Conventional Anchorage Reinforcement vs. Orthodontic Mini-implant: Comparison of Posterior Anchorage Loss During the En Masse Retraction of the Upper Anterior Teeth

Seung-Hak Baek, DDS, MSD, PhD¹, Young-Ho Kim, DDS, MS, PhD²

Abstract

This study sought to compare the amounts of posterior anchorage loss during the en masse retraction of the upper anterior teeth between orthodontic mini-implant (OMI) and conventional anchorage reinforcement (CAR) such as headgear and/or transpalatal arch. The subjects were 52 adult female patients treated with sliding mechanics (MBT brackets, .022" slot, .019X.025" stainless steel wire, 3M-Unitek, Monrovia, CA, USA). They were allocated into Group 1 (N=24, Class I malocclusion (CI), upper and lower first premolar extraction, and CAR), Group 2 (N=15, CI, UP1LP1 extraction and OMI), and Group 3 (N=13, Class II division 1 malocclusion, upper first and lower second premolar extraction, and OMI). Lateral cephalograms were taken before (T0) and after treatment (T1). A total of 11 anchorage variables were measured. Analysis of variance was used for statistical analysis. There was no significant difference in treatment duration and anchorage variables at T0 among the three groups. Groups 2 and 3 showed significantly larger retraction of the upper incisor edge (U1E-sag, 9.3±7.3 mm, P<.05) and less posterior anchorage loss (U6M-sag, 0.7~0.9 mm, P<.05; U6A-sag, 0.5 mm, P<.01) than Group 1. The ratio of retraction amount of the upper incisor edge per 1 mm of anchorage loss in the upper molar made for the significant difference between Groups 1 and 2 (4.6 mm:7.0 mm, P<.05). Group 3 showed a relatively distal inclination of the upper molar (P<.05) and the intrusion of the upper incisor and first molar (U1E-ver, P<.05; U6F-ver, P<.05) compared to Groups 1 and 2. Although OMI could not shorten the treatment duration, it could provide better maximum posterior anchorage than CAR.

Key word : conventional anchorage reinforcement, orthodontic mini-implant, posterior anchorage loss

• J Kor Dent Sci. 2010; 3(1) : 5 - 10
Introduction

The most common way of reducing lip protrusion and straightening the patient’s profile is orthodontic treatment with the extraction of the upper and lower first premolars and retraction of the anterior segments under maximum anchorage\(^1,2,3\). Traditionally, conventional anchorage reinforcement (CAR) such as headgear (HG) and/or transpalatal arch (TPA) has been used for this purpose. Maximum anchorage means less than 25 per cent of space closure in the extraction space via posterior anchorage loss\(^4\). Therefore, an accurate prediction of the amount of anchorage loss during the retraction of the anterior teeth is critical in determining both treatment planning and selection of the appropriate mechanics.

Recently, there has been a dramatic increase in the use of orthodontic mini-implant (OMI; also known as temporary anchorage device) to allow maximum anchorage, to decrease the need for patient compliance, and to simplify the treatment procedure further\(^5-12\).

There have been several reports on the success rate of OMI\(^9,10,12\). Although the superiority of OMI to CAR in terms of posterior anchorage preservation during canine retraction has been reported\(^13,14\), there are few reports on the degree of posterior anchorage loss with OMI during the en masse retraction of the anterior teeth. Therefore, this study sought to compare the anchorage loss of the posterior teeth and amount of retraction of the anterior teeth in Class I and Class II division 1 malocclusion patients with lip protrusion and minimal crowding between CAR and OMI.

Materials and methods

The initial subjects were 125 adult female patients (mean age = 23.32 years, range: 18-35 years) with Class I or Class II division 1 malocclusion with lip protrusion and minimal crowding and who needed maximum posterior anchorage. Based on the following criteria, the final samples were selected:

- Gender and age: Women older than 17 years to eliminate the potential influence of gender and age
- Skeletal and dental condition: Class I or Class II molar relationship, normal overbite (>0\(\text{mm}\), <4\(\text{mm}\)), labioversed upper incisor (U1 to palatal plane>105\(^\circ\)), and less than 4 \(\text{mm}\) crowding in each arch
- Soft tissue profile: lip protrusion (lower lip to Ricketts’ aesthetic line>2\(\text{mm}\))

Treatment method

- Fixed appliance and archwire: MBT brackets (.022” slot, 3M-Unitek, Monrovia, CA, USA) with .019X.025 inch stainless steel wire for the en masse retraction of the upper anterior teeth
- In Class I malocclusion cases, extraction of the upper and lower first premolars, CAR such as HG and/or TPA, and sliding mechanics described in the MBT technique\(^15-17\) were used.
- In Class II division 1 malocclusion cases, extraction of the upper first and lower second premolars, OMI (Dual-Top Anchor system, Jeil Medical Co., Seoul, Korea; diameter of 1.6\(\text{mm}\) length of 8\(\text{mm}\), self-drilling type), and sliding mechanics were used. OMI was placed in the buccal-attached gingiva areas between the upper second premolar and first molar just adjacent to the

mucogingival junction of the upper arch after leveling and alignment. Ni-Ti closed coil springs (medium, 0.022" Ormco, Orange, CA, USA) stretched from the OMI head to the hook on the archwire between the upper lateral incisor and canine were used beginning two weeks after OMI installation. In case of unstable or failed OMI, a new one was placed on the buccal attached gingiva between the upper first and second molars.

Treatment results
- Finished with Class I canine and molar relationship
- Normal overbite and overjet (>2 mm and <4 mm, respectively)

A total of 52 patients were selected as final samples and allocated into Group 1 (N=24, Class I malocclusion and

<table>
<thead>
<tr>
<th>Sig.</th>
<th>Mean</th>
<th>SD</th>
<th>Mean</th>
<th>SD</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1 (N=24)</td>
<td>22.65</td>
<td>3.97</td>
<td>26.32</td>
<td>8.40</td>
<td>21.53</td>
<td>5.50</td>
</tr>
<tr>
<td>Group 2 (N=15)</td>
<td>27.29</td>
<td>8.09</td>
<td>27.33</td>
<td>6.39</td>
<td>25.98</td>
<td>3.84</td>
</tr>
<tr>
<td>Group 3 (N=13)</td>
<td>0.0797</td>
<td>0.0932</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analysis of Variance (ANOVA) and Duncan’s multiple comparison test were done. Group 1 means Class I malocclusion with conventional anchorage reinforcement, Group 2, Class I malocclusion with orthodontic mini-implant, Group 3, Class II division 1 malocclusion with orthodontic mini-implant, SD, standard deviation, and Sig., significance.

<table>
<thead>
<tr>
<th>Sig.</th>
<th>Mean</th>
<th>SD</th>
<th>Mean</th>
<th>SD</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1 (N=24)</td>
<td>83.44</td>
<td>3.69</td>
<td>82.62</td>
<td>3.88</td>
<td>82.84</td>
<td>2.43</td>
</tr>
<tr>
<td>Group 2 (N=15)</td>
<td>82.62</td>
<td>3.88</td>
<td>80.37</td>
<td>3.34</td>
<td>78.88</td>
<td>4.10</td>
</tr>
<tr>
<td>Group 3 (N=13)</td>
<td>0.7493</td>
<td>3</td>
<td>(2,1)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analysis of Variance (ANOVA) and Duncan’s multiple comparison test were done. Facial angle means N-Pog to Frankfort horizontal plane, and APDI, anteroposterior dysplasia indicator; facial height ratio was (posterior facial height/anterior facial height) x 100, and sig., was significance. *: P < .05; **: P < .01; ***: P < .001.
CAR), Group 2 (N=15, Class I malocclusion and OMI), and Group 3 (N=13, Class II division 1 malocclusion and OMI) (Table 1).

Lateral cephalometric radiograms taken before (T0) and after treatment (T1) were traced and digitized using a graphic tablet (Wacom Co., Ltd., Vancouver, BC, Canada) and V-Ceph program (Cybermed, Seoul, Korea) by one investigator (BSH). The landmarks and reference lines are illustrated in Fig. 1. The horizontal reference line is palatal plane (ANS-PNS), and the vertical reference line is a tangent plane to the horizontal reference plane through Pt point. A total of 8 skeletal (Fig. 2) and 11 anchorage variables (Fig. 3) were measured to the nearest 0.01 and 0.01 degree.

Six randomly selected sets of cephalograms were retraced and re-digitized after two weeks to check for measurement errors. Since there was no significant difference between the two measurements (p>.05; error of linear measurement <0.98 mm, error of angular measurement<1.01°), the first measurement was used for this study.

One-way analysis of variance (ANOVA) was performed to compare the differences at the T0 and T1 stages and change during T0 and T1 among the three groups, with the results verified using Duncan’s multiple comparison test.

Results

There was no significant difference in age at the T0 stage and treatment duration among the three groups (Table 1).

At the T0 stage, Groups 1 and 2 did not show significant difference in SNA, SNB, ANB, APDI, and Downs’ facial plane angle. Note, however, that Group 3 revealed a skeletal Class II malocclusion pattern due to mandibular retrusion (facial angle, P<.05; SNB, P<.01; ANB, P<.001; APDI, P<.001; Table 2). Groups 2 and 3 exhibited a more hyperdivergent pattern than Group 1 (FMA, P<.05; Björk sum, P<.01; facial height ratio, P<.01; Table 2).

At the T0 stage, the anchorage variables describing the shortest distance from the upper central incisor or the upper first molar to the vertical reference line (U1E-sag, U1A-sag, U6M-sag, and U6A-sag) and angulation of the upper first molar to the horizontal reference line (U6 to PP) did not reveal any significant difference among the three groups (Table 3). Note, however, that Group 3 exhibited more upright and extruded upper incisor than Groups 1 and 2 (U1 to PP, P<.001; U1E-ver, P<.05; Table 3). These findings suggest that Class II malocclusion with mandibular retrusion had more upright and extruded upper incisors than Class I malocclusion.
At the T1 stage, Group 3 demonstrated a relatively distal inclination of the upper first molar compared to Groups 1 and 2 (U6 to PP, P<.05, Table 3) and upright upper central incisor compared to Group 1 (U1 to PP, P<.01, Table 3).

The amounts of upper incisor edge retraction in Groups 2 and 3 were significantly larger compared to Group 1 (approximately 9.3 mm; 7.3 mm, P<.05, Table 3). Note, however, that the upper incisor in all groups moved in a manner of relatively controlled tipping because the amounts of sagittal change in the upper incisor root apex showed 1.1~2.7 mm of lingual movement (Table 3).

In terms of posterior anchorage loss, Groups 2 and 3 exhibited significantly less posterior anchorage loss than Group 1 (U6M-sag, 0.7~0.9 mm; 2 mm, P<.05; U6A-sag, 0.5 mm; 2 mm, P<.01; Table 3).

In the vertical aspect, Group 3 showed an intrusion of the upper central incisor and first molar, although Groups 1 and 2 revealed an extrusion of such (approximately 1.1 mm intrusion: 0.5~0.6 mm extrusion U1E-ver, P<.05; U6F-ver, P<.05, respectively; Table 3).

Discussion

This study was performed to determine how much could OMI provide better posterior anchorage preservation than CAR during the en masse retraction of the upper anterior teeth in case of Class I malocclusion with minimal crowding. To estimate the effectiveness of OMI in Class II division 1 malocclusion patients, Group 3 was included in this study.

The fact that there was no significant difference in treatment duration between Groups 1 and 2 (Table 1) implies that OMI may not significantly shorten the treatment period among patients who need maximum posterior anchorage.

A Class II malocclusion pattern in Group 3 and a more hyperdivergent pattern in Groups 2 and 3 (Table 2) suggest that OMI is used to get stabler posterior anchorage in these types.

Patients with hyperdivergent facial type are known to have weaker natural posterior anchorage than those with a hypodivergent one \(^{[14,19]}\). In this study, however, there was significantly less posterior anchorage loss in Groups 2 and 3 than Group 1 (U6M-sag, P<.05; Table 3). This implies that OMI could provide superior anchorage preservation in spite of a hyperdivergent pattern.

The fact that the upper incisor showed significantly greater amounts of retraction in Groups 2 and 3 than Group 1 (approximately 9.3 mm; 7.3 mm, P<.05, Table 3) and intrusion in Group 3 in spite of the extrusion of Groups 1 and 2 (approximately 1.1 mm intrusion: 0.5~0.6 mm extrusion, U1E-ver, P<.05; Table 3) suggests that OMI could sustain the intrusion and retraction of the upper anterior teeth.

Considering the upper premolar extraction space to be 8.3~
8.4 mm, the values of posterior anchorage loss in Groups 2 and 3 (0.7~0.9 mm; Table 3) were significantly less than 25 per cent of the extraction space; posterior anchorage loss in Group 1 (around 2 mm; Table 3) was the same at 25 per cent of extraction space. These results indicate that OMI could provide better maximum posterior anchorage than CAR. Moreover, the U1 to U6 ratios - meaning the ratio of retraction amount of the upper incisal edges per 1 mm of anchorage loss in the upper molars - showed significant difference between Groups 1 and 2 (approximately 4.6 mm⁻¹ in Group 1, 7.0 mm⁻¹, P<0.05, independent t-test; Table 3). This finding implies that OMI provides stabler posterior anchorage than CAR. In Group 3, although the value of U1 to U6 ratio was highest (25.5, Table 3) among the three groups, standard deviation was also the biggest (34.7, Table 3). This was because 5 out of 13 cases showed a wide range of U1 to U6 ratio from 16 to 115, suggesting that the upper molars did not move to the mesial side at all for the correction of Class II molar relationship. Therefore, comparing the mean values of three groups using the ANOVA test was meaningless. Still, Group 3 obviously had good posterior anchorage preservation as well. The fact that Group 3 showed a relatively distal inclination of the upper molar (U6 to PP, P<0.05, Table 2) and the intrusion of the upper incisor and first molar (U1E-ver, P<0.05; U6F-ver, P<0.05, Table 3) compared to Groups 1 and 2 implies that OMI may apply the distal and intrusive vector to the entire upper arch during the en masse retraction of the upper anterior teeth. This seems to be due to the direction of pull by the Ni-Ti closed coil spring from the OMI head to the hooks on the upper archwire. Eventually, it can facilitate the correction of the anterior deep overbite and Class II molar relationships.

CONCLUSIONS

Although OMI could not shorten the treatment duration, it could provide better maximum posterior anchorage than CAR in spite of Class II malocclusion and hyperdivergent pattern.

References