, 「고대 민가의 구조 및 목조 프레임의 수평내력에 관한 연구」, 한국지진공학회 제1권 제2호, 1997, 31~37쪽
5) 문화재청, 문화재수리표준시방서, 화통맞춤은 기둥 위를 내 갈래로 하여 보의 도리가 기이하게 하는 맞춤으로 본 연구에 사용되는 용어는 문화재수리표준시방서를 기준으로 한다.
6) 문화재청, 문화재수리 등에 관한 법률 시행규칙 제21조 별표 1, 2011
조사 대상 건축물은 영조규법조사보고서와 실측·수리보고서를 토대로 포식 구조(P) 52건과 민도리식 구조(M) 94건으로 총 146건이며, 이중 민도리식 구조의 건축물은 [표 1]에 나타내었다. 대부분의 민도리식 구조는 동일 부재라도 다양한 크기가 사용되었으므로 본 연구에서는 가장 많이 사용한 부재의 크기를 기준으로 정리하였다. 각 부재는 [표 1]에서 보듯이 원형(Round)과 사각형(Square)이 사용되었으므로 부재의 단면모양에 따라 구분한다. 원형 보는 포식 구조에서 나타나지 않으며, 도리는 구조형식에 따라 포식 구조는 곡률리가, 민도리식 구조는 납도리가 사용되었다. 전통 목구조의 주요 구조부재의 크기는 <그림 2>에서 보는 바와 같이 구조형식에 따라 크기차이를 나타내며, 그 기준은 기둥 300×300mm, 보 400×400mm, 도리 250×250mm이다.

하지만 전통 목구조의 결과부은 해체를 하지 않고도 확인하기 어려우며 기록화조사보고서는 육안으로 설측된 지수만을 기록하였으므로 기둥 크기에 따른 장부의 두께, 경간에 따른 장부의 두께 등에 대한 상관관계를 분석하기는 어려움이 있다. 또한 부재는 대목별로 일정한 범위 내에서 부재의 크기가 조금씩 달라진다. 일반적으로 같은부에 대해서는 기둥과 보 및 인방재가 만나는 부분에서 기로재 길이의 장부 두께는 기둥 직경(D)의 1/4로 하고 설계 1/4~1/5범위에서 만들어지며 장부의 길이는 1.5D로 한다. 7) 국내의 대목은 기둥 사재의 변적은 기둥 단면적의 2/3가 되어야 한다고 설명하고 있다. 전통 목구조의 각 부재의 지수를 정하는 데 어떠한 기준이 있더라도 예상과 기준이 무엇인지지는 아직 확인되지 않았다.

2-2. 전통 목구조의 파괴 원인 및 성상

전통 목구조의 주요 체손요인과 이에 따른 변화10)는 <그림 3>과 같다. 체손은 지면적 요인과 사회적 의결에 의한 요인, 인위적 요인 그리고 근·벌레에 의한 요인에 의해 1차적으로 체손된다. 구조적 요인은 1차 체손에 의한 2차적인 체손으로 발생하는 경우가 대부분이고, 현주·부재의 크기 등 구조적인 변수를 고려하지 않고 성식하여 발생하기도 한다.

<table>
<thead>
<tr>
<th>체손 요인</th>
<th>체손에 따른 변화</th>
</tr>
</thead>
<tbody>
<tr>
<td>외관변화</td>
<td>: 얼굴, 변색, 흉박, 황변화, 인색화 등</td>
</tr>
<tr>
<td>체형변화</td>
<td>: 채광, 바른물, 기물음, 어긋남, 흘음, 늘어남, 수축, 침음 등</td>
</tr>
<tr>
<td>체적변화</td>
<td>: 기본형, 채재정, 박리, 박달 등 파손</td>
</tr>
</tbody>
</table>

<그림 3> 전통 목구조의 체손 요인 및 변화

주요 구조부재별 파괴현황을 보면 <그림 4>와 같이 보가 50%를 차지한다. 보와 기둥의 주요 파괴 원인은 파손, 균열 및 부식이 주요 요인이며, 도리인 이에 비해 비밀림에 의한 요인은 가장 크게 나타났다.

9) 김정훈·김철식, 「적극주요 구조부재 단면지수 계획과 산출기준 연구」, 건축의학연구 제 20권 제 4호, 2011, 87쪽, 부재지수의 기준에 관한 많은 연구가 있었지만 명확한 체계가 발휘되지는 못했으며 체계의 기준을 정량, 정량, 기둥의 정량 등이 제시되고 있다. / 93쪽, 건물 구조체 구성의 각 부재지수를 결정하는 기준은 단지 주요 구조부재에 있어서는 기둥과 지붕재구성에서 서서히 기준이 된다. 이렇게 다른 부재의 지수 설정 기준이 되는 기둥과 지붕재의 지수는 건물의 양식과 규모에 따라 장인별로 일정한 지수로 정해지기 때문에 건물에 적용된다.

10) 국립문화재연구소, 「건축문화재 안전점검 기초와 설문」, 2010, 154-157쪽

건축의학연구 제21권 3호 동문282호 2012년 6월
논문

[표 1] 민도리식 건축물의 조사대상 목록(계속)

<table>
<thead>
<tr>
<th>건물명</th>
<th>형식</th>
<th>부재의 크기 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>기둥(b×h)</td>
</tr>
<tr>
<td>1 황양 일두 고택</td>
<td>안채</td>
<td>장어수장</td>
</tr>
<tr>
<td></td>
<td>시방</td>
<td>소로수장</td>
</tr>
<tr>
<td></td>
<td>시당</td>
<td>이익공</td>
</tr>
<tr>
<td></td>
<td>별당</td>
<td>장어수장</td>
</tr>
<tr>
<td>2 홍성 조중식가옥</td>
<td>안채</td>
<td>장어수장</td>
</tr>
<tr>
<td></td>
<td>시방</td>
<td>장어수장</td>
</tr>
<tr>
<td></td>
<td>시당</td>
<td>민도리</td>
</tr>
<tr>
<td>3 해남 운우서가옥</td>
<td>안채</td>
<td>장어수장</td>
</tr>
<tr>
<td></td>
<td>시방</td>
<td>장어수장</td>
</tr>
<tr>
<td>4 달성 조길방가옥</td>
<td>안채</td>
<td>장어수장</td>
</tr>
<tr>
<td></td>
<td>시방</td>
<td>장어수장</td>
</tr>
<tr>
<td>5 논산 명제고택</td>
<td>안채</td>
<td>장어수장</td>
</tr>
<tr>
<td></td>
<td>시방</td>
<td>장어수장</td>
</tr>
<tr>
<td></td>
<td>시당</td>
<td>장어수장</td>
</tr>
<tr>
<td>6 영광 연안김씨 동택</td>
<td>안채</td>
<td>장어수장</td>
</tr>
<tr>
<td></td>
<td>시방</td>
<td>장어수장</td>
</tr>
<tr>
<td></td>
<td>시당</td>
<td>장어수장</td>
</tr>
<tr>
<td>7 신제효고택</td>
<td>안채</td>
<td>민도리</td>
</tr>
<tr>
<td>8 영천 만취당</td>
<td>안채</td>
<td>장어수장</td>
</tr>
<tr>
<td></td>
<td>큰사방채</td>
<td>소로수장</td>
</tr>
<tr>
<td>9 영동 규경고택</td>
<td>안채</td>
<td>장어수장</td>
</tr>
<tr>
<td>10 정읍 김두수가옥</td>
<td>안채</td>
<td>장어수장</td>
</tr>
<tr>
<td></td>
<td>안사방채</td>
<td>장어수장</td>
</tr>
<tr>
<td></td>
<td>시방</td>
<td>장어수장</td>
</tr>
<tr>
<td></td>
<td>시당</td>
<td>장어수장</td>
</tr>
<tr>
<td>11 창녕 화영수가옥</td>
<td>안채</td>
<td>장어수장</td>
</tr>
<tr>
<td></td>
<td>시방</td>
<td>장어수장</td>
</tr>
<tr>
<td>12 정도 운상고택</td>
<td>안채</td>
<td>장어수장</td>
</tr>
<tr>
<td></td>
<td>시방</td>
<td>장어수장</td>
</tr>
<tr>
<td>13 가일수곡고택</td>
<td>안채</td>
<td>장어수장</td>
</tr>
<tr>
<td></td>
<td>시방</td>
<td>장어수장</td>
</tr>
<tr>
<td></td>
<td>시당</td>
<td>장어수장</td>
</tr>
<tr>
<td>14 장동 선교장</td>
<td>안채</td>
<td>장어수장</td>
</tr>
<tr>
<td></td>
<td>시방</td>
<td>민도리</td>
</tr>
<tr>
<td></td>
<td>시당</td>
<td>장어수장</td>
</tr>
<tr>
<td></td>
<td>안사방채</td>
<td>장어수장</td>
</tr>
<tr>
<td></td>
<td>시방</td>
<td>장어수장</td>
</tr>
<tr>
<td></td>
<td>시당</td>
<td>장어수장</td>
</tr>
<tr>
<td>15 구례 운조루</td>
<td>안채</td>
<td>장어수장</td>
</tr>
<tr>
<td></td>
<td>큰사방채</td>
<td>장어수장</td>
</tr>
<tr>
<td>16 남원 통심채</td>
<td>안채</td>
<td>장어수장</td>
</tr>
<tr>
<td></td>
<td>시방</td>
<td>장어수장</td>
</tr>
<tr>
<td>17 반운동 모선루</td>
<td>안채</td>
<td>장어수장</td>
</tr>
</tbody>
</table>

건축역사연구 제21권 3호 통권 82호 2012년 6월
<table>
<thead>
<tr>
<th>번호</th>
<th>건물명</th>
<th>형식</th>
<th>부재의 크기 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>기둥</td>
</tr>
<tr>
<td>18</td>
<td>보온 신병국가옥</td>
<td>안채</td>
<td>180×180</td>
</tr>
<tr>
<td></td>
<td></td>
<td>사랑채</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td></td>
<td>사당</td>
<td>228×228</td>
</tr>
<tr>
<td>19</td>
<td>궁집</td>
<td>안채</td>
<td>216×216</td>
</tr>
<tr>
<td></td>
<td></td>
<td>사랑채</td>
<td>228×228</td>
</tr>
<tr>
<td>20</td>
<td>보성 이금재가옥</td>
<td>안채</td>
<td>217×217</td>
</tr>
<tr>
<td></td>
<td></td>
<td>사랑채</td>
<td>212×212</td>
</tr>
<tr>
<td></td>
<td></td>
<td>사당</td>
<td>420</td>
</tr>
<tr>
<td>21</td>
<td>보성 이범재가옥</td>
<td>안채</td>
<td>180×180</td>
</tr>
<tr>
<td></td>
<td></td>
<td>사랑채</td>
<td>170×165</td>
</tr>
<tr>
<td></td>
<td></td>
<td>사당</td>
<td>225×225</td>
</tr>
<tr>
<td>22</td>
<td>밀양 퇴포리 이범수가옥</td>
<td>안채</td>
<td>210×210</td>
</tr>
<tr>
<td></td>
<td></td>
<td>사랑채</td>
<td>170×165</td>
</tr>
<tr>
<td></td>
<td></td>
<td>사당</td>
<td>235×245</td>
</tr>
<tr>
<td>23</td>
<td>밀양 퇴포리 이범수가옥</td>
<td>안채</td>
<td>180×180</td>
</tr>
<tr>
<td></td>
<td></td>
<td>사랑채</td>
<td>170×165</td>
</tr>
<tr>
<td></td>
<td></td>
<td>사당</td>
<td>225×225</td>
</tr>
<tr>
<td>24</td>
<td>보성 이용옥가옥</td>
<td>안채</td>
<td>210×210</td>
</tr>
<tr>
<td></td>
<td></td>
<td>사랑채</td>
<td>195×195</td>
</tr>
<tr>
<td></td>
<td></td>
<td>사당</td>
<td>210×210</td>
</tr>
<tr>
<td>25</td>
<td>아산 의암리 참관댁-큰댁</td>
<td>안채</td>
<td>180×180</td>
</tr>
<tr>
<td></td>
<td></td>
<td>사랑채</td>
<td>185×185</td>
</tr>
<tr>
<td></td>
<td></td>
<td>사당</td>
<td>150×150</td>
</tr>
<tr>
<td>26</td>
<td>아산 의암리 참관댁-작은댁</td>
<td>안채</td>
<td>180×180</td>
</tr>
<tr>
<td></td>
<td></td>
<td>사랑채</td>
<td>160×160</td>
</tr>
<tr>
<td></td>
<td></td>
<td>사당</td>
<td>165×165</td>
</tr>
<tr>
<td>27</td>
<td>백암리 건설훈련</td>
<td>안채</td>
<td>180×180</td>
</tr>
<tr>
<td></td>
<td></td>
<td>사랑채</td>
<td>180×180</td>
</tr>
<tr>
<td></td>
<td></td>
<td>사당</td>
<td>210×210</td>
</tr>
<tr>
<td>28</td>
<td>삼척대이리 남화집</td>
<td>안채</td>
<td>180×180</td>
</tr>
<tr>
<td></td>
<td></td>
<td>사랑채</td>
<td>175×175</td>
</tr>
<tr>
<td></td>
<td></td>
<td>사당</td>
<td>150×150</td>
</tr>
<tr>
<td>29</td>
<td>삼척 신리 남화집</td>
<td>안채</td>
<td>210×210</td>
</tr>
<tr>
<td></td>
<td></td>
<td>사랑채</td>
<td>210×210</td>
</tr>
<tr>
<td>30</td>
<td>여재현장군생가</td>
<td>안채</td>
<td>200×200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>사랑채</td>
<td>200×200</td>
</tr>
<tr>
<td>31</td>
<td>청운동 성천댁</td>
<td>안채</td>
<td>190×190</td>
</tr>
<tr>
<td></td>
<td></td>
<td>사랑채</td>
<td>180×180</td>
</tr>
<tr>
<td></td>
<td></td>
<td>사당</td>
<td>180×180</td>
</tr>
<tr>
<td>32</td>
<td>한천요성국고가</td>
<td>안채</td>
<td>180×180</td>
</tr>
<tr>
<td></td>
<td></td>
<td>사랑채</td>
<td>210×200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>사당</td>
<td>185×185</td>
</tr>
<tr>
<td>33</td>
<td>보성문용각</td>
<td>안채</td>
<td>160×160</td>
</tr>
<tr>
<td></td>
<td></td>
<td>사랑채</td>
<td>180×180</td>
</tr>
<tr>
<td></td>
<td></td>
<td>사당</td>
<td>172×172</td>
</tr>
<tr>
<td>34</td>
<td>강문봉가옥</td>
<td>안채</td>
<td>180×180</td>
</tr>
<tr>
<td></td>
<td></td>
<td>사랑채</td>
<td>240×360</td>
</tr>
</tbody>
</table>

[표 1] 민도리식 건축물의 조사대상 목록
2-3. 화통맞춤의 결구부 특성

민도리식 구조는 <그림 5>와 같이 도리의 형태에 따라 곡도리와 납도리로 구분하고 수강에 따라 장여수장식, 소로수장식으로 구분한다. 민도리식 구조의 가장 일반적인 기둥·보·도리의 결구법은 화통맞춤으로 기둥 상부에 4방향으로 같은 만들어 보름 결구한 다음 도리를 얹는 방식이다.

<그림 5> 민도리식 구조의 종류

2-4. 기존 연구현황

서정문 연구자는 초가집의 수평내력을 평가하기 위해 평주 및 고주 프레임의 결구상태에 따른 실험을 행하였다. 파괴 시 수평력은 평주 프레임 1,090N(1/6라디안), 고주 프레임 4,160N(1/9.6라디안)이었으며 파괴형상을 보면 평주 프레임은 전단파괴가, 고주 프레임은 평주에서 먼저 발생되고 고주와 돌보리 연결부에서는 나무못의 침파괴가 발생하였다. 또한 지진 시 거동을 평가하기 위해 반복하중 이력 특성(11)을 평가한 결과 <그림 6>과 같다. 평주 프레임은 고주 프레임에 비해 큰 비선형을 나타내며 변위가 증가함에 따라 강성 저하율은 고주 프레임이 평주 프레임에 비해 크다.

<그림 6> 수평 교반하중에 대한 하중-변위 곡선

방재연구소에서 진행한 전통 목구조의 내진성능 평가기술개발에 의해 2009년에는 민가에서 사용되는 초저층 방식·장여수장 방식·민도리 방식의 결구방식, 벽체의 유무, 개구부의 크기, 인창의 분류에 따른 성능을 평가한 결과(13)하였다. 벽체의 최대 내력은 흙벽에 의해 좌우되게 됨을 보인다.

11) 서정문·최인길·전영선·이종림·신재철·허택영, 원목 목재의 내진성능 평가기술 개발에 관한 연구, 한국지진공학회 논문집 제1권 제2호, 1997, 31~37쪽

12) 서정문·최인길·전영선·이종림·신재철, 「상층 교반하중에 대한 초저층간 목조 프레임의 이력특성 평가」, 한국지진공학회 논문집 제3권 제3호, 1997, 21~27쪽

13) 국립방재교육연구원 방재연구소, 「목조 건축물의 내진성능 평가상제에 따른 내진진단법의 개발」, 2009, 171~172쪽
나 최종 내력을 검증방식의 영향을 받는 것을 알 수 있다.

이정책 연구자는 쇼핑상영성을 대상으로 전통 목구조의 내진성능에 관한 연구14로 주
심포식과 포식, 그리고 심벽 유무의 목조건설에

3. 화통맞춤의 반복기력시험

3-1. 개요

전통 목구조의 수평내력은 흡력보다는 결
구부의 영향을 크게 받는다. 전통 목구조는
철물을 사용하지 않고 부재를 목소하여 결
구하므로 부재간의 마찰과 상부 하중에 의
한 지압음을으로 인한 하중에 저항한다. 그
리므로 벽기능을 고려하면 기둥의 크기뿐
만 아니라 기둥 사각과 접하는 송어덕과 지
압력을 집중할 것으로 보이는 두겁이 화
통맞춤의 구조적 성능에 미치는 영향이 클
것으로 판단된다. 이러한 전통 목구조의 승
어덕과 두겁의 두께는 결구부에 요구되는
구조성능에 따라 결정되기보다는 기둥의 크
기에 의해 제작된다.

전통 목구조의 기둥-보-도리의 구조방식
은 화통맞춤뿐 아니라 상투맞춤 등이 사용
되며, 화통맞춤의 보-도리의 구조방식 또한
반투맞춤, 반투주벽맞춤 등과 같이 다양하
게 나타난다. 이러한 구조방식에 따라 구조
적 특성이 다를 것으로 판단되므로 본 연구
는 보는 승어덕, 도리는 두겹주벽맞춤으로
제한하여 실험을 행한다.

3-2. 실험체 계획

화통맞춤의 결구부 성능에 영향을 미칠
것이라 판단되는 요인을 평가하기 위하여

14) 이필성,「전통 문화재 목조프레임의 횡청중에 대
한 기동 및 이력특성」, 2000, 서울대학교 석사논문

<그림 7>과 같이 기둥의 크기 및 모양, 승
어덕 및 두겹의 두께를 요인으로 둔다.

두겹두께(a): 60, 90
송어덕두께(b): 55, 65, 90

1. 기둥모양 : 사각형, 원형
2. 기둥크기 :
 - 사각형 : 150, 180, 210
 - 원형 : 200, 240

<그림 7> 실험체 계획

전통 목구조는 시간이 경과함에 따라 목재
가 강인수축됨에 따라 결구부가 이완되므로
결구부의 강인함에 따라 영향을 고려
하여 부재간의 마찰계수의 영향으로 판단하여
종 11개의 실험체를 [표 2]와 같이 제작하여
실험을 행한다.

실험은 <그림 8>과 같이 기둥 상부의 수
직하중은 오일을 이용하여 13.5kN15로 제
하하며, 실험동안 수직하중을 일정하게 유지
하기 위하여 지속적으로 모니터링한다. 변형
상상을 측정하기 위하여 변위계를 설치하며,
부재간은 액체에이터를 사용하여 일본 목조 건축
물의 내진성능 평가기준 <그림 8> (c)16에 따라

15) 국립방재교육연구원 방재연구소, 목조 건축물의 벽
제 및 결구부의 구조가성 실험, 2010, 지붕은 도리 위
부터 시작해, 산지 또는 개방, 직접재, 보도다리, 간형
다리, 기대로 구성되며 각 재료의 단위중량 기준 자
료화목목목에 의해 산정한 결과 연기 건축물의 지붕
중량은 산지/개방 0.15 kN/m, 직점 0.50 kN/m, 보도다
리 4 kN/m, 간형다리 3.5 kN/m 그리고 기와 1.50 kN/m으
로 총 하중 5.35 kN/m가 적용한다.

16) 木造軸組構法建物の耐震設計マニュアル編集委員会, 伝統構法を生かす木造耐震設計マニュアル-限界耐力計
算による耐震設計・耐震補強設計法, 2004
[표 2] 화동맞춤 실험이의 실험변수

<table>
<thead>
<tr>
<th>시험체명</th>
<th>부재치수 (mm)</th>
<th>실험변수</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-R18</td>
<td>150×150 120×200 110×210</td>
<td>65 66 기동모양</td>
</tr>
<tr>
<td>H-R18-1</td>
<td>178×230 160×210</td>
<td>90 기동크기</td>
</tr>
<tr>
<td>H-R18-2</td>
<td>180×180 160×220 110×210</td>
<td>65 66 두께 두께</td>
</tr>
<tr>
<td>H-R15</td>
<td>180×180 160×220 110×210</td>
<td>55 60 기동크기</td>
</tr>
<tr>
<td>H-R21</td>
<td>180×180 160×220 110×210</td>
<td>55 60 두께 두께</td>
</tr>
<tr>
<td>H-R21-1</td>
<td>180×180 160×220 110×210</td>
<td>55 60 기동크기</td>
</tr>
<tr>
<td>H-C20</td>
<td>200×200 210×240 140×210</td>
<td>55 60 기동모양</td>
</tr>
<tr>
<td>H-C24</td>
<td>200×200 210×240 140×210</td>
<td>55 60 기동모양</td>
</tr>
<tr>
<td>L-R18</td>
<td>210×210 178×230 160×210</td>
<td>55 60 기동크기</td>
</tr>
<tr>
<td>L-R21</td>
<td>210×210 178×230 160×210</td>
<td>55 60 기동크기</td>
</tr>
<tr>
<td>L-C20</td>
<td>200×200 210×240 140×210</td>
<td>55 60 기동모양</td>
</tr>
</tbody>
</table>

(a) 실험 셋팅
(b) 변위계(LVDT) 설치
(c) 부재각 설정 및 가력계획

<그림 8> 화동맞춤 반복가력실험 계획
3-3. 재료실험

[표 3] 목재의 재료시험체의 크기

<table>
<thead>
<tr>
<th>재료시험</th>
<th>실험체의 크기(mm)</th>
<th>가로</th>
<th>세로</th>
<th>높이(*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>압축시험</td>
<td>섬유직각</td>
<td>20.0</td>
<td>20.0</td>
<td>20.0</td>
</tr>
<tr>
<td></td>
<td>섬유방향</td>
<td>29.8</td>
<td>20.0</td>
<td>151.3</td>
</tr>
<tr>
<td>인장시험</td>
<td>섬유직각</td>
<td>49.1</td>
<td>20.0</td>
<td>10.7</td>
</tr>
<tr>
<td></td>
<td>섬유방향</td>
<td>29.4</td>
<td>20.0</td>
<td>98.4</td>
</tr>
<tr>
<td>퍼시험</td>
<td>섬유직각</td>
<td>20.0</td>
<td>20.0</td>
<td>321.5</td>
</tr>
<tr>
<td>전단시험</td>
<td>섬유직각</td>
<td>30.0</td>
<td>30.0</td>
<td>30.0</td>
</tr>
<tr>
<td></td>
<td>섬유방향</td>
<td>30.0</td>
<td>30.0</td>
<td>30.0</td>
</tr>
</tbody>
</table>

* 인장시험 실험이는 표준길이, 퍼시험 실험이는 실험이의 길이를 뜻함.

[표 4] 목재의 재료시험 결과

<table>
<thead>
<tr>
<th>시험당력(MPa)</th>
<th>섬유방향</th>
<th>섬유직각방향</th>
</tr>
</thead>
<tbody>
<tr>
<td>압축시험</td>
<td>42.89</td>
<td>8.44</td>
</tr>
<tr>
<td>인장시험</td>
<td>37.80</td>
<td>2.97</td>
</tr>
<tr>
<td>퍼시험</td>
<td>82.84</td>
<td>-</td>
</tr>
<tr>
<td>전단시험</td>
<td>5.36</td>
<td>-</td>
</tr>
</tbody>
</table>

현재 사용되고 있는 건축물이거나 문화재로 지정된 건축물은 파괴시험을 행하여 재료적 특성을 확인할 수 없다. 따라서 본 연구에서는 비파괴방식인 피로도목제테스티기 [그림 10]에 의한 산업검사로 목재의

전통 민도리식 목구조 화통맞춤의 구조적 특성
4. 실험결과 및 분석

4-1. 실험결과

화통맞춤의 반복가력시험을 총합하여 얻은 하중-변위곡선은 [그림 11]과 같다. 마찰계수가 큰 실험체는 부재각(rad으로 이하 표기를 생략함)이 1/60에 이르기까지 안정적인 이력 가능성을 보이며 부재각 1/30 이후부터는 육안으로 균열이 관찰되는 않지만, 소음과 함께 급격한 하중 감소 후 다시 회복되는 현상이 반복적으로 발생한다. 이는 메모리에 좋은 흡수력의 열과 도리의 면이 마찰력을 형성하면서 미끄러짐과 절림이 반복적으로 발생하여 이런 현상이 나타나기므로 관찰된다. 마찰계수가 높은 실험체 대부분은 부재각 1/30 이후부터 더 이상 하중의 증가 없이 변위가 증가하는 현측현상을 보인다. II-R18-2는 부재 각 1/15 첫 변형 사이클에서 흡수력이 부리지 실험을 종료하며 실험 중 흔한 현상은 관찰되지 않는다. II-C20는 매우 안정적인 하중을 보이며, II-C24는 전체적으로 II-C20와 유사한 현상을 보이기 동일한 단면적 증가가 결과부의 하중에 영향을 미칠 것을 알 수 있다. 견고부가 이완됨에 따라 마찰계수가 작은 실험체는 정방향의 경우 부재각 1/24 이후 급격하게 하중이 증가하고 부하량은 마찰계수가 큰 실험체와 유사한 이력가능성을 보인다.

화통맞춤의 부재각별 최대 하중은 [표 6]과 같다. 부재각 1/30, 1/24, 1/15에서의 견고 부의 부재이력은 [그림 12]에 나타나며, 마찰계수가 큰 실험체의 부재간의 이력은 부재 각 1/30 이후부터 육안으로 확인가능하다. 그럼에도 불구하고 얇고 균열 부재각 1/30에서 서서히 기둥면과 맞닿는 수평부면의 변 사례에서 검(Gap)이 발생한다. II-R15는 화통맞춤에서의 기둥면과 맞닿는 수평부면 사이의 벌어
전통 민도리식 목구조 화통맞춤의 구조적 특성

<그림 11> 화통맞춤의 하중-부재가 곡선

건축역사연구 제21권 3호 통권82호 2012년 6월
[표 6] 각 부재각별 최대 하중(kN)

<table>
<thead>
<tr>
<th>시험체명</th>
<th>1/480</th>
<th>1/240</th>
<th>1/120</th>
<th>1/60</th>
<th>1/30</th>
<th>1/15</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-R18</td>
<td>0.78</td>
<td>0.96</td>
<td>1.48</td>
<td>2.42</td>
<td>4.27</td>
<td>5.49</td>
</tr>
<tr>
<td>H-R18-1</td>
<td>0.98</td>
<td>1.19</td>
<td>1.60</td>
<td>2.96</td>
<td>4.97</td>
<td>6.40</td>
</tr>
<tr>
<td>H-R18-2</td>
<td>0.74</td>
<td>0.97</td>
<td>1.29</td>
<td>2.33</td>
<td>3.93</td>
<td>4.62</td>
</tr>
<tr>
<td>H-R15</td>
<td>0.37</td>
<td>0.43</td>
<td>0.56</td>
<td>0.92</td>
<td>2.38</td>
<td>4.30</td>
</tr>
<tr>
<td>H-R21</td>
<td>0.71</td>
<td>1.30</td>
<td>1.78</td>
<td>2.74</td>
<td>4.67</td>
<td>5.50</td>
</tr>
<tr>
<td>H-R18-1</td>
<td>0.79</td>
<td>1.06</td>
<td>1.62</td>
<td>2.88</td>
<td>4.59</td>
<td>5.14</td>
</tr>
<tr>
<td>H-C20</td>
<td>1.20</td>
<td>1.48</td>
<td>2.14</td>
<td>3.14</td>
<td>4.47</td>
<td>5.90</td>
</tr>
<tr>
<td>H-C24</td>
<td>0.73</td>
<td>0.89</td>
<td>1.10</td>
<td>1.80</td>
<td>3.62</td>
<td>4.30</td>
</tr>
<tr>
<td>L-R18</td>
<td>0.37</td>
<td>0.40</td>
<td>0.48</td>
<td>0.90</td>
<td>0.98</td>
<td>1.62</td>
</tr>
<tr>
<td>L-R21</td>
<td>0.96</td>
<td>1.53</td>
<td>1.83</td>
<td>2.00</td>
<td>2.74</td>
<td>5.00</td>
</tr>
<tr>
<td>L-C20</td>
<td>0.30</td>
<td>0.32</td>
<td>0.33</td>
<td>0.59</td>
<td>0.89</td>
<td>1.52</td>
</tr>
</tbody>
</table>

4-2. 결과 분석

기둥크기에 따른 하중을 비교하면 다음

1/30에 이르기까지 하중의 변화가 발생하지 않는다. 마찰계수가 큰 실험체의 하중을 기본
형 H-R18을 기준으로 비교하면 H-R15는 약
50%의 하중을, H-R21도 유사한 하중을 나타
내다. 하지만 마찰계수가 작은 실험체는 마찰
계수가 큰 실험체와 달리 L-R18과 L-R21은
최대 하중에서 차이를 나타내며, 기둥의 크기
가 클수록 하중이 증가한다.

기둥 모양에 따른 결과를 비교하면 다음

1/30에 이르기까지 하중의 변화가 발생하지

정 현상이 투명하게 관찰되지만 마찰계수가
작은 실험체는 부재각이 커지더라도 용인상으
로 확인하기는 쉽지 않다.
전통 민도리식 목구조 화통맞춤의 구조적 특성

(a) 마찰계수가 큰 실험체

(b) 마찰계수가 작은 실험체

<그림 13> 기둥 크기에 따른 하중

(a) 마찰계수가 큰 실험체

(b) 마찰계수가 작은 실험체

<그림 14> 기둥 모양에 따른 하중

건축역사연구 제21권 3호 통권82호 2012년 6월
논문

기둥의 단면적이 유사한 경우, 부재각에 따라 다소 차이를 나타내지만 전반적으로 유사한 하중을 갖는다. 마찰계수가 큰 경우, 기둥 모양에 따라 기둥 크기 180mm는 부재각 1/60보다 작을 때는 원형 기둥이며, 기둥 크기 210mm는 사각형 기둥이 하중이 크게 나타난다. 마찰계수가 작은 경우는 부재각이 클수록 원형 기둥의 하중을 크게 받는다.

숭어턱 및 두겁의 두께에 따른 하중-변위곡선은 <그림 15>와 같다. 기둥 크기 180mm는숭어턱의 두께에 비례하여 하중이 증가하나 기둥 크기가 커질수록 숭어턱의 두께에 대한 영향이 감소한다. 숭어턱의 두께를 동일하게하고 두검 두께를 달리한 경우, 각 부재각에서 유사한 하중을 나타내므로 두검 두께에 따른 영향이 적은 것으로 판단된다.

화통맞춤의 횡력저항능력은결구부의 하중뿐만 아니라 횡부 후 변의 증가에 따른 횡성저항(열화현상)의 영향이 매우 중요한 영향인자이다. 각 실험체의 모멘트-부재각 곡선은 <그림 16>과 같으며, 부재각별 최대 모멘트는 [표 7]과 같다.

결구부의 강성은 정 부방향의 각 사이클 정점을 연결한 직선의 기울기로 구하는 척성강성(Secant Stiffness: Origin-to-Peak)과 하중-변위곡선상에서 정 부방향의 같은 크기
전통 민도리식 목구조 화통맞춤의 구조적 특성

(a) H-R18 (b) H-R18-1 (c) H-R18-2
(d) H-R15 (e) H-R21 (f) H-R21-1
(g) H-C20 (h) H-C24
(i) L-R18 (j) L-R21 (k) L-C20

<그림 16> 화통맞춤의 모멘트-부재각 곡선

건축역사연구 제21권 3호 통권82호 2012년 6월
의 변위 점점을 연결한 직선의 가중값이 평가하는 강성(Peak-to-Peak Stiffness)의 두 가지 방법이 있다. 본 연구에서는 후자의 방법 <그림 17>으로 모멘트-부재각 곡선에 의해 횡강성을 산정하며 각 부재각별 횡강성을 [표 8]에 나타낸다.

![그림 17] 강성평가법

기둥 크기 및 모양에 따른 초기 강성이 대한 부재각별 횡강성 저하율은 그림 18과 같다. 결과의 상태에 따라 II-R15와 L-R18의 부재각별 횡강성이 유사하게 나타나고, II-R18과 L-R21이 유사한 값을 나타낸다. II-R18과 II-R21 또한 횡강성이 유사하므로 마찰계

<table>
<thead>
<tr>
<th>시험 체형</th>
<th>1/480</th>
<th>1/240</th>
<th>1/120</th>
<th>1/60</th>
<th>1/30</th>
<th>1/24</th>
<th>1/15</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-R18</td>
<td>0.94</td>
<td>1.15</td>
<td>1.78</td>
<td>2.90</td>
<td>4.34</td>
<td>5.12</td>
<td>6.59</td>
</tr>
<tr>
<td>H-R18-1</td>
<td>1.18</td>
<td>1.43</td>
<td>1.92</td>
<td>3.55</td>
<td>5.96</td>
<td>7.68</td>
<td>7.80</td>
</tr>
<tr>
<td>H-R18-2</td>
<td>0.89</td>
<td>1.16</td>
<td>1.55</td>
<td>2.80</td>
<td>4.60</td>
<td>5.38</td>
<td>6.73</td>
</tr>
<tr>
<td>H-R15</td>
<td>0.44</td>
<td>0.52</td>
<td>0.67</td>
<td>1.10</td>
<td>2.86</td>
<td>3.66</td>
<td>5.16</td>
</tr>
<tr>
<td>H-R21</td>
<td>0.85</td>
<td>1.56</td>
<td>2.14</td>
<td>3.29</td>
<td>5.60</td>
<td>6.60</td>
<td>7.30</td>
</tr>
<tr>
<td>H-R21-1</td>
<td>0.95</td>
<td>1.27</td>
<td>1.94</td>
<td>3.46</td>
<td>5.51</td>
<td>6.17</td>
<td>7.61</td>
</tr>
<tr>
<td>H-C20</td>
<td>1.44</td>
<td>1.78</td>
<td>2.42</td>
<td>3.77</td>
<td>5.36</td>
<td>5.80</td>
<td>7.08</td>
</tr>
<tr>
<td>H-C24</td>
<td>0.88</td>
<td>1.07</td>
<td>1.32</td>
<td>2.16</td>
<td>4.34</td>
<td>5.16</td>
<td>7.32</td>
</tr>
<tr>
<td>L-R18</td>
<td>0.44</td>
<td>0.48</td>
<td>0.58</td>
<td>1.08</td>
<td>1.18</td>
<td>1.10</td>
<td>2.08</td>
</tr>
<tr>
<td>L-R21</td>
<td>1.15</td>
<td>1.84</td>
<td>2.20</td>
<td>2.28</td>
<td>2.40</td>
<td>2.39</td>
<td>6.00</td>
</tr>
<tr>
<td>L-C20</td>
<td>0.36</td>
<td>0.38</td>
<td>0.40</td>
<td>0.71</td>
<td>1.07</td>
<td>1.82</td>
<td>4.69</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>시험 체형</th>
<th>1/480</th>
<th>1/240</th>
<th>1/120</th>
<th>1/60</th>
<th>1/30</th>
<th>1/24</th>
<th>1/15</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-R18</td>
<td>1.30</td>
<td>2.06</td>
<td>2.94</td>
<td>4.94</td>
<td>8.45</td>
<td>10.48</td>
<td>12.37</td>
</tr>
<tr>
<td>H-R18-1</td>
<td>1.38</td>
<td>1.85</td>
<td>2.18</td>
<td>3.25</td>
<td>6.25</td>
<td>7.21</td>
<td>8.98</td>
</tr>
<tr>
<td>H-R18-2</td>
<td>0.59</td>
<td>0.71</td>
<td>1.04</td>
<td>1.25</td>
<td>3.55</td>
<td>5.30</td>
<td>5.17</td>
</tr>
<tr>
<td>H-R15</td>
<td>0.43</td>
<td>0.47</td>
<td>0.68</td>
<td>1.02</td>
<td>2.46</td>
<td>3.32</td>
<td>6.01</td>
</tr>
<tr>
<td>H-R21</td>
<td>0.95</td>
<td>1.51</td>
<td>2.52</td>
<td>4.80</td>
<td>7.27</td>
<td>8.27</td>
<td>10.12</td>
</tr>
<tr>
<td>H-R21-1</td>
<td>0.88</td>
<td>1.30</td>
<td>2.46</td>
<td>4.55</td>
<td>8.02</td>
<td>9.65</td>
<td>10.43</td>
</tr>
<tr>
<td>H-C20</td>
<td>1.13</td>
<td>1.30</td>
<td>1.98</td>
<td>3.62</td>
<td>6.07</td>
<td>6.97</td>
<td>9.50</td>
</tr>
<tr>
<td>H-C24</td>
<td>1.09</td>
<td>1.62</td>
<td>2.27</td>
<td>3.52</td>
<td>5.44</td>
<td>6.18</td>
<td>8.52</td>
</tr>
<tr>
<td>L-R18</td>
<td>0.46</td>
<td>0.52</td>
<td>0.61</td>
<td>1.12</td>
<td>3.14</td>
<td>3.90</td>
<td>5.77</td>
</tr>
<tr>
<td>L-R21</td>
<td>1.15</td>
<td>1.75</td>
<td>2.51</td>
<td>4.21</td>
<td>6.22</td>
<td>6.59</td>
<td>8.65</td>
</tr>
<tr>
<td>L-C20</td>
<td>0.30</td>
<td>0.32</td>
<td>0.68</td>
<td>2.11</td>
<td>3.23</td>
<td>3.73</td>
<td>5.33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>실험 체형</th>
<th>부재각</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/480</td>
<td>1/240</td>
</tr>
<tr>
<td>H-R18</td>
<td>353.7</td>
</tr>
<tr>
<td>H-R18-1</td>
<td>613.4</td>
</tr>
<tr>
<td>H-R18-2</td>
<td>354.2</td>
</tr>
<tr>
<td>H-R15</td>
<td>210.2</td>
</tr>
<tr>
<td>H-R21</td>
<td>432.0</td>
</tr>
<tr>
<td>H-R21-1</td>
<td>437.8</td>
</tr>
<tr>
<td>H-C20</td>
<td>616.3</td>
</tr>
<tr>
<td>H-C24</td>
<td>472.3</td>
</tr>
<tr>
<td>L-R18</td>
<td>216.0</td>
</tr>
<tr>
<td>L-R21</td>
<td>553.0</td>
</tr>
<tr>
<td>L-C20</td>
<td>158.4</td>
</tr>
</tbody>
</table>

[표 8] 횡강성의 부재각별 횡강성
단위: kN.m/rad

수가 큰 경우 기둥의 크기 180mm 이상이 되면 기둥 크기는 횡강성에 영향을 미치지 않는 것으로 판단된다. 기둥 크기에 따른 횡강성 저하율을 보면, 부재각 1/240은 마찰계수와 상관없이 동일 크기의 저하율을 유사하게 나타난다. 특히 변형을 보이는 II-R15는 부재 각 1/60까지는 하중의 증가가 없으며 부재각 1/30 이후부터 하중이 급격하게 증가하여 부재각 1/60보다 부재각 1/30 이후 횡강성이 커진다.
지는 형상을 보인다. 동일 단면적을 갖지만 기둥 모양이 다른 실험체는 부재각별 유속성은 유사하게 나타나기 때문에, 모양에 따른 영향은 적을 것으로 판단되며, 전반적으로 부재각이 커질수록 강성이 감소한다. 실험체 L-C20는 부재각 1/60에서 특이값을 나타내는데 이는 하중이 급격하게 증가하기 때문이다.

<그림 19> 승어력 및 두개 두께에 따른 힘강성능력이 크기 때문에 구조물의 감쇠량이 큰 것으로 평가할 수 있으므로 지진에 대한 저항력이 우수하다는 것을 알 수 있다. 기둥 크기 및 모양에 따른 에너지 소산능력은 <그림 20>과 같다.

<비교 18> 기둥 크기 및 모양에 따른 힘강성

승어력 및 두개 두께에 따른 부재각별 힘강성은 <그림 19>과 같다. 두개 두께가 클수록 힘강성은 크게 나타나며 승어력 두께는 힘강성과의 상관성을 보이지 않는다. 강성 저하율은 두개 두께가 클수록 작게 나타난다. 에너지 소산능력은 수평하중에 대한 구조물의 수평변위량의 곡으로 계산되어진 누적량을 말하고 에너지 누적량이 클수록 에너지 소산능력은 증가한다. 기둥 크기 및 모양에 따른 에너지 소산능력을 보면 기둥 크기가 180mm 이상의 경우 유사하게 나타나고 150mm인 경우에는 에너지 소산능력이 감소하며, 사각형 기둥의 원형 기둥보다 에너지 소산능력이 큼을 알 수 있다. 하지만 마찰계수가 작은 경우에는 오히려 원형 기둥의 에너지 소산능력이 사각형 기둥보다 크게 나타난다. 이는 이력곡선에서 볼 수 있듯이 부재각에 따른 하중 증가폭이 다르기 때문이며, 하중의 차이는 기둥과 모양의 접촉면

건축역사연구 제21권 3호 통권82호 2012년 6월
에 따라 영향을 받으려라 판단된다.

승어턱 및 두겁 두께에 따른 에너지 소산능력을 비교하면 <그림 21>과 같다.

기둥 크기가 180mm인 사각형 기둥은 승어턱 및 두겁 두께에 두개의 에너지 소산능력이 증가한다. 두개 두께를 두개로 하고 승어턱을 없게 한 II-R18-2는 부재가 1/15에서 승어턱이 부러졌으며, 부재각 길이에 소산능력이 가장 작다. 기둥 크기에 상관없이 승어턱의 두께가 유사한 경우 에너지 소산능력이 유사하게 나타난다.

하중과 에너지 소산능력을 각기의 상태에 따라 기둥 크기 및 모양별로 비교하여 <그림 22>에 나타낸다.

사각형 기둥 180mm의 실험체를 기준으로

<그림 21> 승어턱 및 두겁 두께의 에너지 소산능력

<그림 22> 기둥 크기 및 모양에 따른 하중-에너지 소산능력 관계

건축역사연구 제21권 3호 통권82호 2012년 6월
하여 기둥 크기 및 모양에 따른 각 부재각별 상대치로 비교한다. 마찰계수가 큰 경우, 기둥 크기에 따른 하중은 평균 1.18배 증가하였으나 에너지 소산능력은 0.92배로 감소하였다. 기둥 모양은 하중은 1.31배, 에너지 소산능력은 1.03배 증가하였으나 부재각이 커질수록 하중 및 에너지 소산능력이 감소하였다. 마찰계수가 작은 경우, 기둥 크기에 따른 하중은 평균 2.89배, 에너지 소산능력은 1.61배로 증가하였다. 기둥 모양은 하중은 1.11배, 에너지 소산능력은 1.04배 증가하였다. 마찰계수가 작은 경우에는 하중 및 에너지 소산능력은 기둥 크기에 따라서는 편차가 크게 나타났으며, 부재각이 커질수록 원형 기둥이 하중 및 에너지 소산능력이 큼을 알 수 있다. 하중과 에너지 소산능력의 차이는 기둥과 보의 접촉면의 건고성에 따른 영향이라 판단된다.

숭어턱 및 두엽 두께에 따른 하중-에너지 소산능력의 관계를 〈그림 23〉에 나타낸다. 숭어턱 두께에 따른 영향은 하중은 기둥의 크기가 작은 경우가 증가하였고, 에너지 소산능력은 기둥 크기가 큰 경우가 증가하였다. 두엽 두께를 증가한 경우 부재각별 하중은 유사하나 에너지 소산능력이 부재각 1/120 이후 급격하게 감소하는 것을 알 수 있으며, 숭어턱의 두께가 작은 실험체는 부재각 1/15에서

\[
\begin{align*}
\text{가동 크기 180 mm} & \quad \text{가동 크기 210 mm} \\
\text{(a) 숭어턱 두께} & \\
\text{(b) 두엽두께}
\end{align*}
\]

〈그림 23〉 숭어턱 및 두엽 두께에 따른 하중-에너지 소산능력

건축역사연구 제21권 3호 동권82호 2012년 6월
송어덕이 부리지 다른 실험체에 비해 에너지 소산능력이 빨리짐을 알 수 있다.

5. 결론

전통 목구조 중 민도리식 구조의 기둥-보-도리는 화통맞춤으로 결구되며, 화통맞춤은 기둥머리에 4방향으로 흙(갑)을 만들어 보를 설치하고 그 위에 도리 방향의 부재를 없애 결구하는 방식이다. 화통맞춤의 구조방식을 평가하기 위해 기둥의 크기 및 모양, 송어덕 및 두께의 두께를 요인 및 구조부의 상태(결구부의 건고함)에 따른 반복가격을 실시하여 다음과 같은 결론을 도출하였다.

1. 결정부의 상태에 따라 마찰계수가 큰 실험체는 부재가 1/60에 이르기까지는 안정적인 이력가격을 보이며 마찰계수가 작은 실험체는 부재가 1/24이후 하중이 급격하게 증가한다. 부재가 1/30이후부터 옥 안 이상으로 부재이론이 확인되나 부재의 과열은 관찰되지 않는다.

2. 마찰계수가 큰 실험체는 기둥 크기(기둥 크기 150mm 제외)와 상관없이 최대 하중은 유사하게 나타나며, 마찰계수가 작은 실험체는 기둥 크기가 클수록 하중이 증가한다. 동일한 단면적이지만 기둥 모양이 다른 실험체는 유사한 하중을 가지므로 기둥 모양에 따른 영향은 작다. 송어덕 및 두께 두께에 따른 영향이 적으며 송어덕 두께가 감소되면 송어덕이 부리지 구조체의 불균질이 더욱될 수 있다.

3. 헹강형 저하율은 기둥 크기 및 마찰계수가 클수록 저하율이 작으며 기둥 모양에 따른 영향은 작다.

4. 에너지 소산능력은 마찰계수에 따라 다르며 마찰계수가 큰 경우 사각형 기둥이 원형 기둥보다 크게 나타나며, 송어덕 및 두께 두께가 두꺼워수록 크게 나타난다. 마찰계수가 작은 경우에는 원형 기둥이 사각형 기둥보다 크게 나타난다.

국내에 현존하는 목구조의 구조성능을 평가하기 위한 기초자료가 제시되기 위해서는 구조형식에 따른 구조방식, 상부하중, 도리의 구 속여부 등에 대한 연구가 진행되어야 할 것이다. 시간이 경과함에 따른 재료의 내구성 및 구조적 성능의 저하에 따른 결구부의 구조성능 향상 및 지진에 대비한 보강방안에 대한 연구도 진행되어야 할 것이다.

< 참고 문헌 >

1. 국토해양부 도시정책관, 『도시·건축 업무편람』, 2009
2. 국립방재교육연구원 방재연구소, 『목조 건축물의 내진성능 평가항목에 따른 내진 진단법의 개발』, 2009
3. 권기혁·유해판·이진혁·최민석, 『단소섬유판 산업공법으로 보강된 목재보 홍강도에 관한 연구』, 한국방재학회논문집 제8권 1호, 2008, pp. 1~7.
4. 김영아, 『전통 건축물 손상목부재 재활용방안 연구』, 명지대학교 석사학위논문, 2010
5. 무라타 게이지, 『김철주·임재혁 역, 일본 전통 건축 기술의 이해』, 한국학술정보(주), 2008
6. 문기현, 『사진과 도면으로 보는 한옥짓기』, 한국문화재보호재단, 2005
7. 문화재청, 『한국전통 목조 건축물 영조규명조사보고서』, 2006
8. 문화재청, 문화재수리 등에 관한 법률, 2011
9. 문화재청, 주요 업무 통계자료집, 2011
10. 문화재청, 청운동 병천택, 2005
11. 문화재청, 의성 소우궁, 2005
12. 문화재청, 전남 하범수 가옥, 2005
13. 문화재청, 고성 신제효 가옥, 2005
14. 문화재청, 파장동 이병원 가옥, 2005
15. 문화재청, 남성 조길방 가옥, 2005
16. 문화재청, 장덕 신씨 가옥, 2005
17. 문화재청, 장덕 대이리 너와집, 2005
18. 문화재청, 장덕 대이리 금과집, 2005
19. 문화재청, 보은 선병국 가옥, 2006
20. 문화재청, 민운동 소선루, 2006
21. 문화재청, 합천 묘산묵호가옥, 2006
22. 문화재청, 보성 이금재가옥·이병재가옥·이용옥가옥·영화장, 2006
23. 문화재청, 궁집, 2006
24. 문화재청, 강릉 신교장, 2007
25. 문화재청, 정읍 김동수 가옥, 2007
26. 문화재청, 음주선생 고택, 2007
27. 문화재청, 흥성 조용식 가옥, 2007
28. 문화재청, 해양 읍두서 가옥, 2007
29. 문화재청, 남원 문성재, 2007
30. 문화재청, 구례 윤조루, 2007
31. 문화재청, 청도 윤장고택 및 만화장, 2007
32. 문화재청, 함양 일두 고택, 2007
33. 문화재청, 영천 민취당, 2007
34. 문화재청, 양동 서백당, 2008
35. 문화재청, 어제인장군 생가, 2008
36. 문화재청, 영동 규당고택, 2008
37. 문화재청, 가일수국고택, 2008
38. 문화재청, 벌봉동 고성이씨 담동과 종택, 2008
39. 문화재청, 김천선생 가옥, 2008
40. 문화재청, 영광 안인검특 종택, 2008
41. 문화재청, 경주 앙동마을, 2009
42. 문화재청, 안동 하화마을, 2009
43. 문화재청, 아산 의암리 참관택, 2010
44. 문화재청, 봉화 설매리 3집 찰기구명집·예천 의성김씨 낙안종택·영주 광현고택·송석헌, 2010
45. 박원규·이광미, 「우리나라 건축물에 사용된 목재 수종의 변천」, 한국건축역사학회 건축역사연구 제16권 1호, 2007, pp. 9 28.
46. 서정문·최인길·전영선·이종림·신재철·허택영, 「고대 민가의 구조 및 목조 프레임의 수평해충에 관한 연구」, 한국지진공학회 제1권 제3호, 1997, pp. 3 1 37.
47. 서정문·최인길·전영선·이종림·신재철, 「수평·교반해충에 대한 초기상간 목조 프레임의 이력특성 평가」, 한국지진공학회 논문집 제1권 제3호, 1997, pp. 21 27.
48. 이필성, 「전통 문화재 목조프레임의 횡해충에 대한 거동 및 이력특성」, 서울대학교 석사학위논문, 2000
49. 한국산업규격, KS F 2206
50. 한국산업규격, KS F 2207
51. 한국산업규격, KS F 2208
52. 한국산업규격, KS F 2209
53. 木造軸組法建物の耐震設計マニュアル
編集委員會, 「伝統構法を生かす木造耐震設計マニュアル—限界耐力計算による耐震設計·耐震補強設計法」, 2004

검수(2012. 2. 9)
수정(1차: 2012. 5. 29, 2차: 2012. 6. 12)
개정확정(2012. 6. 18)
A Structural Characteristics of Hwatong-Connections in Traditional Mindori Type of Wood Structures

Yu, Hye-Ran
(Post-Doc, Kongju National University)
Kwon, Ki-Hyuk
(Professor, University of Seoul)

Abstract

This study is intended to Mindori structure which is general private houses’ structural type among traditional types and is a basic study to confirm structural characteristics of Hwatong connection which is general connection type of column-beam-cross beam. It is aimed to analyze how main member, column, such as size, figure, thickness of Sungetuk and Dugeup affect on structure. Following conclusions are drawn.
1. According to connection conditions, models with big coefficient of friction show stable hysteretic behavior until the angle rotation of member reaches 1/60 and models with small coefficient of friction show dramatical increase in load after the angle rotation of member reaches 1/24. After the angle rotation of member reaches 1/30, separation distance of members is identified physically and cracks are not observed.
2. Specimens with big coefficient of friction show similar inner force regardless of column size(except column size 150mm) and models with small coefficient of friction show increasing inner force as the column size increases. Specimens with same sectional area have similar inner force even though the column figures are different. The thickness of Sungetuk and Dugeup doesn’t affect inner force greatly, however, when the thickness of Sungetuk is thin, it could lead to failure of structure as it breaks.
3. The bigger the size of column and the coefficient of friction are, the smaller Bending stiffness depreciation ratio is.
4. Energy Dissipation Efficiency differs from the coefficient of friction. When the coefficient of friction is big, square column shows bigger than round one and it is bigger when the thickness of Sungetuk and Dugeup is thicker. When the coefficient of friction is small, round column shows bigger than square one.

Keywords: Traditional Wood Structures, Hwatong-Connections, Structural Characteristics, Rotation Angle, Energy Dissipation Efficiency