생명현상에 관한 과학적 의문 생성 과정에서 나타나는 생물학자의 두뇌 활성 양상

권용주* · 정진수 · 이준기 · 양일호
한국교원대학교

The Biologists' Brain Activation Patterns during the Generation of Scientific Questions on Biological Phenomena

Kwon, Yongju* · Jeong, Jinsu · Lee, Junki · Yang, Ilho
Korea National University of Education

Abstract: The purpose of this study was to investigate biologists' brain activation patterns during the generation of scientific questions on biological phenomena. Eight right-handed healthy biologists volunteered to be participants in the present study. The question-generation tasks were presented in a block design. The BOLD signals of the biologists' brain were measured by 3.0T fMRI system and data were analyzed using Statistical Parametric Mapping (SPM2). According to our results, the left inferior and middle frontal gyri, the medial prefrontal cortex, the bilateral hippocampus, the occipito-parietal route, the fusiform gyrus, and the cerebellum were activated significantly during the generation of scientific questions. Therefore, we suggested that generating scientific question is associated with analyzing observed situations, using verbal strategy, retrieving episodic memories for comparisons, and feeling cognitive conflicts.

Key words: scientific question, biologist, fMRI, brain activation pattern, biological phenomena, VLPFC

I. 서 론

과학적 의문에 관한 선행 연구들에 의하면, 과학적 의문은 주로 신지식과의 모습(Scardamalia & Bereiter, 1992), 호기심이나 놀람(Christtenbury & Kelly, 1983), 실제적인 필요(Thargard, 1998) 등에 의해 발생된다. 또한 인지적 관점에서 과학적 의문은 관찰현상 추출, 관찰현상 분석, 경험상황 표상, 경험상황 추출, 경험상황 분석, 원격적 설명자 표상, 현상 비교, 설명자 관단 등의 일련의 연속적 지식 표상과 사고 과정을 통해서 생성된다(이혜정 등, 2005).

그러나 이러한 선행 연구들은 과학적 의문의 생성을 인지적 관점에서 구성한 개념들을 사용해서 설명했을 뿐, 실제 우리의 두뇌 속에서 일어나고 있는 신경들의 활동이나 변화에 대해서는 설명해주지 못하는 한계를 가지고 있다. 뿐만 아니라, 선행 연구들에서 적용된 지질검사, 희상적 점검법, 발생 시고법, 관찰법 등의 인지심리학적 연구 방법들은 모두가 관찰자의 행동 반응에 의존하는 간접적인 방법이기 때문에 연구 과정에서 의문 생성의 본질이 왜곡될 수도 있는 제한점을 갖고 있다(Gagne, et al., 1997).
하지만 비교적 최근에 개발된 PET (positron emission tomography), fMRI (functional magnetic resonance imaging), MEG (magnetoencephalography) 등의 제 기능 영상화 기술들은 인지적 연구의 제한점을 해결해 줄 수 있는 가능성을 열어가고 있다. 특히 fMRI는 제 기능 구조뿐만 아니라 기능에 대한 3차원 영상구조가 가능하고 제 기능 활동에 대한 작은 구조적 및 기능적 변화도 탐지할 수 있을 뿐만 아니라 비침습적 (non-invasive) 기술이기 때문에 교육과 관련된 인지 기능 연구에 활발하게 활용되고 있다(Buxton, 2002; Frith, et al., 1991; Rosenweig et al., 2005). 제 기능 영상화 기술은 특정한 인지적 기능 끼의 어떤 부분들에 어떻게 사용함으로써 발견되는지를 직접적인 방법으로 연구할 수 있는 길을 열어놓은 것이다.

이러한 제 기능 영상화 기술을 적용한 연구 결과들은 과학적 의문 사항에 관하여도 몇 가지 시사점을 주고 있다. 먼저, 주어진 현상에서 의문이 생성되기 위해서는 현상 자체를 분석적으로 인식하는 것이 필요한데 이러한 지각 기능은 사변미세(fusiform gyrus)의 활성과 관련이 높은 것으로 생각된다(Caveza & Nyberg, 2000; Naghavi & Nyberg, 2005; Smith et al., 2005). 또한 정보를 비교하기 위한 내적 심상 및 언어의 표상은 위해서는 작업 기억(working memory)의 활성화가 필수적이라는 것은 사변두뇌(superior frontal gyrus)과 상·하두뇌(inferior parietal lobule)의 기능과 관련될 것으로 생각된다(Ruff et al., 2003), 더 나아가 의문 사항에서 표상된 정보들을 통합하는 좌뇌 전두엽(left frontal gyrus)의 역할도 중요할 것으로 생각된다(Caveza & Nyberg, 2000; Goel & Dolan, 2003a; 2003b). 마지막으로 의문의 생성은 갈등 상황의 감정이 개입된 것이므로 좌측 전두뇌(ventral lateral prefrontal cortex; VLPFC)가 관련됨 것으로 생각할 수 있다(Blackwood et al., 2004; Heekeren et al., 2004; Stavy et al., 2006; Voltz et al., 2005a, 2005b).

그러나 이러한 시사점을 과학의 내용이 범죄된 인지심리학적 과제들을 활용한 연구 결과들을 근거로 한 것이기 때문에 과학적 의문 사항과 직접적으로 관련시키는 데는 많은 제한점들이 있다고 할 수 있다. 또한 대부분 일반인들은 연구 대상으로 한 것이어서 과학적 의문 사항의 표준으로 삼을 수 있는 과학자들의 사고와는 거리가 있다고 생각한다. 따라서 이 연구는 과학의 한 영역인 생물학 영역에서 특별한 연구 엽적을 보인 생물학자들이 생물학적 의문을 생성할 때 활성화되는 두뇌의 특성을 분석하고자 한다.

2. 측정 과제 개발

연구자들은 생명현상에 관한 의문 사항 과정에서 나타나는 두뇌 활동을 알아보기 위해서 3개의 엔진과 제와 제로 개의 본 과제를 개발하였다. 신경생물학적 연구를 수행한 경험이 있는 생명과학 교육 전문가 3명과 현직 교사 4명의 각기 다른 세미나 및 워크숍을 통해 R & D 방식으로 과제들을 개발하였다. 먼저 3개의 1차 의문 사항과 제로 제시를 개발하였다. 또한 2차 과제들을 측정에 참여하지 않는 생물학자 및 박사 과정 학생들에게 투입한 후, 의문이 전혀 생성되지 않거나, 소리 자체가 너무 혼스러워서 가부키가 크게 나타나는 것, 혹은 악명지지에 의해 너무 쉽게 답이 나오는 과제들을 우선적으로 제시했고, 남은 과제 중 생물 영역 및 의문 사항을 선택하여 10개의 과제로 구성된 3차 과제를 완성하였다. 3차 과제는 동물과 관련 과제 5개의 식물 및 귀류에 관한 과제 5개로 구성되었다.

3. 측정 과제 제시

연구자들은 본 과제에 앞서 3개의 예비과정을 활용해서 fMRI 영상 과정 및 과제 수행 방법을 설계자들이 숙지할 수 있도록 훈련하였다. 훈련 중 설계자들이 이해하지 못한 부분은 반복적으로 과제를 수행하게 함으로써 연구자들의 의도를 충분히 파악할 수 있도록 하였다.

연구자들은 본 과제를 제시하기 위해서 본들 디자인 방법을 적용하였다(Buxton, 2002). 10개의 과학적 의문 사항 과제는 모두 21개의 병목으로 구성된 폼리
다임 안에 포함되어 들어갔고, 붙어 슬라이드는 공조 건(dummy)과 본 과제(main task; 의문 생성 과제), 기저조건(baseline condition; fix slide) 등으로 구분되었다(그림 1).

 처음에 제시된 공조건(dummy)은 기본 화면을 12 초간 제시하는 것이며, 이것은 피험자들에게 본 측정에 앞서 과제 수행을 준비할 것을 알리는데 의미가 있다. 본 과제에서는 생명현상에 관한 다양한 의문을 유발할만한 사건자료를 피험자들에게 30초간 제시하면서 관찰된 현상에 대한 의문을 생성할 것을 요구하였다. 과제 슬라이드에는 피험자들이 의문 생성 이후 가설까지 생성하거나 혹은 의문을 생성하지 않고 현상의 관찰만으로 머무르는 것을 방지하고, 피험자들이 의문 생성에만 집중할 수 있도록 돕기 위해서 사건자료에 대해 지시문구를 제시하였다(예, 아래 그림을 보고, 생각나는 의문을 제시하십시오). 본 과제의 제시문구는 모두 등일하였고 또로록 사건만 보고도 그러한 사고가 유발될 수 있도록 과제를 고안하였다. 기저조건은 기본 화면에 ‘+’ 표시를 제시하고 12초간 단순히 음성하게 하는 형식으로 제시되었다. 이것은 본 과제의 인지적 채점에서 시각 채점에서 일어나는 1차적 반응과 같은 뉴 기본적 활성을 제거하기 위해서 사용하는 일반적인 기법이다(Buxton, 2002).

4. 기능성 자기공명 영상 촬영

피험자들의 두뇌 활성을 측정하기 위해서 한국과학기술원 fMRI 연구동네에 있는 ISOL 3.0 Tesla forte MRI scanner를 사용하였다. 자기공명영상의 획득은 Gradient Echoplanar Imaging (EPI) sequence를 사용하였으며, 반복시간(repeated time; TR)은 3000ms, 에코시간(choke time; TE)은 35ms로 하였다. 또한 이미지 매트릭스는 64×64, 영상범위(FOV)는 220mm, 영상질량의 두께는 5mm, 절편의 수는 30장으로 하였다. 기능성 자기공명영상의 촬영 전에 T1 MR 영상이 시상선(sagittal plane)으로 촬영되었고, 이어서 과제의 시작과 동시에 EPI 방식으로 기능영상 을 위한 변수들을 동하여 촬영하였다.

5. 사후 면담

피험자들이 과제 수행에서 의미 있게 의문을 생성했는지, 또 생성한 의문의 수와 어떤 종류의 의문을 생성했는지를 확인하기 위해서 면담을 이용하여 사후 면담을 실시하였다. 먼저 면담자에 각 과제에서 생성한 의문들을 모두 기록하게 하였고, 작성된 의문이 외에 fMRI 활성 시 생성했던 의문이 없었는지 질문하는 형식으로 면담을 실시하였다. 또한 이 과정에서 어떠한 인지적 전략을 사용했는지 질문하였다.

6. 기능성 자기공명 영상 분석

영상 촬영을 통해 수집된 결과를 MATLAB 프로그램 환경에서 구현된 SPM2 (statistical parametric mapping, version 2)를 이용해서 분석하였다. 피험자들이 실림 중에 머리를 움직임으로써 생기는 오차를 줄이기 위해서 뇌 영상을 제정(realignment)하였으며, 이를 통해 생성된 평균 영상(mean-image)에 각 피험자의 T1 영상을 상관경계(co-register)하였다. 이 후에 공간 표준화(normalization)와 평형화(smoothing) 작업을 했다. 평형화는 8mm의 FWHM (full width at half maximum)로 Gaussian Kernel 필터를 이용하였다. 이후 각각의 피험자마다, 위치에서 두뇌 부분영상의 구성단위인 부피소(voxel; 2.0×2.0×2.0mm) 별 BOLD (blood oxygen level dependent) 신호의 변화는 실험조건(experimental condition), 그리고 기저조건(baseline condition)으로 나누어 각각의 scan에서 비교되었다. 이렇게 구성된 모델과 영상들의 처리된 결과는 상관관계를 이용하여 분석하였다.

각 피험자별로 위와 같은 대조조건을 가진 영상을 얻은 다음 피험자 간 집단 분석을 실시하였다. 집단분석에서는 통계적인 검정력을 높일 수 있도록 하기 위해서 개인화를 무선변수로 고려한 무선효과분석(random effect analysis)을 사용하였다. 본 연구에 적용한 통계적 방법은 T 점증도므로 SPM basic model의 단일 표본 T-검정(one sample T-test)을 사용하여 통계처리를 하였다. 다중비교(multiple comparison) 유의 수준 p 값은 보정하지 않은 0.001로 정하고 (uncorrected,
\[p < 0.001, \] 범위의 적 (extent threshold) 값인 \(k \)는 50 이상으로 제한하였다. 이렇게 얻어진 활성화된 두뇌 영역의 MNI (Montreal Neurology Institute) 좌표를 Talairach 좌표 (Talairach & Tournoux, 1998)로 변환하여 구체적인 두뇌 부위를 추론 하였다.

III. 연구 결과 및 논의

1. 사후 면담 결과

fMRI 측정이 완료된 후 이루어진 사후 면담에서

<table>
<thead>
<tr>
<th>희망자</th>
<th>의문 유형</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>추측적 의문</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>인과적 의문</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>예측적 의문</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>적용적 의문</td>
<td>0</td>
</tr>
<tr>
<td>계</td>
<td></td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>추측적 의문</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>인과적 의문</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>예측적 의문</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>적용적 의문</td>
<td>0</td>
</tr>
<tr>
<td>계</td>
<td></td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>추측적 의문</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>인과적 의문</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>예측적 의문</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>적용적 의문</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>계</td>
<td></td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>추측적 의문</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>인과적 의문</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>예측적 의문</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>적용적 의문</td>
<td>0</td>
</tr>
<tr>
<td>계</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>추측적 의문</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>인과적 의문</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>예측적 의문</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>적용적 의문</td>
<td>0</td>
</tr>
<tr>
<td>계</td>
<td></td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>추측적 의문</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>인과적 의문</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>예측적 의문</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>적용적 의문</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>계</td>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>추측적 의문</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>인과적 의문</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>예측적 의문</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>적용적 의문</td>
<td>0</td>
</tr>
<tr>
<td>계</td>
<td></td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>추측적 의문</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>인과적 의문</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>예측적 의문</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>적용적 의문</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>계</td>
<td></td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>
모든 피험자들은 제시된 자극을 보면서 자연스럽게 과학적 의문을 생성하였다고 응답했다. 이들은 각 과제에서 평균 3.55(SD=1.40)개의 의문을 생성하였으며, 추측적 의문이 가장 많았고 방법적 의문은 나타나지 않았다. 또한 피험자들은 의문 생성 과정에서 언어적 전략을 사용하였다고 응답하였다. 피험자들이 생성한 과학적 의문의 종류 및 수는 표 1과 같다.

2. 두뇌 활성 분석 결과
생물학자들이 과학적 의문을 생성하는 동안의 전체적인 두뇌 활성 양상은 좌뇌 전두엽의 활성이 두드러졌으며, 우뇌 전두엽의 활성은 나타나지 않았다. 후두엽과 전두엽 및 전면엽도 강하게 활성화 되었다. 특히 전면엽에서는 양측 해마의 활성이 발견되었다. 또한 두뇌엽 영역에서는 양측 모두 활성을 보이는 것으로 나타났다 (그림 2, 3과 표 2).

(1) 전두엽 영역
의문 생성 과정에서 생물학자들의 두뇌는 다양한 활성 패턴을 보였는데, 그 중 전두엽에서는 좌측 하전두이랑(inferior frontal gyrus; BA 47, 45), 상전두이랑(superior frontal gyrus; BA 6, 44), 중전두이랑(middle frontal gyrus; BA 6, 9), 중심전두이랑(precentral gyrus; BA 9), 내측전두이랑(medial frontal gyrus; BA 8, 9) 및 대뇌이랑(cingulate gyrus; BA 32)의 활성이 유의미하게 나타났다고 (그림 2와 표 2).

이중 상전두이랑은 우측소뇌와 함께 활성화 되는 경우가 많았으며, 주로 불확실한 상태 하에서의 추론 혹은 의사결정이나 언어전략을 구사하는 사.UserID가(silence word generation)와 같은 과제의 연구에서 많이 발견된다(Friedman et al., 1998). 이는 이들 영역이 언어적 작업기어(working memory)와 같은 관련이 있기 때문이다(Peterson et al., 1988). 이 연구에서도 모든 생물학자들이 자기공명영상 측정 후 간의 심층 면담에서 과제 수행 중 언어적 전략을 구사하였다고 보고한 바 있어, 의문지식이 두뇌에서 언어를 통해 생성되고 있다는 것으로 추정된다.

BA 8은 내측전두이랑의 한 영역으로 전안구영역(frontal eye field; FEF)라고도 불린다(Thompson et al., 2005). 이 영역은 빙수와 높이 상세 관찰 시 나타나는 영역으로 분석적 관찰 시 나타나는 활발한 애구동작으로 인해 활성화되고 있다. 이해영 등(2005)의 연구 결과에 나타난 과학적 의문의 생성 과정 중 ‘관찰현상 추출’과 ‘관찰현상 분석’ 단계의 수행이 이 영역의 활성과 관련이 있다고 할 수 있다.

대뇌이랑(cingulate gyrus; BA 32)은 전방과 후방에서의 역할이 다르다고 알려져 있다(Caveza & Nyberg, 2000; Naghavi & Nyberg, 2005). 이 영역은 주로 어떤 대상에 대한 주의 집중이나 의사결정, 잘 모르는 상황에 대한 추론, 답을 획득한 뒤의 실행 등의 역할을 수행한다고 알려져 있다. 이 중 실행자(executive role)의 역할은 대뇌이랑에서는 나타나지 않으며 주
<table>
<thead>
<tr>
<th>전두엽 (Frontal lobe)</th>
<th>두뇌 활성화 영역</th>
<th>영역 (BA) 및 반구</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Z-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>하전두엽 (Inferior frontal gyrus)</td>
<td>47 L</td>
<td>-42</td>
<td>27</td>
<td>2</td>
<td>5.36</td>
<td></td>
</tr>
<tr>
<td>하전두엽 (Inferior frontal gyrus)</td>
<td>45 L</td>
<td>-46</td>
<td>20</td>
<td>12</td>
<td>4.70</td>
<td></td>
</tr>
<tr>
<td>상전두엽 (Superior frontal gyrus)</td>
<td>44 L</td>
<td>-50</td>
<td>14</td>
<td>18</td>
<td>3.96</td>
<td></td>
</tr>
<tr>
<td>상전두엽 (Superior frontal gyrus)</td>
<td>6 L</td>
<td>-8</td>
<td>12</td>
<td>55</td>
<td>4.34</td>
<td></td>
</tr>
<tr>
<td>상전두엽 (Superior frontal gyrus)</td>
<td>6 L</td>
<td>-14</td>
<td>15</td>
<td>62</td>
<td>4.18</td>
<td></td>
</tr>
<tr>
<td>중전두엽 (Middle frontal gyrus)</td>
<td>9 L</td>
<td>-28</td>
<td>17</td>
<td>30</td>
<td>4.24</td>
<td></td>
</tr>
<tr>
<td>중전두엽 (Middle frontal gyrus)</td>
<td>6 L</td>
<td>-40</td>
<td>12</td>
<td>44</td>
<td>4.13</td>
<td></td>
</tr>
<tr>
<td>중외전두엽 (Precentral gyrus)</td>
<td>9 L</td>
<td>-34</td>
<td>12</td>
<td>36</td>
<td>4.13</td>
<td></td>
</tr>
<tr>
<td>내측전두엽 (Medial frontal gyrus)</td>
<td>9 L</td>
<td>-10</td>
<td>31</td>
<td>32</td>
<td>3.57</td>
<td></td>
</tr>
<tr>
<td>내측전두엽 (Medial frontal gyrus)</td>
<td>8 L</td>
<td>-8</td>
<td>31</td>
<td>41</td>
<td>3.46</td>
<td></td>
</tr>
<tr>
<td>대상이랑 (Cingulate gyrus)</td>
<td>32 L</td>
<td>-10</td>
<td>21</td>
<td>34</td>
<td>4.05</td>
<td></td>
</tr>
<tr>
<td>축두엽 (Temporal lobe)</td>
<td>방추이랑 (Fusiform gyrus)</td>
<td>37 R</td>
<td>48</td>
<td>-57</td>
<td>-16</td>
<td>5.24</td>
</tr>
<tr>
<td>두경엽 (Parietal lobe)</td>
<td>상두정조엽 (Superior parietal lobule)</td>
<td>7 R</td>
<td>26</td>
<td>-63</td>
<td>57</td>
<td>4.47</td>
</tr>
<tr>
<td>하두정조엽 (Inferior parietal lobule)</td>
<td>40 L</td>
<td>-46</td>
<td>-43</td>
<td>39</td>
<td>5.64</td>
<td></td>
</tr>
<tr>
<td>하두정조엽 (Inferior parietal lobule)</td>
<td>40 L</td>
<td>-44</td>
<td>-35</td>
<td>46</td>
<td>2.67</td>
<td></td>
</tr>
<tr>
<td>복연엽 (Limbic lobe)</td>
<td>해마 (Hippocampus)</td>
<td>L</td>
<td>-24</td>
<td>-31</td>
<td>3</td>
<td>3.32</td>
</tr>
<tr>
<td></td>
<td>해마 (Hippocampus)</td>
<td>R</td>
<td>28</td>
<td>-27</td>
<td>2</td>
<td>3.16</td>
</tr>
<tr>
<td>후두엽 (Occipital lobe)</td>
<td>콘기조엽 (Cuneus)</td>
<td>17 R</td>
<td>22</td>
<td>-78</td>
<td>4</td>
<td>5.65</td>
</tr>
<tr>
<td>하후두이랑 (Inferior occipital gyrus)</td>
<td>18 R</td>
<td>30</td>
<td>-86</td>
<td>-6</td>
<td>5.35</td>
<td></td>
</tr>
<tr>
<td>하후두이랑 (Inferior occipital gyrus)</td>
<td>18 L</td>
<td>-46</td>
<td>-78</td>
<td>1</td>
<td>5.21</td>
<td></td>
</tr>
<tr>
<td>중후두이랑 (Middle occipital gyrus)</td>
<td>18 L</td>
<td>-32</td>
<td>-78</td>
<td>4</td>
<td>5.20</td>
<td></td>
</tr>
<tr>
<td>중후두이랑 (Middle occipital gyrus)</td>
<td>18 L</td>
<td>-44</td>
<td>-76</td>
<td>-8</td>
<td>5.02</td>
<td></td>
</tr>
<tr>
<td>기타 영역 (Others)</td>
<td>소뇌바람 (Declive)</td>
<td>R</td>
<td>-85</td>
<td>-20</td>
<td>-20</td>
<td>4.19</td>
</tr>
<tr>
<td></td>
<td>외측진막핵 (Lateral globus pallidus)</td>
<td>L</td>
<td>-18</td>
<td>-2</td>
<td>7</td>
<td>3.87</td>
</tr>
<tr>
<td></td>
<td>조가기관 (Putamen)</td>
<td>L</td>
<td>-22</td>
<td>1</td>
<td>15</td>
<td>3.59</td>
</tr>
</tbody>
</table>

\[P < 0.001, \ k > 50, \text{uncorrected}, \ L; \text{반구}, \ R; \text{반구} \]

상전두이랑의 한 영역인 브로카 영역(좌측 BA 44)은 언어생성 영역으로 매우 잘 알려져 있다(Caveza & Nyberg, 2000; Naghavi & Nyberg, 2005; Rosenberg et al., 2005). 또한 이 영역은 실제로 말을 하지 않은 상태에서 머리속으로 언어를 생성하기만 해도 활성화 된다는 것이 많은 선행 연구들에서 나타나있다(이수화와 이상민, 2000). 여기서는 최종적인 과학적 의문이 생성될 때, 비록 외부로 말을 통해 표출되지 않는 하나는 모두 대상이랑 안에서 언어의 형태로 의문이 생성되고 있음을 보여준다고 할 수 있다.

중전두이랑은 상전두이랑과 함께 동시에 좌측 뼈절부(dorsolateral prefrontal cortex; DLPC)의 일부분이다. 이 영역은 고등동물 및 추출의 핵심 영역으로 보고되고 있으며, 주로 의사결정, 의무 정보들에 대한 역할을 한다고 알려져 있다(Caveza, Nyberg, 2000; Goel & Dolan, 2003a, 2003b). 여기서는 간절한 정보를 통합하여 표상하는 역할로 판단된다.
(4) 변연업 영역

변연업에서는 양측 해마(hippocampus)의 활성이 나타났다(그림 3과 표 2). 최근 연구 결과들에 의하면 해마는 좌,우측의 기능이 다르다고 알려져 있는데(Öngür et al., 2005; Rosenweig et al., 2005), 좌측의 경우는 새로운 자극에 관한 의미적 부호화 (semantic encoding)에 많이 사용되고(Goel & Dolan, 2003a) 우측의 경우에는 이미 보았던 것과 같은 기억한 것에 관한 인출에 활용되다고 알려져 있다(Öngür et al., 2005).

과학적 의문 생성은 관찰된 현상이 사전에 자신의 선택적 혹은 경험상황과 비교하여 불일치될 때의 중요한 영역이다(이해 정 등, 2005). 이 과정에서 현재 관찰하고 있는 새로운 상황에 대한 부호화와 표상이 필요할 때 이를 좌측해마가, 이미 알고 있는 상황에 대한 인출 후 표상(representation)은 우측 해마가 맡게 되는 것으로 생각된다.

(5) 후두업 영역

후두업에서는 시각기저부(visual cortex area)의 활성도가 두드러졌는데, 우측 헤기골(cuneus; BA 17), 좌측 후두부리어(inferior occipital gyrus; BA 18) 및 좌측 중두부리어(middle occipital gyrus; BA 18)이 나타났다(그림 2와 표 2). 이것은 과학적 의문의 생성 과정에서 자신이 기존에 알고 있던 내용(경험상황)과 현재 적절한 현상(관찰현상)과의 비교를 위해 심상(mental image)을 표상하고 있기 때문으로 생각할 수 있다.

따면 이에 관찰된 현상에 대한 시각 정보를 받아들이며 이에 대해 사고하기에 앞서, 시각적 작업에 관한 후두-촉정 회로를 통해 운동 가능한 신체적인 이미지의 형태로 표상하게 되며 이 영역의 활성도가 중요하다(Knauft et al., 2002; Mazard et al., 2005). 더욱이 일시적 기억의 연출을 통해 경기기간에서 작업기계로 표상될 때는 주로 심상의 형태를 따라가는 경우가 많기 때문에 실제 시각정보를 제공받지 않더라도 이 영역은 활성화 된다는 연구결과가 많다(Giesbrecht et al., 2006; Knauft et al., 2002; Ruff et al., 2003).

과학적 의문 생성과정에서 실험자들은 현재 적합한 관찰현상과 자신의 경험상황 간의 비교 과정을 통해 과학적 의문 생성에 관여하고 있는 것으로 알려져 있다(Ruff et al., 2003). 과학적 의문 생성과정에는 관찰현상과 경험상황의 비교를 통해 추출된 내적 심상을 작업기계에 유지시키는 역할을 두정부 영역에서 하고 있는 것으로 볼 수 있다.

(2) 촉두업 영역

촉두업에서는 우측 방추이리(fusiform gyrus; BA 37)의 활성이 나타났는데(그림 2와 표 2), 이 영역의 활성은 주로 사람의 얼굴을 인식하거나 물체를 상세히 관찰할 때에 활성화 된다고 보고되고 있다(Smith et al., 2005; Caveza & Nyberg, 2000; Naghavi & Nyberg, 2005). 이는 이해정 등(2005)이 밝힌 과학적 의문 생성의 단계 중 관찰 현상 분석(analysing observed phenomena) 단계에 일치한다고 생각된다. 즉 이 부분의 활성은 시각을 통해 분석적이고 세밀한 정보 수집 과정에서 나타난다고 판단된다.

(3) 두정업 영역

두정업 부분에서는 우측 상두정뇌엽과 좌측 하두정

소엽 영역의 활성이 나타났다(그림 2와 표 2). 이들 영역은 시각기저부로부터 들어온 혹은 자신의 기억으로부터 추출된 내적 심상(mental imagery) 정보를 후두-

두정 회로(occipito-parietal pathway)를 통하여 넘겨 받은 뒤에 사고의 진행과정 동안 이를 유지하는 시각적 작업기계(visual working memory)의 역할을 수행한다고 알려져 있다(Ruff et al., 2003). 과학적 의문 생성과정에는 관찰현상과 경험상황의 비교를 통해 추출된 내적 심상을 작업기계에 유지시키는 역할을 두정부 영역에서 하고 있는 것으로 볼 수 있다.
IV. 결론 및 제언

이상의 결과들을 통해 생물학자들이 과학적 의문을 생성할 때의 두뇌 활성 양상을 살펴보았다. 이 연구의 결과를 통하여 얻을 수 있는 결론은 다음과 같다.

첫째, 방주이량 및 전안구운동 영역과 같은 물체의 상세 인식에 관련되는 영역의 활성이 높은 것으로 보아 과학적 의문 과정에서 얻는 관찰현상을 상세히 분석하였다고 볼 수 있다. 둘째, 소녀와 좌측 전두엽의 활성과 특히 브로카 영역의 활성으로 볼 때에 의문을 생성할 때에 얻는 과학적 의문을 생성하기 위해서 언어적 전략을 사용한다고 할 수 있다. 셋째, 과학적 의문 생성 과정에서 생물학자들의 얻는 좌측 쥐마와 대상이어가 활성화 되었다. 이러한 결과로 볼 때에, 과학적 의문 생성에서 현재의 관찰현상과의 비교를 위한 경험상황과 선지식 등 장기기억의 인출 및 표상은 매우 중요하다고 할 수 있다. 넷째, 과학적 의문 생성 과정에서 얻어진 인지적 정량 및 부조화 단계를 거쳤음을 보여주었다고 할 수 있다.

이러한 연구결과들을 종합해 볼 때에, 과학적 의문을 생성할 때의 관찰현상에 대한 분석적인 인식 이후, 장기기억에 저장된 경험상황이나 선지식의 인출을 통해 내적 상상(mental imagery)을 형성하여 사고적 작업기억(visuo-spatial working memory) 상에 표상하고 이를 현 상황과 비교한다. 이때 일시적 요소가 부족하거나 부족하고 인해 간결이 발생하면 언어적으로 의문이 생성된다고 할 수 있다.

이 연구는 공간적 해상력이 우수한 기능성 자기공명 영상 기법을 과학적 의문에 관한 연구에 도입하였다. 이 연구의 방법은 과학 교육 연구의 전 문야에 적용될 수 있을 것으로 기대된다. 또한 이 연구 결과는 fMRI를 사용해 학생들의 생물학적 의문 생성 능력을 평가하는 방법을 고안하는 데 기초 자료로 활용될 수 있을 것이다. 또한 의문 생성력 향상을 위한 교수-학습 프로그램의 효과를 평가할 수 있는 척도로 사용될 수 있을 것으로 기대된다.

국문 요약

이 연구는 생물학자들이 생물학 현상에서 과학적 의문을 생성할 때 나타나는 두뇌의 활성을 분석하고자했다. 이를 위해서 10개의 의문 생성 과정을 개발하여 8명의 생물학자들에게 투입하였고, 의문 생성 과정에서 fMRI를 통해 생물학자들의 두뇌 활성을 측정하여 분석하였다. 그 결과, 방주이량, 전안구운동 역량, 소녀, 좌측 전두엽, 좌측 해마와 대상이어, 부피측정 두피결부 등이 특이적으로 활성화되었다. 이것은 과학적 의문을 생성하는 과정에서 생물학자들의 얻는 주어진 생물학 현상을 상세히 분석하였고, 언어적 전략을 사용하였으며, 현재의 경험과 비교하기 위해서 과거의 경험상황과 선지식 등의 장기기억을 인출하고 표상하였다 할 수 있다. 특히 부피측정두피결부의 활성은 의문 생성 과정에서 얻어진 인지적 갱동 및 부조화 단계를 거쳤음을 보여주었다고 할 수 있다.

참고 문헌

