Effects of Slope Changes During Body Weight–Supported Treadmill Training on Gait Characteristics in Patients With Hemiplegia

Young-in Hwang, M.Sc., P.T.
Division of Physical Therapy, Seo-Ho Hospital

Duk-hyun An, Ph.D., P.T.
Dept. of Physical Therapy, College of Biomedical Science and Engineering, Inje University

Abstract

The purpose of this study was to determine the therapeutic effect of slope changes of the treadmill with body weight supported training on gait characteristics in patients with hemiplegia. The volunteered subjects were divided into 3 groups based upon slope changes: control group (0° incline), 7° group (7° incline), 12° group (12° incline). They were trained the body weight supported treadmill training (BWSTT) for 8 weeks. All subjects were supported up to 40% of their body weight on the treadmill training and the support was gradually decreased to 0∼10% as the subjects were adapted to the training. There were significant improvements of walking velocity, step length of the affected side, the asymmetry ratio of step length in 7° group (57.80 cm/s, 67.25 cm, .14), 12° group (71.00 cm/s, 71.00 cm, .11) than control group (40.62 cm/s, 55.00 cm, .74) (p<.05); there were no differences between 7° group and 12° group in the all outcomes (p>.05). Both 7° group and 12° group scored higher than the control group in these outcomes and finally the effects of slopes changes of the treadmill were effective on gait characteristics of patients. But it still remains undetermined what degree on the treadmill might be better to train the hemiparetic patients. Therefore, more studies are required to look into minutely the changes of slopes of the treadmill influencing on gait characteristics.

Key Words: Body weight support treadmill training; Chronic stroke patients; Slope of the treadmill.

Introduction

Stroke is the most common cause of adult disability, including loss of motor, sensory and cognitive function. The impairment of walking is the one of the major disabilities after stroke (Barbeau and Vins tin, 2003). Those disabled in such a way suffer from slow walking speed and limited endurance (Jorgensen et al, 1995). Finch et al (1991) reported that hemiplegic gait patterns have loss of the smoothness and amplitude of normal joint rotational movements. Perry et al (1995) also found that slow walking speed, different step length between the affected and unaffected limb and short stance phase of affected limb compared with the unaffected limb during walking were common in hemiparetic patient. To support a percentage of body weight with a harness system is a way to regain walking ability, thereby decreasing the load on the lower extremities while the patient is being trained on a treadmill. This approach is suitable not only for spinal cord injury but also hemiparetic patients (Finch et al, 1991; Perry et al, 1995; Vins tin et al, 1998).

Visintin and Barbeau (1989) attempted to compare the locomotic patterns between 40% and 0% unloading of the lower extremities in spastic patients. A total of 40% unloading of the lower extremities resulted in a straighter trunk and knee alignment during the loading phase. Furthermore, a decrease in double support time and an increase in single support time, stride length and speed were seen, as compared to 0% body weight support. Hassid et al
flexion
ported
friction
ramp
pedestrian’s
of
(Tokuhiro
knee
of
impairment,
enables
arranged
and
2002).
(Dean
walking
stance
(1997)
Recently,
new training
paradigms
incorporating
fast
walking
and
intensive
training
regimens
were
proposed
(Dean
et
2000;
Pohl
et
2002;
Sullivan
et
2002).
These
principles
were
applied
to
stroke
patients,
and
this
combination
of
the
BWSTT
and
fast
speed
produced
the
greatest
increments
of
walking
speed
compared
with
a
BWSTT
group
or
a
fast
walking
group
alone
(Lamontagne
et
Fung,
2004).
Sullivan
et
al
(2002)
studied
24
subjects
with
chronic
hemiparesis
aranged
randomly
according
to
locomotion
severity.

The
ability
to
control
the
joints
in
the
lower
limb
enables
a
stable
gait
pattern
on
inclines;
with
an
impairment,
however,
there
may
be
an
increased
risk
of
slipping
on
an
incline
(McIntosh
et
2006).
The
knee
and
ankle
joint
muscles
are
much
more
stable
in
slope
walking
than
the
horizontal
level
(Tokuhiro
et
1985).
Many
researchers
have
reported
that
gait
patterns
are
influenced
by
the
incline
of
the
walkway
in
healthy
subjects
(Goswami,
1998;
Kawamura
et
al,
1991;
McIntosh
et
2006).
The
pedestrian’s
step
and
stride
length
decreased
during
ramp
descent
due
to
reduction
of
the
counteracting
friction
(Sun
et
1996).
Leroux
et
(2002)
reported
that
5°
uphill
walking
led
to
increased
hip
flexion
at
the
end
of
the
swing
phase,
and
that
stride
length
was
increased
in
healthy
subjects.
However,
there
have
been
few
studies
of
its
effects
according
to
slope
changes
of
the
treadmill
with
BWSTT
in
patients
with
hemiplegia.
Therefore,
the
purpose
of
this
study
was
to
determine
the
effects
of
slope
changes
with
BWSTT
on
gait
characteristics
in
chronic
stroke
patients.

Methods
Subjects
Twelve
chronic
stroke
patients
were
recruited
volun-
tarily
from
D
Hospital
and
P
Hospital
located
at
Busan
city,
Korea.
The
inclusion
criteria
for
this
study
were
categorized
at
1)
a
diagnosis
of
unilateral
stroke
or
intracerebral
hemorrhage
shown
by
magnetic
resonance
imaging
or
computed
tomography
more
than
6
months
after
the
onset
of
stroke,
2)
sufficient
cognition
to
follow
simple
instructions
and
understand
the
content
and
purpose
of
the
study
(MMSE-K
score>24
point),
and
3)
the
ability
to
ambulate
10
m
with
or
without
an
assistive
device
and
walking
speed
reported
to
be
slower
than
before
the
stroke.
The
Mini
Mental
Status
Examination-Korea
provides
a
valid
and
reliable
quick
screen
of
cognitive
function,
and
it
had
been
used
to
select
experimental
category
for
stroke
patient
(O’Sullivan,
2001;
Won,
2006).

Table 1. Demographic and clinical features of patients with stroke
(N=12)

<table>
<thead>
<tr>
<th>Training groups</th>
<th>Control group (n=4)</th>
<th>7° group (n=4)</th>
<th>12° group (n=4)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
<td>64.5±4.4*</td>
<td>61.5±15.8</td>
<td>65.0±20.3</td>
<td>.93</td>
</tr>
<tr>
<td>Gender (M/F)</td>
<td>1/3</td>
<td>3/1</td>
<td>3/1</td>
<td></td>
</tr>
<tr>
<td>Side of hemiplegia (R/L)</td>
<td>0/4</td>
<td>1/3</td>
<td>3/1</td>
<td></td>
</tr>
<tr>
<td>Type of stroke (CI^/CH^)</td>
<td>4/0</td>
<td>3/1</td>
<td>4/0</td>
<td></td>
</tr>
<tr>
<td>Assistive device (each)</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Stroke onset (yrs)</td>
<td>4.8±.8</td>
<td>4.4±.7</td>
<td>3.8±1.4</td>
<td>.19</td>
</tr>
<tr>
<td>MMSE-K^ (max. 30)</td>
<td>26.6±2.5</td>
<td>26.3±2.1</td>
<td>26.0±2.0</td>
<td>.91</td>
</tr>
</tbody>
</table>

*Mean±SD.
^CI: Cerebral infarct.
^CH: Cerebral hemorrhage.
^MMSE-K: Mini-Mental State Examination-Korea.
Patients were excluded if they had 1) other neurological deficits that would affect ambulation ability, 2) any additional medical or psychological condition that would affect their ability to comply with the study protocol, 3) cognitive deficit or aphasia with an inability to follow 2 consecutive step commands, and 4) severe hip, knee, or ankle contracture that would prevent passive range of motion of the leg. There were 12 patients with chronic stroke who participated in this study for 8-week. Four subjects were randomized to each training group (Table 1).

Intervention

Participants were fitted in a harness, which was then connected to an overhead suspension system positioned over a treadmill\(^1\). Walker Traction\(^2\) By using the walker traction provided initially and progressive when decreasing the amount of body weight support, the subject increased activity tolerance and could maintain proper limb kinematics throughout stance and swing with the assistance of a physical therapist (Figure 1).

A physical therapist was positioned behind the patient to provide proximal stability at the hips. The physical therapist should monitor the patient about upright posture, pelvic position, and weight shift. An assistant stood beside the patient to control the treadmill and also to monitor stride characteristics (Pohl et al, 2002). Subjects were encouraged to hold a handrail because the slopes were not a familiar environment for them, intensifying their need for a feeling of security (Dean et al, 2000).

The angle of slopes were provided with several boards was measured by a goniometer (Figure 2). The height of each board was 1.2 cm, and 10 boards provided an 7° incline at the treadmill. Placing 18 boards under the treadmill created an incline of 12°. The width of this treadmill was about 100 cm that we measured between the forward and backward wheels. Kawamura et al (1991) observed that walking speed, which is the product of step length and cadence, significantly decreased in both up and downslope walking at 12° compared with 3°, 6°, and 9° in healthy subjects. The other angle that adopted 7° because the phasic activity of the lower extremity muscles was seen to change at an inclination over 6° in upslope walking by Tokuhiro et al (1985). For this reason, these were critical inclinations it selected to define in patients with hemiplegia.

During all assessments of this study, neither pa-

![Figure 1: Training equipment.](image1)

Figure 1. Training equipment.
A: walker traction, B: harness, C: treadmill.

![Figure 2: Slopes of a treadmill.](image2)

Figure 2. Slopes of a treadmill.
A: 7° slope (using 10 boards), B: 12° slope (using 18 boards).

1) Family 2020, Tae Young System, Korea.
2) Walker Traction, Sae Han Trade, Korea.
participants nor the research physical therapist were blinded to their treatment because it was not practical. Ambulatory ability was measured by Gaitrite Electronic Walkway.

The control group was tested at a 0° incline on the treadmill, and 7° group was tested at a 7° incline. 12° group used a 12° incline on the treadmill with BWSTT. The three groups had the same speed (80 cm/s) (Sullivan et al, 2002). Initially, 40% of subjects’ body weight was supported (Barbeau and Vinatrin, 2003): this was decreased to 0~10% as the subjects adapted to the training (Lamentagne and Fung, 2004; Sullivan et al, 2002).

All subjects received 8-week (24-session) of the BWSTT according to slopes (0°, 7°, 12°) over an 8-week training phase. Each session included four 25-minute bouts for a total of 10 minutes of this training 3 times per week. Each resting time was 2~3 minutes, but when patients needed more rest, we had to allow it. Including resting time, this experiment was taken almost 20~25 minutes for each patient. In the pretest, subjects were trained with BWSTT and fast speed (80 cm/s) for 2 minutes in order to allow them to adapt to the training procedure. During the training phase, all individuals also received physical therapy for 30 minutes, three times per week.

Statistical Analysis

All data was performed by using SPSS Professional Statistics software for Windows version 12.0. For statistical analyses of demographic data in the three groups (control group, 7° group, 12° group), we used analysis of variance (ANOVA). A Bonferroni correction for post hoc was done. Statistical significance was set at p value less than .05.

Results

Walking Velocity, Cadence and Step Length

Both 7° group and 12° group of the pre-test (control group, 36.57±26.51 cm/s; 7° group, 25.75±4.52 cm/s; 12° group, 48.92±11.73 cm/s) increased velocity after 8-week (control group, 40.62±31.01 cm/s; 7° group, 57.80±21.85 cm/s; 12° group, 71.00±26.26 cm/s) according to the measures, but control group was less increased (Table 2). The cadence of the groups (before training: control group, 65.62±15.92 steps/min; 7° group, 65.62±14.27 steps/min; 12° group, 78.35±21.00 steps/min) was increased after 8-week training (control group, 84.18±11.94 steps/min; 7° group, 92.02±27.51 steps/min; 12° group, 95.05±22.37 steps/min) but there were no significant differences in the groups (Table 2).

Step length of the affected side was increased in the groups of post test (p<.05). Both 7° group and 12° group of the pre-test (control group, 55.00±19.47 cm; 7° group, 49.75±4.19 cm; 12° group, 54.75±12.68 cm) increased step length of the affected side after 8-week training (control group, 55.00±18.85 cm; 7° group, 67.25±15.92 cm; 12° group, 71.00±15.29 cm), but control group was a small amount of increase.

Asymmetry Ratio of Step Length

The asymmetry ratio of step length in three groups (before training: control group, 81±9.8: 7° group, 39±3.1: 12° group, 65±6.7) were decreased after 8-week training (control group, 74±8.7: 7° group, 14±11: 12° group, 11±0.1), and there were significant differences (p<.05). It indicated that 7° group and 12° group decreased the asymmetry ratio more than control group (Table 3).

Discussion

We hypothesized that using the slopes (7°, 12°) of the BWSTT and a fast speed (80 cm/s) might be more beneficial than simply supporting body weight during BWSTT in chronic stroke patients. In addition, a higher velocity increased the activation of many muscles of the paretic side (Hesse et al, 2001).
Table 2. Differences of walking velocity, cadence and step length of the affected side between three groups in various training phases (N=12)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Control</th>
<th>7°</th>
<th>12°</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walking velocity (cm/s)</td>
<td>Pre-test (before training)</td>
<td>36.57±26.51*</td>
<td>25.75±4.52</td>
<td>48.92±17.73</td>
</tr>
<tr>
<td></td>
<td>Mid-test (4-week)</td>
<td>36.70±32.94</td>
<td>39.20±20.28</td>
<td>55.47±19.13</td>
</tr>
<tr>
<td></td>
<td>Post-test (8-week)</td>
<td>40.62±31.01</td>
<td>57.80±21.85</td>
<td>71.00±26.26</td>
</tr>
<tr>
<td>Cadence (steps/min)</td>
<td>Pre-test (before training)</td>
<td>65.62±15.92</td>
<td>65.62±14.27</td>
<td>78.95±21.00</td>
</tr>
<tr>
<td></td>
<td>Mid-test (4-week)</td>
<td>79.67±12.61</td>
<td>80.50±24.21</td>
<td>84.27±20.79</td>
</tr>
<tr>
<td></td>
<td>Post-test (8-week)</td>
<td>84.18±11.94</td>
<td>92.02±27.51</td>
<td>95.05±22.37</td>
</tr>
<tr>
<td>Step length of the affected side (cm)</td>
<td>Pre-test (before training)</td>
<td>55.00±19.47</td>
<td>49.75±4.19</td>
<td>54.75±12.68</td>
</tr>
<tr>
<td></td>
<td>Mid-test (4-week)</td>
<td>53.75±21.70</td>
<td>57.25±16.04</td>
<td>61.75±15.92</td>
</tr>
<tr>
<td></td>
<td>Post-test (8-week)</td>
<td>55.00±18.85</td>
<td>67.25±15.92</td>
<td>71.00±15.29</td>
</tr>
</tbody>
</table>

*Mean±SD.
*p<.05.

Table 3. Differences of the asymmetry ratio of step length between three groups in various training phases (N=12)

<table>
<thead>
<tr>
<th>Asymmetry ratio of step length</th>
<th>Control</th>
<th>7°</th>
<th>12°</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-test (before training)</td>
<td>.81±.98*</td>
<td>.39±.31</td>
<td>.65±.07</td>
<td>.426</td>
</tr>
<tr>
<td>Mid-test (4-week)</td>
<td>.76±.85</td>
<td>.28±.29</td>
<td>.39±.06</td>
<td>.811</td>
</tr>
<tr>
<td>Post-test (8-week)</td>
<td>.74±.87</td>
<td>.14±.11</td>
<td>.11±.01</td>
<td>.030*</td>
</tr>
</tbody>
</table>

*Mean±SD.
*p<.05.

Our study revealed improved walking velocity and step length of the affected side on an increased slope (p<.05). Sullivan et al (2002) also suggested the BWSTT with fast speed (89 cm/s) to chronic stroke patients was more effective in improving over-ground walking velocity than slow speed (22 cm/s) and variable speed (22 cm/s, 45 cm/s, 67 cm/s, 89 cm/s) groups. Fast walking induces marked speed related improvements in body and limb kinematics and muscle activation patterns (Lamontagne and Fung, 2004).

Previous studies about application of human slope walking compared with uphill slopes such as 3°, 6°, 9° and 12° (Kawamura et al, 1991), or 5° and 10° (Yamasaki et al, 1984). The ratio of stance phase to swing phase was about 64 at most inclinations. However, an exception at 12° was observed, as the stance phase increased (Murray et al, 1984). We tried a 12° slope to find changes and the result revealed a significant decrease of asymmetry of the step length. The other angle we used was 7° because the phasic activity of the lower extremity muscles changed at an inclination exceeding 6° in upslope walking. Thus, it follows that the muscles stabilize the knee and ankle joints much more in slope walking than in level walking (Tokuhiro et al, 1985). These could facilitate much more proprioceptive inputs and an improved gait pattern was revealed but it was not significant.

McIntosh et al (2006) also found that the ankle plantar flexion moment and power in a +5° incline was less than for walking on the horizontal level in healthy subjects. Also, the most characteristic feature in the evolution of orientation with ground slope was the discrete jump that occurs around the +5° slope (Goswami, 1998). A possibility is that the leg is being lifted off the ground on a +5° incline, without push off. It means that the plantar flexor is not used as much on inclined treadmill walking in patients...
with hemiplegia. The result of our study using a 7° and 12° slope was also significant with regard to some gait characteristics.

A progressive increase in stride length reflects that momentum is generated greatly as the treadmill slope becomes steeper in uphill walking (Leroux et al, 1999). Incline walking required important adaptations in lower limbs patterns of movement in healthy subjects when adapting to uphill walking is to lift up the swinging leg by performing a simultaneous increase in hip and knee flexion of that limb. This period of the gait cycle corresponds to the period where the pelvic tilt toward the swinging limb was decreased. By decreasing this lateral tilt, the pelvis would permit a greater lift up of the swinging limb (Cavagna and Margaria, 1966). This would be one of the reasons that the asymmetry ratio of step length was a significant decrease in the experimental groups, which means the gait pattern is better than before through the BWSTT on the slopes (7° and 12°). It means that inclined treadmill exercise led to a recovery of right and left symmetry through movement of the affected side. However, one of the studies with BWSTT (0° incline) found that there was greater symmetry of single limb stance time in hemiparetic patients (Hassid et al, 1997).

Both the experimental groups indicated better improvements compared with the control group in the most outcomes so that 7° and 12° slopes of the BWSTT might have influence on the improvement of gait patterns of patients. Even though it remains to disclose that which degree of slope on the treadmill might be better to train hemiparetic patients. We should conduct more studies with the divided slopes of a treadmill to train subjects.

Sullivan et al (2002) showed that gait velocity and cadence and stride length improved with BWSTT (0° incline) with fast speed, but the control group of this study was not greatly improved in velocity, cadence and step length of the affected side. Firstly it might be effected by short training time, 10 minutes which is not enough for them. Previous studies (Lamontagne and Fung, 2004; Sullivan et al, 2002) applied the BWSTT to individuals with chronic stroke at least for 15 minutes or much more than this to treat patients. Although this study was limited by training time, it showed to be effective in the experiment groups.

It was difficult to compare this study with other studies because they are mostly related to kinematic changes of gait pattern in healthy subjects according to slope changes (Kawamura et al, 1991; Leroux et al, 1999; McIntosh et al, 2006; Yamasaki et al, 1984). The relatively small group size is also one of the weaknesses. However, this may be somewhat compensated for by the homogeneity of the groups. In addition, a different ratio between right and left hemiparetic side in the subjects exists. It still needs more studies to verify that changes of slopes of the treadmill could have influence on gait characteristics. We also suggest we need observation of the follow-up in those subjects how the gait pattern might change.

Conclusion

The purpose of this study was to know that slope changes with BWSTT adapted with chronic stroke patients were an effective way to change gait characteristics and to offer more efficient way for individuals to regain better gait performance. Walking velocity and step length of the affected side significantly increased in both experimental groups (7° and 12°), and asymmetry ratio of step length significantly decreased. There is a possible modification to gradually reduce the power of hands in use of a handrail to increase the postural control training demand with application of not only incline and decline grade but also side slope of the treadmill. More researches are necessary to further out understanding of the use of slopes in the BWSTT on rehabilitative process of stroke patients.
References

and gait training for stroke persons in a community.
Yamasaki M, Sasaki T, Tsuzuki S, et al. Stereotyped
pattern of lower limb movement during level
and grade walking on the treadmill. Ann Physiol

This article was received October 10, 2008, and
was accepted November 5, 2008.