오염농도의 공간적 분포를 고려한 도시림의 대기정화기능 계량화*
최철현1 · 이우성2 · 정성관1*

A Quantitative Analysis of Air Purification Effectiveness on Urban Forest Considering the Spatial Distribution of Pollutant Concentration*
Chul-Hyun CHO1 · Woo-Sung LEE2 · Sung-Gwan JUNG1*

요 약
본 연구는 도시의 대기환경과 관련하여 도시림의 정화 기능을 평가하고 개선방안에 대해 고찰해 보는 것이 목적이다. 대기오염은 도시화가 특히 심화되어 있는 지역일수록 심각하기 때문에 우리나라의 대도시 중 하나인 대구광역시를 대상으로 도시림의 대기정화기능을 추정하였다. 오염 분포의 흡수량을 산정함에 있어 기존에는 고려되지 못했던 오염농도의 공간적 차이를 적용하였으며, 크리깅을 통해 대기환경모델링 자료의 해상도를 향상시켰다. 도시림의 유형 및 분포를 파악해 본 결과, 대상지역 도시림 내의 식생군락은 총 26개 유형이었으며, 소나무군락, 소나무-산란군락, 소나무-삼수리군락 등 다양한 수종이 분포하고 있었다. 도시림의 대기정화기능을 알아보고 자기 CO2의 흡수량을 파악해 본 결과, 연간 흡수량은 총 108,155t/yr일 것으로 분석되었다. 도시림의 대기오염물질 흡수량의 경우 SO2 흡수량은 총 183.5t/yr이었으며, NOx 흡수량은 총 410.2t/yr인 것으로 나타났다. 본 연구를 통해 오염농도에 대한 공간적 분포를 고려하지 않아 확연한 불가능했던 농도에 따른 흡수량의 차이를 확인해 볼 수 있었다.

주요어 : 도시림, 대기정화기능, 크리깅, 공간적 이질성

ABSTRACT
The purpose of this study is to estimate air purification effectiveness considering the improvement of its methods related atmospheric environment. The air purification
도시림은 인공적인 도시환경을 개선시키고
규정적인 환경기능을 수행할 뿐 아니라 사회적
적합성을 위한 기회를 제공한다(Kweon et
al., 1998; Sullivan et al., 2002). 과거에는
단순히 도시림의 경관적·미적 측면만을 강조
하였으나 현재는 다양한 기능을 제공하는
녹지기반(green infrastructure)의 개념으로
서 인식되고 있다. 이 중에서도 특히 도시화
로 인한 각종 환경문제 증가 및 도시기후의
특성으로 인해 발생하는 대기질의 악화현상에
대한 계절 및 환경을 위해 도시림의 효과를
열정하는 연구가 주목받고 있다. 연구결과, 도
시림 내의 수목은 평형성도 개선, 대사과정을
통해 대기오염물질을 흡수하거나 정화하여
대기질 개선시키는 효과가 있는 것으로 밝
혀졌다(McPherson and Haip, 1989; Smith,
1990; Jo and McPherson, 1995). 따라서
도시의 복합적 대기질을 자연적인 정화기능으
로 개선시킬 수 있다는 점에서 이러한 도시
림의 기능 및 중요성이 부각되고 있다.

도시림의 대기정화가능은 정량화 하는 것은
효과를 입증하는 것과 동시에 녹지의 필요성
을 적극적으로 제시할 수 있는 기초자료가 된
다. 또한 환경에 대한 가치를 높이고 가치에
상응하는 만큼 보존의 필요성을 인식시키는
수 있다. 이에 최근에는 GIS를 이용하여 정량
적인 산림녹지의 기능평가에 관한 연구가 활
발하게 이루어지고 있다(박정호과 정서자,
1999; 김경태 등, 2005; 오정학 등, 2005;
김정호 등, 2006; 이우성 등, 2008; 이우성과
창성관, 2011).

도시림의 대기정화가능 계량화에 관한 연구
는 정화효과를 사회적 한계비용으로 환산하여
그 가치를 파악해 볼 수 있다는 점에서 중요
한 의의를 지닌다(Chow and Rolfe, 1989;
조현길과 안태원, 2001; 조용환과 조현길,
2002; 조현길 등, 2002; 국립산림과학원,
2010b). 그러나 대기정화 기능에 대해서 도
시림의 양적·질적 다양성 및 대기오염 능도
의 공간적 분포를 고려하지 않은 경우 실질적
가치가 제대로 반영되지 못할 수 있다. 현재
국립산림과학원에서 시행되는 산림의 공약적
가치 계량화에 대한 연구는 환경부담금의 한
동료인 대체산림자원조성비의 산정에 이용되
고 있으나 지역별 대기오염도의 차이가 고려
되지 않고 있다(국립산림과학원, 2010b). 이
는 대기오염 심화지역에 속하는 산림의 중요
도가 상대적으로 저평가될 우려가 있기 때문에 반드시 보완되어야 할 사항이다. 또한 대기정화기능이 크게 요구되는 도시 지역 주변 산림의 존속이나 전용이 발생할 경우 해당 지역의 대기정이 악화할 수 있기 때문에 이를 방지할 수 있는 산림의 보존방안 및 대책이 필요함을 알 수 있었다. 이에 본 연구에서는 대기오염물질의 퍼져나가며, 공간적 분포를 예측해보고 이를 고려하여 도시내 대기정화기능을 정량적으로 산정해 보았다.

이론적 고찰

도시형의 대기정화효과는 산림을 구성하고 있는 모든 요소가 복잡적이상화한근태를 통해서 환경적 기능을 수행하는 것이기 때문에 그 효과를 정량화하게 계량화하기 어려운 점이다. 최근 수목의 대기정화기능에 대한 연구 역시 많이 이루어지긴 했으나 복잡한 방위체로 구성되어 있는 생물종에 대해서 어떤 해석이 가능한지에 대해 어려운 점이 많다. 대기정화 예측산소 역시 한 가지로 설명할 수 없으며 이는 가용방식이 복합적으로 이루어져 정량화를 수행하기 때문이다.

변화를 바이오메스 상대생장식으로 추정하는 방법이 있다(국립산림과학원, 2010b).

대기정화기능을 계량화하기 위해서는 대기오염물질에 대한 정보가 반드시 필요하다. 대기오염물질 농도를 정량화하기 위해서는 실시간으로 계측하는 것이 가장 바람직하지만 대상지가 황폐화된 경우 심해지게 된다. 따라서 대기오염물질이 대기오염물질과 같은 대기보정방법을 통해 대기정이 예측해야 할 필요성이 있다. 대기오염물질은 지속적으로 발생하여 있으며, 다양한 방법들이 있으나 현재 기술적으로 가장 알 수 있고 최근 들어 활발하게 활용되고 있는 모델은 CMAQ 대기정 모델링 체계이다(김동영, 2009).

CMAQ 모델링 체계는 3차원 기상형 모델인 MM5(Mesoscale Model 5)와 배출모델인 SMOKE(Sparse Matrix Operator Kernel Emissions system)을 이용하여 대기오염물질을 모델링 하여 대기환경 모델링 (Korea Air Quality Forecasting System: KAQFS)에서 이 모델링 체계를 구축하여 사용 중에 있다. 이를 통해 수도권 및 한반도 전체 각 지역을 대상으로 대기오염 모델링을 실시하며, 예측결과를 실시간으로 제공한다. 그러나 모델링 범위가 황폐화된 경우 공간적량도가 낮다는 단점이 있다. 따라서 이러한 자료를 국가적 분석에 사용할 경우에는 적합한 공간보간법(spatial interpolation)을 통해 농도분포를 작성해야 할 필요성이 있다.

연구방법

1. 연구의 과정

본 연구의 목적은 대치지 내 도시형의 대기정화기능을 추정하는 것이며, 기존에 고려되지 못했던 대기오염물질의 공간적 분포에 대해 분석한 뒤, 이를 적용하여 기존의 평가방법과 비교해 보는 것을 목표로 한다. 도시형의 대기정화기능 추정을 위해 사용된 기초자료는 수치있사하고 생태자연도 그리고 위성영상 등을 이용해 구축된 현존식생도가 사용되었다. CO의 흡수량 추정은 IPCC

<table>
<thead>
<tr>
<th>연구의 의론적 과학</th>
<th>도시군의 기초자원 조사</th>
<th>대기오염 농도분포도 작성</th>
<th>결론 및 제언</th>
</tr>
</thead>
<tbody>
<tr>
<td>도시형태의 기초자원 조사</td>
<td>Biomass 추정</td>
<td>대기확산모델링 자료</td>
<td>CO2 흡수량 산정</td>
</tr>
<tr>
<td>인구밀도, 산업도, 주택도밀도</td>
<td></td>
<td></td>
<td>오염물질 흡수량 산정</td>
</tr>
<tr>
<td>산업조합 및 자료 분석</td>
<td>석유전력배수원, 전환계수 적용</td>
<td></td>
<td>수분량 중점적도 및 하중산정</td>
</tr>
<tr>
<td>대기정화기 비율</td>
<td>Biomass 적용</td>
<td></td>
<td>단백질실재도 CO2 흡수량</td>
</tr>
</tbody>
</table>

FIGURE 1. 연구의 수행과정

2. 연구대상지

대기오염은 도시화가 특히 심화되어 있는 지역일수록 심각하게 때문에 우리나라의 대도시 중 하나인 대구광역시를 대상으로 도시의 대기정화기는 추정하였다. 대구광역시는 본지형 도시라는 지형특성상 공기의 순환성이 불량하여 대기질의 악화가 심각하고 주변부에 도시형이 높아지고 있으나 도심부에는 공산이 산재해 있어 대기질의 공간적 차이가 폭넓다고 판단되기 때문에 대상지로 선정하였다. 그러나 대구의 경우 도시화율이 비교적 낮기 때문에 대기오염에 대한 민감도가 적다고 판단되어 제외하였으며, 중구는 실제로 도시형이 분포하고 있지 않기 때문에 분석결과에서 제외되었다.

3. 식생환경 분석 및 현존식생도 작성

도시형의 자원조사를 위하여 식생군단의 공간적 분포를 우선적으로 파악하였다. 우리나라의 경우 산림자원 기반모델자료로 구축하여 국가산림자원조사가 정기적으로 이루어지고 있으나 매년 유통적으로 변하는 도시형의 구조를 파악하기는 어렵다. 따라서 이를 보완하기 위해 식생군단, 토지개발, 산림관리 등과 같이 다양한 분야에서 활용되고 있는 현존식생도를 활용하였다.

현존식생도를 작성하기 위하여 먼저 2008년 2월에 촬영된 고해상도 KOMPSAT-2 위성영상지를 사용하여 식생경계를 풀리온으로 구분한 후 현장조사를 실시하여 식생경계 및 식생유형을 확인하였다. 현장조사는 381개의 표본점이 조사되었으며, 이 중에서 129개 지점은 각 군락을 대표하는 수목의 흡교량, 수고 등의 자료조사를 위해 사용되었다. 최종적으로 시간 및 경제적 여건으로 인해 미조사된 지점에 대해서는 수치값으로, 생태자연도 내 식생군단에, 현장조사까지 자료 등을 이용하여 세부 식생군단유형을 설정하였다.

4. 대기오염 농도분포도 구축 및 분석

본 연구에서는 한반도 전 지역을 대상으로 CMAQ 모델링을 통해 예측한 2008년도 오염 물질별 농도차를 사용하였으며, 차로의 공...
간해상도는 9km×9km이다. 이 중 공간보간에 사용된 자료는 대규모역사를 포함하는 것으로 45km, 세로 55km의 범위로 총 42개의 각자 좌표이다(그림 2). 공간해상도 항상을 위하여 사용한 기법은 동상적으로 넓리 사용되고 있는 경계크리기장(ordinary kriging)을 사용하였으며, 자료의 전단점상을 위하여 허스토그램분석을 실시하였다. 이를 통해 자료의 정규성을 확인할 수 있었으며, 유사정규분포를 나타내도록 대수변환을 실시하였다. 또한 격자점의 평균거리와 최대거리간을 고려하여 분리거리 (lag size)와 분리개수 (lag number)를 설정하였다(Johnston et al., 2001). 그리 고 이를 실시하기 위해서는 공간적 상호관계와 연속성에 대해 이를 이상적으로 표현할 수 있는 이론적 베리오그램 (theoretical variogram)을 결정해야 하는데 본 연구에서는 자료의 실제적 베리오그램 (experimental variogram)과 유사한 형태의 가우스 모형 (gaussian model)을 적용하였다. 또한 대기 오염, 농도자료의 경우 기상학적 영향에 의한 방향성을 고려해야 할 필요성이 있기 때문에 계절별 추동량을 적용한 이방성 베리오그램을 적용시킨 모형을 사용하였다.

가공적으로 도시중의 CO₂ 흡수량과 대기오염 농도자료를 종합하여 흡수량 현황도를 작성하는 작업은 각각의 자료를 그립 형태로 전환하여 ArcGIS 9.3의 공간검색처리 (spatial query processing)를 통해 이루어졌다(최철현 등, 2011).

5. 대기정화능 추정

1) CO₂ 흡수량 산정

현재 산림의 CO₂ 저장량에 대한 연구는 기후변화협약과 관련하여 탄소배출전 감체력의 추정을 위해 활발히 진행되고 있다. 국내의 경우 국립산림과학원의 산림탄소계산 연구를 기반으로 주요 수종별 탄소배출계수를 개발하여 사용하고 있으며, CO₂ 저장량을 산정하는 방법은 석 (1)과 같다. 중기적적 (SV)을 구하기 위해 현존식생도에서 파악된 정보를 바탕으로 단단차원에서 입목간계적 산출하여 단위면적당 재적을 파악하였다. 그 후, 식생군별 면적비율 및 수종별 계수를 적용하여 총 CO₂ 저장량을 계산하였다(국립산림과학원, 2010a).

\[\text{CO}_2 \text{ 저장량} = SV \times WD \times BEF \times \left(1 + \frac{R}{CF} \times 44/12 \right) \]

여기서, SV : Stem Volume, 중기적적
WD : Wood Density, 목재밀도
BEF : Biomass Expansion Factor, 바이오매스 확장계수
R : Root-to-shoot ratio, 뿌리-지상부 비율
CF : Carbon Fraction, 탄소전환계수

도시럼에 촉발된 CO₂ 저장량의 총량을 계산하는 것과는 달리 흡수량은 한 해 동안 충수한 CO₂의 양을 의미하며, 이를 계산하기 위해서는 수량의 파악이 중요하다. 수량은 생장 추에 의한 촉발된 영양수를 측정하여 추정될 수 있지만 본 연구에서 사용된 도시림 실제 조사자료의 경우 생장추에 의한 촉정량이 누락되어 수량을 파악할 수 없었다. 따라서 이들 해결하기 위해 제4차 수치밀도상의 영양자료를 활용하였으며, 대규모행사의 조사

![FIGURE 2. 농도분포도 구축 범위 및 격자망](image-url)
2) 대기오염물질 홍수량 산정

일반적으로 도시림에 의한 가스 상 오염물질의 연간 정화효과는 CO₂ 흡수속도와 밀접한 관계가 있다. 100ppb 이하의 저농도 수준에서는 CO₂ 흡수속도가 미세먼지 대기오염물질 흡수속도가 증가하기 때문에 연간정화량에 의한 CO₂ 흡수량을 계량하여 흡수량을 계량화 할 수 있다 (Hill, 1971). 흡수속도는 점착속도에 의해 결정되며, 수증에 따른 대기오염 물질별 점착속도를 분석에 적용해야 할 필요성이 있다. 국외의 경우 수종별 점착속도에 대한 연구가 많 이 진행되어 이를 통해 간접적 점착속도를 이용하여 추계하지만 해당 모델의 대국내의 적합성 여부는 아직 검토되지 못했다. 따라서 본 연구에서는 선행연구에서 사용된 대기오염물질 점착속도를 사용하여 본격적 적용하였다(표 1). 또한 대기오염물질별 홍수량을 추정하기 위한 산정식은 국립환경연구원 (1993)의 연구를 참고하였다(식 2).

<table>
<thead>
<tr>
<th>오염물질</th>
<th>점착속도 (cm/S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>0.33</td>
</tr>
<tr>
<td>SO₂</td>
<td>2.80</td>
</tr>
<tr>
<td>NO₂</td>
<td>1.90</td>
</tr>
</tbody>
</table>

출처: Hill, 1971; 戸塚 謙, 1987; 大気環境に関する標準統計月報, 1989

\[
W_x = \frac{[XO_3/CO_3]}{G} \times P_G
\]

여기서, \(W_x\) : 개체수복의 카스(X) 흡수량 (gXO₃/h)
\([XO_3]\) : 카스(X)의 흡수속도 (mgX/h)
\(G\) : 카스(X)의 점착속도 (cm/S)
\(D_x\) : 대기중 카스(X) 농도 (ppm)
\([CO_3]\) : CO₂ 흡수속도 (gCO₃/L)
\(GCO_2\) : CO₂의 점착속도 (cm/S)
\(DCO_2\) : CO₂ 대기중 농도 (ppm)
\(P_x\) : 개체수복의 총 CO₂ 흡수량 (gCO₂/h)

결과 및 고찰

1. 도시림의 분포 및 비율

대상지 내의 현존식생도를 분석해 본 결과 경찰, 임산, 시설지 및 나라, 조지 등에 체외의 식생군단의 유형은 총 26종류로 나타났다. 이 중에서 소나무군단의 분포면적은 약 8,450.6ha로 전체 면적의 39.5%를 차지하고 있으며, 코나무-참나무군단이 그 다음으로 약 20.3%를 차지하고 있었다.

각 구별 주요 식생군단의 면적 및 비율은 분석해 본 결과, 표 2와 같이 나타났다. 대상지 내에서 식생의 면적은 가장 넓은 동구의 경우 총 18개 유형의 식생군단이 분포하고 있었으며, 그 중 소나무군단이 약 40%를 차지하고 있었다. 동구를 비롯한 북구, 남서구 역시 소나무군단의 분포비율이 가장 높았으며, 삼림의 면적은 가장 적은 서구의 경우 약 13%로 서구-상수리군단의 비율이 46%로 가장 높았다. 서구의 경우 북구보다 삼림의 면적이 적었지만 동구와 같은 18개 유형의 식생군단이 분포하고 있었으며, 북구와 남서구의 경우 14개 유형의 식생군단이 분포하였다. 남구와 서구는 각각 9개, 5개 유형의 식생군단을 나타내고 있었다.

2. 대기오염농도분포도의 구축

모델링 자료에 대해 공간통계기를 사용하여 대상지의 연평균 오염농도에 대한 공간적 분포도를 작성하였다(그림 3). 그 결과, SO₂ 오염물질의 농도가 가장 높은 지역은 남서구로 나타났으며, NO₂ 농도는 남구와 수성구가 가장 높은 것으로 나타났다. 동구의 경우 SO₂와 NO₂의 농도가 가장 높은 것으로 나타났는데, 이는 동구의 대부분이 산업지로 둘러싸여 있으며, 대기오염물질이 주로 배출되는 도시화지역의 면적이 적은 것에 기인하는 것으로 판단된다.

대상지 내에서 SO₂ 농도분포도를 살펴보면 북서쪽으로부터 고농도의 동가분포가 서구와
TABLE 2. 각 구별 주요 식생군락의 면적 및 현존식생도

<table>
<thead>
<tr>
<th>정구</th>
<th>식생군락</th>
<th>면적 (ha)</th>
<th>비율 (%)</th>
<th>정구</th>
<th>식생군락</th>
<th>면적 (ha)</th>
<th>비율 (%)</th>
<th>현존식생도</th>
</tr>
</thead>
<tbody>
<tr>
<td>동부</td>
<td>소나무 - 삼산</td>
<td>2686.3</td>
<td>26.9</td>
<td>서부</td>
<td>소나무 - 삼산</td>
<td>2062.3</td>
<td>20.6</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>소나무 - 삼산</td>
<td>1540.9</td>
<td>15.2</td>
<td>서부</td>
<td>소나무 - 삼산</td>
<td>160.7</td>
<td>1.6</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>삼산</td>
<td>728.2</td>
<td>7.4</td>
<td>서부</td>
<td>삼산</td>
<td>56.6</td>
<td>0.6</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>소나무 - 옥산</td>
<td>357.3</td>
<td>3.6</td>
<td>서부</td>
<td>소나무 - 옥산</td>
<td>55.3</td>
<td>0.6</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>기타 (13군락)</td>
<td>1005.1</td>
<td>10.2</td>
<td>서부</td>
<td>기타 (13군락)</td>
<td>176.0</td>
<td>1.8</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>계</td>
<td>10,857.6</td>
<td>100.0</td>
<td>서부</td>
<td>계</td>
<td>1,794.2</td>
<td>100.0</td>
<td>0.0</td>
</tr>
<tr>
<td>북부</td>
<td>소나무 - 삼산</td>
<td>663.0</td>
<td>6.7</td>
<td>남부</td>
<td>소나무 - 삼산</td>
<td>130.2</td>
<td>1.3</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>소나무 - 삼산</td>
<td>247.8</td>
<td>2.6</td>
<td>남부</td>
<td>소나무 - 삼산</td>
<td>130.1</td>
<td>1.3</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>소나무 - 삼산</td>
<td>170.9</td>
<td>1.8</td>
<td>남부</td>
<td>삼산</td>
<td>108.8</td>
<td>1.1</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>소나무 - 삼산</td>
<td>120.6</td>
<td>1.2</td>
<td>남부</td>
<td>삼산</td>
<td>66.7</td>
<td>0.7</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>기타 (13군락)</td>
<td>504.1</td>
<td>5.3</td>
<td>남부</td>
<td>기타 (13군락)</td>
<td>120.4</td>
<td>1.2</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>계</td>
<td>4,390.3</td>
<td>44.0</td>
<td>남부</td>
<td>계</td>
<td>735.2</td>
<td>7.4</td>
<td>0.0</td>
</tr>
<tr>
<td>서부</td>
<td>소나무 - 삼산</td>
<td>957.2</td>
<td>9.8</td>
<td>가자 - 삼산</td>
<td>71.1</td>
<td>0.7</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>소나무</td>
<td>825.5</td>
<td>8.6</td>
<td>가자 - 삼산</td>
<td>130.0</td>
<td>1.3</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>소나무 - 삼산</td>
<td>380.0</td>
<td>3.9</td>
<td>가자 - 삼산</td>
<td>17.8</td>
<td>0.2</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>소나무 - 삼산</td>
<td>294.8</td>
<td>3.0</td>
<td>가자 - 삼산</td>
<td>15.5</td>
<td>0.2</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>성수 - 변사</td>
<td>188.9</td>
<td>1.9</td>
<td>가자 - 삼산</td>
<td>11.3</td>
<td>0.1</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>기타 (13군락)</td>
<td>762.5</td>
<td>7.8</td>
<td>가자 - 삼산</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>계</td>
<td>3,466.8</td>
<td>35.0</td>
<td>가자 - 삼산</td>
<td>계</td>
<td>154.6</td>
<td>100.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

자료: 대구경역시, 2008

단시구를 거쳐 정차 면적이 늘어지는 것을 확인해 볼 수가 있었다. 이는 서구와 단시구의 경우 SO₂의 주 오염원인 SOₓ 배출량이 높기 때문에 일으킨 것으로 판단된다. 이를 확인해 보기 위하여 서구의 2008년 SOₓ 오염원 중 배출

![SO₂](image1)

![NO₂](image2)

FIGURE 3. 오염물질별 농도분포도
내에서 SOx 배출량이 가장 높았으며, 달서구는 730톤으로 두 번째로 배출량이 높았다 (http://airemiss.riec.go.kr).

NOx의 오염농도 분포도를 살펴본 결과, 도심지역 뿐만 아니라 남동쪽 부근의 농도가 높게 분석된 것으로 나타났다. 이는 NOx의 주요 오염원인 NOx의 주요 배출원이 자동차와 같은 이동오염원임을 감안할 때, 도심지 내부에서 오염원이 대량으로 발생되었으나 바람이나 거溘 등의 영향으로 연해 남동방향으로 확산되어 도심지 외부지역의 농도가 더 높게 나타난 것으로 판단된다. 대상지 남동쪽에 NOx의 원인물질 배출량이 높다고 해석해 볼 수도 있지만 해당 지역의 경우 달성군과 경산시가 위치하고 있으며, 이 지역이 대도시인 대구광역시에 비해 NOx 주요 배출원인 도로이동오염원이 많다고는 볼 수 없다. 따라서 NOx 오염물질은 도심지 내부에서 발생하여 외부로 확산되었다는 해석이 더 옳을 것으로 판단된다.

3. 대기정화능 산정

1) CO2 흡수량

식생군별 면적에 CO2 흡수량을 산정한 결과는 표 3과 같다. 달성군을 제외한 대구광역시 도시와의 연간 CO2 흡수량을 종합해 본 결과, 총 108,155t/yr으로 분석되었다. 대상지 내의 도시재개발 영역으로 가장 많은 양의 CO2를 흡수하는 식생군은 소나무군으로 나타났다.

<table>
<thead>
<tr>
<th>식생군</th>
<th>면적</th>
<th>CO2 흡수량</th>
</tr>
</thead>
<tbody>
<tr>
<td>녹나무</td>
<td>8,450.6</td>
<td>39.49</td>
</tr>
<tr>
<td>소나무</td>
<td>4,342.8</td>
<td>20.29</td>
</tr>
<tr>
<td>소나무-수수리</td>
<td>3,684.8</td>
<td>17.22</td>
</tr>
<tr>
<td>잔류</td>
<td>1,005.6</td>
<td>4.70</td>
</tr>
<tr>
<td>소나무-층레</td>
<td>468.4</td>
<td>3.03</td>
</tr>
<tr>
<td>소나무-층류</td>
<td>415.4</td>
<td>1.93</td>
</tr>
<tr>
<td>갓나무</td>
<td>389.9</td>
<td>1.62</td>
</tr>
<tr>
<td>식물-수수리</td>
<td>283.2</td>
<td>1.26</td>
</tr>
<tr>
<td>수수리</td>
<td>267.5</td>
<td>1.25</td>
</tr>
<tr>
<td>소나무-수수리</td>
<td>267.0</td>
<td>1.25</td>
</tr>
<tr>
<td>수수리</td>
<td>263.3</td>
<td>1.23</td>
</tr>
<tr>
<td>수수리-박나무</td>
<td>188.9</td>
<td>0.88</td>
</tr>
<tr>
<td>리나무</td>
<td>176.8</td>
<td>0.84</td>
</tr>
<tr>
<td>임진일재</td>
<td>174.1</td>
<td>0.81</td>
</tr>
<tr>
<td>식물-소나무</td>
<td>160.1</td>
<td>0.74</td>
</tr>
<tr>
<td>아가시</td>
<td>158.5</td>
<td>0.54</td>
</tr>
<tr>
<td>소나무</td>
<td>144.6</td>
<td>0.54</td>
</tr>
<tr>
<td>수수리-갈랭</td>
<td>111.6</td>
<td>0.52</td>
</tr>
<tr>
<td>아가시-수수리</td>
<td>104.5</td>
<td>0.49</td>
</tr>
<tr>
<td>신갈-갈랭</td>
<td>67.0</td>
<td>0.31</td>
</tr>
<tr>
<td>소나무-박나무</td>
<td>57.3</td>
<td>0.27</td>
</tr>
<tr>
<td>소나무-층레</td>
<td>43.0</td>
<td>0.20</td>
</tr>
<tr>
<td>야가시-갈랭</td>
<td>21.7</td>
<td>0.10</td>
</tr>
<tr>
<td>소나무-층류</td>
<td>19.5</td>
<td>0.09</td>
</tr>
<tr>
<td>갓나무</td>
<td>18.4</td>
<td>0.09</td>
</tr>
<tr>
<td>소나무-층류</td>
<td>6.5</td>
<td>0.03</td>
</tr>
<tr>
<td>합계</td>
<td>21,398.7</td>
<td>100.00</td>
</tr>
</tbody>
</table>
요인으로의 시간적 분포를 고려한 도시현의 대기개량성능 개량화 / 최희현 - 이수성 - 정성관

오며, 연간 CO\(_2\) 흡수량은 전체 흡수량의 38.3%에 해당하는 41,929.8t/yr인 것으로 분석되었다. 한편, 갓나무군락의 경우 도시현 전체 면적에서 차지하는 비율은 1.8%였으나 CO\(_2\) 흡수량의 비율은 전체에서 약 7% 이상을 차지하고 있었다.

FIGURE 4. 식생군락별 단위면적당 평균 CO\(_2\) 흡수량
2) 대기오염물질 흡수량

수중에 따른 대기오염물질 흡수량의 차이를 분석해 본 결과, 식생군락 중에서 임업수중인 깃나무군락의 대기오염물질 흡수량이 가장 높게 분석되었으며, 임업수중인 상수리군락, 아까시-춘창군락, 상수리-아가시군락이 다음으로 높게 분석되었다(그림 5). 일반적으로 환경수의 대기오염물질 흡수량이 높다고 알려져 있으나 깃나무군락의 CO₂ 흡수량이 상대적으로 높아 오염물질 흡수량 역시 높게 분석된 것으로 판단된다.

영글에 따른 대기오염물질의 흡수량 차이를 분석해 보기 위하여 식생군락을 일정으로 재 분류한 뒤, 그 차이를 비교하였다(표 4). 그 결과, 영글이 증가함에 따라 오염물질의 흡수량은 감소하는 것으로 나타났으며, 이는 일정 수령 이상인 성숙의 경우 동화기관의 흡수량에 비해 변동기간의 호흡량이 증가하게 되면서 연간 생장량이 점차 느리지기 때문인 것으로 판단된다. 생장량의 감소는 곧 CO₂ 흡수량 역시 감소한다는 것을 의미한다고 볼 수 있으며, 수목의 가스량 오염물질의 흡수속도는 CO₂ 흡수속도에 비례하기 때문에 대기오염물질 흡수량 역시 감소하는 결과를 나타내다고 볼 수 있다.

대상지 내 도시형 전체의 평균 오염물질 흡수량은 분석해 본 결과, S0₂가 11.81kg/ha/yr, NO₂가 26.08kg/ha/yr으로 나타났다. 이를 국립산림과학원(2010b)의 공익기능 개량화 연구에서 우리나라 전체 산림을 대상으로 조사한 결과와 비교해 보면 본 연구에서 산정한 흡수량이 더 높게 분석되었다는 것을 알 수 있다(표 5). 이는 공익기능 개량화 연구의 경우 S0₂와 NO₂의 농도에 대해 각각 전국 평균치인 0.0059ppm, 0.0225ppm을 적용하였기 때문인 것으로 판단되며, 대상지의 경우 S0₂와 NO₂의 평균 농도는 각각 0.0064ppm, 0.0291ppm으로 전국 평균치보다 높았다.

![FIGURE 5. 식생군락별 단위면적당 평균 SO₂, NO₂ 흡수량](image-url)
TABLE 4. 임상·영금별 대기오염물질 흡수량

<table>
<thead>
<tr>
<th>영금</th>
<th>SO₂ 흡수량(kg/ha/yr)</th>
<th>NO₂ 흡수량(kg/ha/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td>임상</td>
<td>30.5</td>
<td>10.3</td>
</tr>
<tr>
<td>황석쟁</td>
<td>26.5</td>
<td>17.5</td>
</tr>
<tr>
<td>황석쟁</td>
<td>13.8</td>
<td>10.9</td>
</tr>
<tr>
<td>황석쟁</td>
<td>23.5</td>
<td>12.9</td>
</tr>
</tbody>
</table>

TABLE 5. 우리나라 산림의 단위면적당 대기오염물질 흡수량

<table>
<thead>
<tr>
<th>영금</th>
<th>SO₂ 흡수량(kg/ha/yr)</th>
<th>NO₂ 흡수량(kg/ha/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>임상</td>
<td></td>
</tr>
<tr>
<td>결합수</td>
<td>5.79</td>
<td></td>
</tr>
<tr>
<td>결합수</td>
<td>11.48</td>
<td></td>
</tr>
<tr>
<td>결합수</td>
<td>9.32</td>
<td></td>
</tr>
<tr>
<td>제조</td>
<td>8.37</td>
<td></td>
</tr>
</tbody>
</table>

자료: 국립산림과학원, 2010b. 편자재학성

라서 대상지가 대도시인 점을 감안할 때, 대기오염농도가 전국 평균치에 비해 높기 때문에 도시화의 대기오염물질 흡수량이 더 높게 분석된 것으로 판단된다.

3) 오염농도분포에 따른 흡수량의 차이

대기오염물질 흡수량에 대한 공간적 차이를 비교해 보았을 때, SO₂, NO₂ 흡수량 현황도를 작성하였다(그림 6). 대상지 도시권 내에서 SO₂ 흡수량이 연간 30kg/ha/yr 이상인 지역의 범위는 약 484ha인 것으로 나타났으며, 해당 지역은 자나무군락, 소나무-상당리군락, 상수리-야가사군락의 빈도가 높은 것으로 나타났다. 20~30kg/ha/yr인 군락은 중간 범위의 227ha였으며, 상수리군락, 상수리-야가사군락, 일본야간나무군락의 빈도가 높았다. 반면, 5kg/ha/yr 미만으로 분석한 군락의 범위는 4,878ha로 전체 농도의 약 23%에 달했으며, 소나무-상당리군락, 자나무군락, 상당리군락의 빈도가 높았다. SO₂의 경우 흡수량이 적은 지역의 비율이 높았으며, 이는 대상지 전체적으로 SO₂ 농도가 비교적 낮은 편인기 때문에 도시화가 정화하게 되는 오염물질의 양이 상대적으로 적게 분석된 것으로 판단된다.

NO₂ 흡수량의 경우 50kg/ha/yr 이상인 군락의 범위는 약 690ha였으며, 자나무군락, 상수리군락, 소나무-상당리군락의 빈도가 높았다. NO₂ 흡수량은 40~50kg/ha/yr인 군락은 전체 범위의 169ha였으며, 상수리-야가사군락, 상수리군락 등의 빈도가 높았다. 반면, 5kg/ha/yr 미만으로 나타난 군락의 범위는 145ha였으며, 상수리군락, 소나무-상당리군락, 상수리군락 등의 빈도가 높았다. NO₂ 흡수량 현황도를 살펴보면, 도시나 복구보다는 남구나 수성구, 달서구 주변 지역의 흡수량이 많은 것으로 나타났으며, 그 중에는 지역의 NO₂ 오염농도가 높아, 정화된 양이 많이 배출되면서 나타난 결과로 판단된다. 따라서 이 지역의 산림은 NO₂에 대한 오염 방지가 높은 관이이며, 대기오염 정화기능의 요구도가 다른 곳에 비해 높은 지역이라 볼 수 있다.

4) 구별 대기오염농도와 영금구조에 따른 흡수량의 차이

대기오염농도의 차이에 따른 흡수량의 차이를 비교해 보았을 때, 대상지 전체 지역에 각기 간별하게 분석하고 있는 주요 군락의 단위면적당 대기정화 기능을 구별로 비교하여 보았다(표 6). 소나무군락의 경우 대상지 전체에서 CO₂의 단위면적당 흡수량의 범위는
4.10~5.55t/ha/yr도 큰 차이가 없었다. 이는 소나무군락의 영근분포가 III층급에서 IV층급 사이로 비교적 비슷하였기 때문인 것으로 판단된다. 그러나 소나무군락의 구별 SO₂와 NO₂의 흡수량은 오염농도에 따라 큰 차이를 보이는 것으로 나타났다. SO₂의 농도가 가장 높고 NO₂ 농도가 두 번째로 높은 달서구의 경우 SO₂와 NO₂ 흡수량이 가장 높은 것으로 나타났다. 소나무-상수리밀림 역시 달서구의 대기오염물질 흡수량이 가장 높게 나타났다. 이는 대기오염이 심화된 지역임수록 상대적으로 오염분질의 점착량이 높아지기 때문에 나타난 결과로 보이며, 영급 역시 다른 지역에 비해 낮기 때문에 연간생장률의 증가폭이 커 CO₂ 흡수량이 많기 때문인 것으로 판단된다. 상수리밀림의 경우 달서구와 동구의 흡수량을 비교해 보면 CO₂ 흡수량은 동구가 1.6배 가량 높지만 SO₂ 흡수량은 달서구가 더 높은 것으로 나타났다. CO₂ 흡수량이 가스상 오염 분질의 흡수량과 상관성이 크지만 대기 중 SO₂ 농도에 의한 점착량의 차이에 의해 이러한 결과가 나타난 것으로 판단된다. 리기다소 나무군락의 경우 수정구와 동구의 흡수량 차 이를 비교해 보면 평균 영급이 비슷하여 CO₂ 흡수량 역시 비슷하게 나타났으나, NO₂ 흡수량은 약 1.7배 가량 차이가 나는 것으로 나타났다. 이 역시 수정구의 NO₂ 농도가 동구에 비해 더 높기 때문인 것으로 판단되며, 대기 오염농도가 흡수량에 미치는 영향이 크다는 것을 알 수 있다.
결론 및 제언

도시림은 대기오염물질을 정화하고 피해를 저감시킬 수 있는 환풍작용으로서 산림의 건강성과 구조, 지역별 대기오염농도 등에 따라 정화기능의 차이가 있다. 따라서 산림 및 대기질의 지역적 차이를 파악하여 대기오염 적절방안 및 도시림 관리방안을 세우는 것은 도시환경구조에 따른 산림자원의 효율적 활용을 위해 중요한 과제라 할 수 있다. 이에 본 연구는 오염물질별 농도분포를 적용하여 정화기능의 공간적 차이를 규명하였다는 의미가 있다.

본 연구의 결과를 간단히 요약하면 대상지의 대기오염 농도분포를 구축해 본 결과, 달서구의 SO₂ 농도가 가장 높게 나타났으며, NO₂의 경우 남구와 수성구가 가장 높게 나타났다. 또한 도심지방이나 대상지 낭동복 지역의 NO₂ 농도가 높은 것으로 나타났다. 대상지 내 도시림의 CO₂ 흡수량을 분석해 본 결과, 단위면적당 평균 6.4t/ha/yr인 것으로 나타났으며, 대기오염지역 평균으로는 11.4kg/ha/yr, NO₂가 26.0kg/ha/yr인 것으로 나타났다. 또한 공기적인 흡수량의 차이를 분석해 본 결과, SO₂의 경우 흡수량이 낮은 지역의 면적이 대부분을 차지하고 있으며, NO₂의 경우 동구나 북구보다는 남구나 수성구, 달서구 주변 지역의 흡수량이 많은 것으로 나타났다.

도시림의 영급구조와 대기오염농도에 의한 흡수량의 차이에 대해 분석해 본 결과, 영급이 높아질수록 대기오염물질의 흡수량은 감소한다는 사실을 알 수 있었다. 같은 영급 일 경우에도 그 지역의 오염농도에 따라 흡수량이 크게 차이가 나는 것으로 확인되었으며, 오염농도가 높은 지역의 경우 흡수량이 높게 분석되었다.

대기오염농도의 공간분포를 고려하여 도시 림의 대기정화기능을 평가해 본 결과, 오염이 심화된 지역에 대한 도시림의 정화기능이 상 대적으로 좋게가능할 수 있으면서 기존 연구와의 차이를 보완할 수 있었다. 이는 도시림 중에서 대기정화기능이 특히 요구되는 지역에 대한 추론의 방향 및 보건 필요성을 제시할 수 있는 정량적 자료로서 활용될 수 있을 것이다. 연구의 한계로는 수복의 오염물질 정화효과에 대해 수준별, 계절별 차이를 고려한 적정수준을 적용하지 못했다는 점을 들 수 있으나 이는 추후 계절적 실험에 의해 개선되어야 할 것으로 판단된다.

본 연구는 대기오염 문제인 도시림의 건강과 적절되는 환경적 측면에서 중요한 의의를 가지고 있으며, 오염이 심화된 지역의 도시림이 훌륭할 경우 그에 상응하는 정화기능의 상실효과에 대해서부터 정량적으로 탐구해 볼 수 있는 실용적 연구라 할 수 있다. 따라서 이를 바탕으로 대기질의 개선효과가 높은 도시림 지역을 탐색해 보고 그에 대한 중요성을 평가하여 주의 환경자원의 가치와 도시림의 중요성에 대한 경제적 가치도로 활용될 수 있을 것이다.

| TABLE 6. 구별 대기오염 농도 및 주요 식생군의 단위면적당 흡수량 |
|----------------|----------------|----------------|----------------|----------------|----------------|
| 영급 | 농도(ppm) | 소나무군 | 소나무-상수리군 | 상수리군 | 리가디소나무군 |
| | SO₂ | NO₂ | 영급 | CO₂ | SO₂ | NO₂ | 영급 | CO₂ | SO₂ | NO₂ | 영급 | CO₂ | SO₂ | NO₂ |
| 복구 | 5.8 | 23.3 | III | 5.55 | 9.84 | 18.77 | IV | 5.06 | 9.84 | 18.01 | II | 24.06 | 43.37 | 78.06 | III | 3.89 | 23.98 | 15.33 |
| 남서구 | 7.4 | 33.3 | III | 5.10 | 11.95 | 27.81 | III | 6.18 | 14.61 | 30.58 | IV | 9.32 | 22.05 | 48.48 | III | 2.60 | 6.17 | 11.32 |
| 서구 | 7.1 | 28.1 | IV | 4.73 | 10.98 | 19.89 | IV | 4.74 | 11.15 | 20.74 | IV | 7.98 | 18.73 | 34.47 | II | 5.88 | 13.70 | 24.22 |
| 동구 | 4.6 | 20.9 | IV | 4.70 | 6.54 | 13.29 | IV | 4.90 | 7.16 | 15.66 | II | 15.25 | 20.39 | 41.68 | II | 4.67 | 6.79 | 15.28 |
| 남부구 | 6.0 | 34.2 | IV | 4.69 | 9.18 | 26.61 | IV | 5.59 | 10.23 | 27.99 | III | 8.72 | 16.08 | 48.33 | II | 5.10 | 9.34 | 26.00 |
| 남구 | 7.0 | 34.2 | IV | 4.10 | 9.37 | 22.45 | IV | 4.89 | 10.66 | 26.41 | V | 6.21 | 13.72 | 32.75 | II | 5.88 | 13.29 | 32.06 |

CO₂ 흡수량: t/ha/yr, SO₂ 흡수량: kg/ha/yr, NO₂ 흡수량: kg/ha/yr
주

1) 이 작업은 대구광역시 도시림 설계 조사를 복합적으로 2007년에서 2008년까지 시행한 것으로 본 연구에서는 이 중 대상지에 해당하는 자료 일부를 사용하였다(대구광역시, 2008).

참고문헌

국립산림과학원. 2010a. 산림 온실가스 인벤토리를 위한 주요 수중별 탄소배출계수. 33쪽.
국립산림과학원. 2010b. 산림의 공역기능 제공과 연구. 87쪽.
국립환경과학원. 1993. 환경개선을 위한 정화 생물 개발에 관한 연구(II)-대기질 개선을 위한 정화수 개발- 32쪽.
김동영. 2009. 대기질 모형 CMAQ을 이용한 수도권 미세먼지 특성 연구. 경기개발연구원. 9쪽.

http://airemiss.nier.go.kr.

http://www.kaq.or.kr.