Experimental Study on the Behavior of Hybrid Beam–Column Joints Consisted of Reinforced Concrete Column and Steel Beam

Keun-Do Choi1), Young-Chan You1), and Li-Hyung Lee2)

1) Korea Institute of Construction Technology, 411–712, Korea
2) Dept. of Architectural Engineering, Hanyang University, Seoul, 133-791, Korea

(Received December 2, 2002, Accepted March 10, 2003)

ABSTRACT

This paper presents the test results of RCS(Reinforced Concrete Steel) beam-column joint with various types of transverse reinforcements such as small-column-type transverse reinforcements, four-piece "T"-shape assembled hoops and four-piece "T"-shape welded hoops. Five interior beam-column joint specimens were tested to examine the seismic performance and the shear strengths. From the test results, it was found that all the specimens sustained their strength at large levels of story drift(θ = 0.035) without significant loss of strength and stiffness. Therefore, it was concluded that the seismic performance and shear strength of the proposed RCS joint are at least the same as those of the specimen with conventional reinforcing details. Also, the contribution of the outer panel to the shear strength of the joint should be evaluated by the compression strut mechanism rather than compression field mechanism.

Keyword : seismic performance, RCS(Reinforced Concrete Steel), moment resisting frame, small-column type transverse reinforcement, compression strut mechanism

1. 서 론

일반적으로 기존의 건축물은 그 용도와 목적에 따라 철근콘크리트 구조 또는 철골구조의 단일 구조형식을 사용하여 건설되어 왔다. 그러나 건설기술의 발전과 건축물의 고가화 및 고층화의 요구에 따라 최근에는 철골구조와 철근콘크리트 구조의 장점을 각각 살린 복합구조가 다양한 형태로 개발되고 있다. 이러한 복합구조의 하나로 철근콘크리트와 철골을 혼합한 RCS (Reinforced Concrete Steel) 구조의 개발이 활발히 이루어지고 있다. RCS 구조란 기둥에는 압축력 및 횡성 상단면에서 유리한 철근콘크리트 구조물, 보에는 장재화 및 경량화에 유리한 철골을 사용하여 구성된 복합 구조시스템이다10).

그러나 RCS 구조는 철골과 철근콘크리트라는 이질 구조재료로 구성되어 있으므로 이들 구조재료간의 응력전달 이 발생되는 접합부의 구조성능이 전체 구조물의 성능에 큰 영향을 미쳐질 수 있다. 따라서 효율적인 RCS 구조의 개발과 적용을 위해서는 이들 구조부재가 접합되는 접합부의 응력전달기구의 특성과 구조적 성능에 대한 파악이 필요하다고 판단된다9).

RCS 구조에 대한 대부분의 기존연구에서는 현행의 철근콘크리트 및 철골구조의 설계방법을 사용하여 RCS 구조의 응력전달기구를 과감하고 접합부의 내력을 평가하는 방향으로 진행되어 왔다. 이와 같은 최근의 연구결과를 바탕으로 미국 및 일본에서는 RCS 구조에 관한 다양한 접합부 상세에 대하여 설계작업을 계획하는 단계까지 이루어졌다. 그러나 많은 기존연구에도 불구하고 RCS 접합부의 설계는 철근콘크리트 접합부에 대한 설계방법을 그대로 사용하고 있는 실정이다. 이에 대하여 최근의 연구 결과에 의하면 RCS 접합부에 발생하는 응력전달 메커니즘은 기존에 제시된 설계방법과 다소 상이한 경향을 보이며

* Corresponding author
Tel : 031-910-0361 Fax : 031-910-0361
E-mail : ycyou@kict.re.kr
는 것으로 보고되고 있으며 이에 대한 명확한 과학적 미흡한 실정이다.

한편, RCS 구조에서는 직교하는 철근보에 의해 접합부 콘크리트가 4분으로 기존의 RC 기둥과 같이 폐쇄형의 횡보강근을 사용할 수 없다. 이에 따라 기존공법에서는 Fig. 1(b)에서도 같이 보 보프로 구멍을 성형하고 그 자형의 4조각 횡보강근을 각각 4 방향에서 조합하여 사용한다. 그러나 이러한 배근방법은 현장 시공이 매우 어려우며, 약간의 시공오차가 발생할 경우에도 반복적인 위치 조정 작업 및 심지어 철골 보 보프로의 구멍을 추가적으로 확장 해야 하는 문제점이 추가로 발생한다.

따라서 본 연구에서는 RCS 구조의 가장 큰 문제점으로 지정되고 있는 횡보강근의 사공성 개선과 효율적인 RCS 복합화 콘크리트 구조시스템의 실험을 위해서 Fig. 1(a) 및 Fig. 2에 나타낸 바와 같이 접합부 환경권에서 기존의 보드로 본래의 기존의 4모서리의 기중철근을 자주(주: small column)의 기중철근으로 고려하여 각각 폐쇄형의 횡보강근으로 보강한 RCS 복합화 공법을 제안하고, 이에 대한 실험적 연구를 통하여 RCS 접합부의 횡보강근 강성이 더 큰 구조적 특성을 평가하고자 한다.

2. 실험개요

2.1 실험체 계획

콘크리트의 압축강도 시험용 구체체는 직경 10 cm, 높이 20 cm의 실린더형으로 제작한다. 견적의 재질은 SD40으로 3개의 HD25를 각 모서리에 배치한다. 보 구조재로 사용된 H형강은 SS400으로 H-350×175×7×11을 사용한다. 접합부의 보강철근으로 사용한 FDP, E-FDP 및 stiffer 등은 SS400을 사용한다. 실험체 재료에 사용된 재료시험 결과는 Table 1과 같다.

실험체는 Table 2에 나타낸 바와 같이 총 5개로, 2/3의 측에 따라 내부 접합부 형태로 제작하였다. 실험체의 종류는 접합부의 내진성능을 향상하기 위한 실험체(B-계열)와 접합부의 횡보강근 강성을 향상시키기 위한 실험체(J-계열)로 구성된다. 또한 제작된 차축선(주축) 횡보강근 공법의 구조적 성능을 객관적으로 비교하기 위하여 기존공법에 의한 실험체를 동시에 제작하여 상호 비교 평가하였다. 실험체의 형상은 Fig. 3과 같다.

2.2 실험

RCS 접합부의 성능평가를 위한 실험에서는 접합부의

<table>
<thead>
<tr>
<th>Table 1 Material properties of specimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen</td>
</tr>
<tr>
<td>JLI-1</td>
</tr>
<tr>
<td>JS-1</td>
</tr>
<tr>
<td>JS-2</td>
</tr>
<tr>
<td>BS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2 Details of specimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen</td>
</tr>
<tr>
<td>JLI-1</td>
</tr>
<tr>
<td>JS-1</td>
</tr>
<tr>
<td>BS</td>
</tr>
</tbody>
</table>
내력에 안정적인 효과를 미치는 측력의 효과를 배제하기 위하여 측력은 가려하지 않고 실시한다. 실험이의 설치 상세를 나타내면 Fig. 4과 같다. 그림에서 보는 바와 같이 기둥 양단부는 최전이 가능한 천지를 부착하고 반력상 (reaction floor)으로부터 약 60cm 정도 되어서 수평으로 뒤로 설치한다. 또한 보에 도입되는 반복허용으로 인한 기둥부의 단단한 제거와 하부의 부착에서 벗겨지는 후, 기둥 단단에 고정되어 있는 천지의 블록 사이에 100 tonf 용량의 screw jack을 설치하여 실험이의 상하 사항을 조절한다. RCS 접합부에 대한 반복허용은 반력벽 (strong wall)에 부착된 100 tonf 용량의 펌프에 이용하여 천지의 단단을 통하여 조절하며, 접합부에 최대하재력을 유도하기 위하여 역대형 모멘트가 작용하도록 하였다. 본 실험이 사용된 변위력 (displacement history)은 NEHRP의 권고사항에서 제안한 변위력을 따라 실시하였으며, 본 실험이 수행한 변위는 ±3mm 정도로 한 차례 제한하여 가로방향의 유격으로 인한 측정오차를 최소화한다.

3. 실험결과 및 분석

3.1 구조양상 및 파괴모드

Fig. 3 Details of specimen

Fig. 4 Test set-up

3.1.1 내진성능형 실험이

주식질 회복강관을 사용한 BLI-1 실험이의 초기경열은 변위각 0.0035(변위, 8.4 mm)에서 접합부 플랜지 위치의 기둥 상하부에 수평경열이 발생하였고, 변위이력 증가함에 따라 변위각 0.0075(18 mm)에서 접합부내 초기 경열이 발생하였으며, 이때의 하재는 7.7~7.8 tonf 정도의 값을 나타내었다. 내장률력의 항복은 변위각 0.01(24 mm)에서 약 9~10 tonf의 하재를 유지하면서 발생되었으며, 이후 계속되는 변위이력에 따라 원근이 및 전단 경열이 증가하였으나 접합부의 내력지는 발생하지 않았으며 최대 원근도 0.2 mm 내내를 유지하였다. 그러나 변위각 0.05(31.2 mm) 이후에서 압축률력의 국부차가 발생되면서 내력이 서서히 증가하였다. 이때의 하재는 15 tonf 정도로 접합부 콘크리트의 큰 손상없이 철근 보의 소장차가로에 의해 실험이 종료되었다.

BS 실험이의 접합부의 회복강관 상세를 4조각 조합형으로 제작된 것으로 초기의 변위력은 BLI-1 실험이의 유사한 하재를 나타내었다. 그러나 변위각 0.005 (8.4 mm)에 이르러서는 14~15 tonf의 하재를 유지하던 접합부 전단경열이 급격히 증가하기 시작하였고 원근도도 약 0.3~0.5 mm 정도로 BLI-1 실험이의 비해 다소 증가되었다. BS 실험이의 최종파괴 역시 BLI-1 실험이와 동일하게 강재 보의 소장차가로에 의해 실험이 종료되었다.

3.1.2 전단성능형 실험이

전단성능형 실험이의 전반적인 기동은 접합부의 회복강관 근 상세에 따라서 구조양상이 다르게 나타났지만 기 본적으로는 기둥의 수평원근 및 접합부의 전단원근, 강 재보와 콘크리트가 만나는 부분의 지압원근 및 기둥 풍부 콘크리트의 탈락 등의 하재로 발생하였으며, 접합부 사인 장 근경이에 의한 전단파괴가 지배적으로 나타났다. 이와 같은 전단파괴형 실험이의 파괴 진행상황은 다음과 같다. 즉, 접합부의 초기 수평원근은 변위각 0.0035(변위, 8.4 mm)에서 코너부 기둥 플랜지 위치에서 발생되었으며, 이후 변위각 증가함에 따라 수평원근의 발생과 진전이 반복되었고, 변위각 0.0075(18 mm)으로 가로방향의 E-FBP 주위에서 초기 전단경열이 발생하였다. 이때의 하재는 10~12 tonf 정도로, 접합부의 회복강관 상세에 관계없이 거의 유사한 값을 나타내었다.

이후 변위각의 증가에 따라 변위각 0.015~0.0175(33.6~ 42 mm)에서 보 플랜지 상부 E-FBP와 콘크리트 접합면에서 지압부 풍부의 일부 관측하였다. 변위각 0.028~0.036 에서 전단원근과 기둥 주근의 육각상에서 확인된 기둥주근에 따라 수평원근이 일부 발생하였다. 이후 변위이력 증가에 따라 접합부의 전단원근이 진전, 확장되면서 기둥 코너부의 풍부 콘크리트가 탈락하였고 하재가 서서히 감소되어 최종파괴로 도달하였다. 본 연구의 주요 실험이별 최종파괴상황은 Fig. 5과 같다.
3.2 하중-이력곡선

RCS 접합부의 내진성능 평가를 위한 실험체들의 하중-변위곡선을 나타내면 Fig. 6과 같다. 그림에서 수직방향으로 표기한 점선은 0.005의 한계변위각을 나타낸다. 그림에서 보는 바와 같이 BL1-1 및 BS 실험체 모두 실험의 초기단계에서부터 종료시까지 유사한 이력곡선을 나타내고 있다. 즉, NEHRP 진동사항에서 한계변형각으로 설정하고 있는 0.005의 변위각까지 접합부에서의 내력저하는 발생되지 않았으며, 최대하중은 약 14~15 tonf 정도로 칼볼과의 전소성 한계내력인 11.3 tonf를 초과하여 강체의 변형경화 영역까지 이른 것으로 판단된다. 이와 같은 실험 결과를 종합하면 지구식(子地式) 적합강근을 사용한 BL1-1 실험체의 하중-변위곡선은 전형적인 보 강화형 접합부 시험을 나타내는 것으로, 구조적으로 매우 안정적임을 알 수 있었다. 또한, RCS 접합부의 전단강도 평가를 위하여 제작된 지구식 적합강근을 이용한 실험체의 하중-전단최대값 곡선을 나타내면 Fig. 7과 같다. 그림에서 보는 바와 같이, 모든 실험체의 하중-이력곡선은 보-기둥 접합부의 적합강근 배근방법에 관계없이 실험정지에서부터 실험종료시까지 거의 동일한 양상을 나타내고 있다.

![Image](image-url)

Fig. 5 Crack pattern at failure stage

![Image](image-url)

(a) JL1-1(small-column type)

(b) JS-1(Conventional type: 4-piece assembled)

(c) JS-2(Conventional type: 4-piece welded)

Fig. 6 Load-story drift curve of specimens

Fig. 7 Load-shear distortion curve of specimens
3.3 접합부의 구조성능 평가

3.3.1 접합부의 전단강도

본 연구의 실험에 대한 기존 설계의 적용 가능성을 평가하기 위하여 ASCE 식 및 수정 일본 SRC(M-AIJ) 식을 사용하여 접합부의 전단강도를 계산하였으며, 그 결과를 나타낸다[2] Table 3과 같다. 여기서, 내력식에 의한 전단강도는 본 전단부로 환산한 값이다. ASCE 제안식은 아래의 식(1)과 같이 내부판면을 구성하는 철공부재(V_s) 및 내부콘크리트(V_c)와 외부판면(V_o)의 중첩전단강도값을 누계하여 산정하며, 각각의 전단저항요소에 대한 전단강도의 산정방법은 식(2), (3) 및 (4)와 같다.

\[V_{total} = V_s + V_c + V_o \]

여기서, \[V_s = 0.6f_{w,s}a_jh \]
\[V_c = 5.43\sqrt{f_{c,k}}b_jh \]
\[V_o = V_{ac} + V_{ab} \]
\[V_{ac} = 1.28\sqrt{f_{c,k}}b_jh \]
\[V_{ab} = A_{sf}\frac{0.3h}{s_o} \]

ASCE 제안식에서 철공부재의 전단강도는 식(2)에서와 같이 웨이의 전단량부재를 전단저항함적에 묶여 산정한다. 여기서, 철공부재의 유효범위는 접합부의 지압강도와 전단강도의 평형을 고려하여 산정하기 때문에 실험체별로 다소 차이가 발생하게 된다. 이에 따라, Table 3에 보인 바와 같이 전단으로 파괴된 J1-1, JS-1 및 JS-2 실험체에서 ASCE 식에 의한 철공부재의 전단강도값은 48.45 tfon 로 실험체에 따라 다르게 나타내고 있다. 본 실험에서의 전단강도는 식(3)에서와 같이 철공부재 부-기동 접합부와 동일한 전단강도값을 사용하여 산정한다. 이상과 같이 내부판면의 전단강도는 Table 3의 철공부재와 내부콘크리트의 합에 의해 100~104 tfon 정도인 것을 알 수 있다. 이는 실험에서 나타난 전단파괴형 실험체의 전단강도가, 23.1~24.5 tfon의 43% 정도이며, 철공부재의 변형경화(철공부재의 전단강도×1.2)를 고려하는 경우 내부판면의 전단강도는 실험값의 50%로 나타났다. 또한 ASCE 식에서 안전선으로 고려하는 가로부에 의한 전단저항도는 접합부의 전단강도에 있어 약 15% 이상 증가하는 것으로 보고되고 있다2. 따라서 실험 결과에서 내부판면과 가로부의 전단저항부는 각각 50% 및 15%로 고려하여 외부판면의 전단저항부를 산정하면 J1-1 실험체는 85 tfon이며 JS-1 및 JS-2 실험체는 각각 80 tfon, 83 tfon 정도임을 알 수 있다.

이상에서 분석한 바와 같이, 자주적 철근강판을 사용한 J1-1 실험체 및 기존의 철근강판을 사용한 JS-1, JS-2 실험체 모두 ASCE 식 및 수정 일본 SRC 식에 의한 전단강도 계수를 상호의 실험결과를 보여주고 있다. 더욱이 자주적 철근강판을 사용한 J1-1 실험체의 전단강도는 24.5 tfon으로 ASCE 식에 의한 계수, 12.2 tfon 보다 2배 정도 높은 실험값을 나타내었다. 이와 같은 결과는 본 연구에 사용된 자주적 철근강판의 전단저항도가 ASCE 식에서의 반영되지 않았기 때문이라 사료된다. 따라서 자주적 철근강판의 전단저항도를 설계에 충분히 반영하기 위해서는 외부판면의 전단저항기구에 대한 검토가 필요할 것으로 판단되며, 본 연구에서는 압축스트레스에 의한 전단저항 매커니즘을 검토하였다.

즉, 기존연구에서 제시된 외부판면의 전단저항기구는 Fig 8(a)에 보인 바와 같이 F-FBP에 의한 외부판면의 압축 형성으로 전단에 저항하는 것으로 가정하고, 외부판면의 전단강도는 각각 식(3)과 (6)와 같이 외부콘크리트와

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Observed (tonf)</th>
<th>Failure mode</th>
<th>Bearing strength (tonf)</th>
<th>ASCE(tonf)</th>
<th>M-AIJ (tonf)</th>
<th>Observed/calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1-1</td>
<td>24.5</td>
<td>Joint shear</td>
<td>20.4</td>
<td>22.3</td>
<td>12.3</td>
<td>20.1</td>
</tr>
<tr>
<td>JS-1</td>
<td>23.1</td>
<td>Joint shear</td>
<td>20.4</td>
<td>21.8</td>
<td>11.5</td>
<td>21.2</td>
</tr>
<tr>
<td>JS-2</td>
<td>23.9</td>
<td>Joint shear</td>
<td>20.4</td>
<td>21.8</td>
<td>11.5</td>
<td>21.2</td>
</tr>
<tr>
<td>BL1-1</td>
<td>15.1</td>
<td>Beam plastic buckling</td>
<td>20.0</td>
<td>16.0</td>
<td>10.1</td>
<td>-</td>
</tr>
<tr>
<td>BS</td>
<td>15.3</td>
<td>Beam plastic buckling</td>
<td>20.0</td>
<td>14.2</td>
<td>10.7</td>
<td>-</td>
</tr>
</tbody>
</table>
3.3.2 에너지 소산면적

RCS 구조의 같은 복합구조에서는 이전 구조체가 고차

응력밀도가 집중되어 균열

한 지압면을 안전한 결과에

실현되었음을 확인하였다. 따라서 본 연구에

서는 각 실험체의 하중단계별 소산에너지 크기 평가하여 에

너지 소산면적의 확대여부를 검토하였다. 각 실험체의 하

중단계별 소산 에너지의 누적치를 비교하여 나타내면 Fig.

9와 같다. 그림에서 보는 바와 같이 각 실험체의 누적

에너지 소산면적은 전단성능 실험체의 경우, 자주식(주어성)

활성화된 실험체(JL-1 실험체는 약 2871.8 tonf·cm, 기존

면모습체를 적용한 실험체인 JS-1 및 JS-2 실험체

는 각각 3601.9 tonf·cm 및 2794.4 tonf·cm로 나타난

JL-1 실험체의 에너지 소산능력이 가장 높게 나타났다.

또한 내진성능 실험체에도 자주식(주어성) 활성화된 실험체를 적

용한 실험체는 기존조립 실험체와 유사한 에너지 소산면

적을 나타내었다. 따라서 에너지 소산능력 측면에서도 자

주식(주어성) 활성화된 실험체는 RCS 구조체계에 기존

시스템과 비교하여 동등 이상의 성능을 나타내는 것으로

판단된다.

3.3.3 강성의 평가

RCS구조의 접합부 일체성을 평가하기 위하여 실험 결과

의 이격구간에 대한 포락선(envelope)을 대상으로 접합부의

실험강성을 평가하고 이를 탄성강성과 비교하였다. 실험체

의 탄성강성은 식(7)에 따라 계산하였다. 탄성강성의 기준

은 철골보의 웅렬감도로 10 tonf으로 하여, 이에 대응하

는 실험강성과 비교하였다. 또한 강성비는 실험강성에 대

한 탄성강성의 비로 평가하였다.\(^7\)

\[
\delta_f = \frac{PL_j^3}{3EJ_b} + \frac{PL_j^3L_c}{3EJ_c}
\]

여기서, \(L_4 = \text{보스톤} / 2\)

\(L_2 = \text{가동지름}/2\)

\(E_b = \text{강의 탄성계수} = (21 \times 10^6) \text{kgf/cm}^2\)

\(E_c = \text{콘크리트 탄성계수} = (15,000 \times \sqrt{\pi})\)

\(\delta_b = \text{강조 보 단면} 2차 모멘트\)

\(L_c = \text{가동 단면} 2차 모멘트(0.7L_b)\)

자주식(주어성) 활성화된 실험체와 기존형 실험체의 강성을 비교하여 나타내면 Fig. 10 및 Table 4에 각

다. 그림에서 보는 바와 같이 전단성능 실험체(JL-1, JS-1, JS-2의 초기강성은 내진성능 실험체와 비하여 상

당히 높은 것을 알 수 있다. 이는 전단성능 실험체의 경

우 접합부의 전단파괴가 철골보의 왜곡과 보다 선형화도

하기 위하여 철골보 플레임을 가할 때에 동일하게

때 보의 부하가 적게 발생되었기 때문으로 판단된다.

Fig. 8 Shear mechanism of outer panel in RCS joint

Fig. 9 Comparisons of energy dissipation

Fig. 10 Comparisons of joint stiffness
자주석 횡보강근이 배근된 JL1-1과 기존형 실험체 JS-1, JS-2의 하중-변위 포락선을 비교해 보면, 실험의 초기단계에서부터 중량시까지 강도 및 안전성에 있어 거의 유사한 경향을 나타내고 있으며, 탄성강성에 대한 실험강성비도 JL1-1, JS-1, JS-2 실험체가 각각 61.8, 63.8, 65.7%를 나타내므로 거의 유사한 값을 나타내고 있다. 또한 내진성능형 실험체의 탄성강성에 대한 실험강성비도 BL1-1 및 BS 실험체가 각각 68%, 73%를 나타내어 접합부의 일정확보가 거의 동일한 것으로 나타났다. 따라서 강성비에 대한 평가 측면에서도 자주석(고탄성) 횡보강근을 사용한 RCS 구조시스템은 기존시스템과 비교하여 거의 동등한 성능을 지니는 것으로 판단된다.

3.3.4 기동주근의 부착력
기동주근의 부착력 상실로 인한 파괴는 RCS 보-기동접합부의 파괴모드 중의 하나로서, 기동부가 충분한 횡내력을 발생하기 이전에 기동주근과 콘크리트와의 부착력이 상실되어 하중-변위곡선이 접합부의 지압과의 방법상과 동일하게 편평한형상을 나타내는 바람직하지 않은 피해상황을 초래하게 된다. 본 연구에서 측정한 접합부 굴절면에서의 기동주근 변형도의 분포를 나타내면 Fig. 11과 같다. 기동 주근의 변형도는 철근의 플랜지 위치의 상하부의 접합부 중간 부위에서 각각 측정하였다.

그림에서 보는 바와 같이 두 개의 실험체 모두 각각의 위치변형도에 있어 거의 동일한 형상을 나타내고 있으며, 20 tonf 정도의 하중에서 거의 동일하게 목방변형도에 이르는 것으로 나타났다. 또한 접합부 콘크리트의 평균부착력에 있어서도 Fig. 12에서 보는 바와 같이 전단성형 실험체 JL1-1 및 JS-1은 내진성능형 실험체 BS-1보다 높은 부착력값을 나타내면서 2개 실험체 모두 유사한 부착력도 변화를 나타내어 횡보강근의 상세에 의한 부착력의 차이는 크지 않은 것으로 판단된다. 아울러 기존의 연구에서는 접합부 구단면의 부착력 상실 여부를 하중-변형곡선에서 변형도가 (+)측으로 급격한 이동이 발생하였을 때 부착력의 상실이 발생된 것으로 간주하고 있다. 따라서 이론 JL1-1 및 JS-1 실험체의 결과와 비교해 보면, 2개의 실험체 모두 부착성능은 양호한 것으로 나타나 횡보강근 상세와는 상관이 없는 것으로 나타났다.

Table 4 Comparisons of initial stiffness

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Yield strength (tonf)</th>
<th>Yield displacement (mm)</th>
<th>Stiffness (tonf/mm)</th>
<th>Yield strength (tonf)</th>
<th>Yield displacement (mm)</th>
<th>Stiffness (tonf/mm)</th>
<th>Stiffness ratio (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JL1-1</td>
<td>10.0</td>
<td>13.5</td>
<td>0.97</td>
<td>10.0</td>
<td>16.73</td>
<td>0.60</td>
<td>61.8</td>
</tr>
<tr>
<td>JS-1</td>
<td>10.0</td>
<td>13.5</td>
<td>0.97</td>
<td>10.0</td>
<td>16.16</td>
<td>0.62</td>
<td>63.8</td>
</tr>
<tr>
<td>JS-2</td>
<td>10.0</td>
<td>13.5</td>
<td>0.97</td>
<td>10.0</td>
<td>15.69</td>
<td>0.63</td>
<td>65.7</td>
</tr>
<tr>
<td>BL1-1</td>
<td>10.0</td>
<td>18.0</td>
<td>0.566</td>
<td>10.0</td>
<td>25.71</td>
<td>0.38</td>
<td>68.7</td>
</tr>
<tr>
<td>BS</td>
<td>10.0</td>
<td>18.0</td>
<td>0.566</td>
<td>10.0</td>
<td>24.57</td>
<td>0.41</td>
<td>73.0</td>
</tr>
</tbody>
</table>

(a) JL1-1 (small-column type)

![Fig. 11 Strain of column bar](image1)

(b) JS-1 (4-piece assembled)

![Fig. 12 Average bond strength of column bar](image2)
4. 결 문

본 연구에서는 RCS 복합구조에서 접합부의 횡보강근 배근방법을 개선한 자주식(子柱式) 횡보강근 배근방법을 제시하고, 제안된 공법과 이에 대응하는 기존의 보존체 관통형 실험체를 계획하여 접합부의 전단성능 평가를 위한 실험을 실시하였다. 본 연구 결과를 정리하면 다음과 같다.

1) 자주식(子柱式) 횡보강근을 이용한 RCS 접합부의 전단 강도 및 내진성능은 기존의 4조각 응력형 RCS 구조보다 높았으며, 4조각 조합형 RCS 구조보다 우수한 것으로 나타났다. 따라서 제안한 RCS 복합구조시스템은 사공 성뿐만 아니라 구조적 성능도 우수한 합리적인 구조 시스템이라 판단된다.

2) 접합부에 대한 강성평가 결과, 자주식(子柱式) 횡보강근을 사용한 RCS 접합부는 기존공법과 유사한 강성비를 나타내어 접합부의 일체성을 충분히 확보할 수 있는 것으로 판단된다.

3) 비선형 반복 횡동을 받는 접합부의 에너지 소산면적을 비교해 본 결과, 본 공법에 의한 실험체는 기존의 4조각 조합형 및 응력형에 비해 구 동일한 소산 면적을 나타내고 있다. 따라서, 자주식(子柱式) 횡보강근의 보강에 의한 RCS 접합부의 연장적인 기능을 충분히 확보할 수 있는 것으로 판단된다.

4) RCS 접합부에서 횡보강근에 의한 외부тельных의 전단강도는 기존의 양축량 모델보다 압축스트레스 모델을 이용하여 설계한 것이 보다 적절한 것으로 판단된다.

5) 향후 접합부에 큰 합성곤충에 의한 경우에 대한 자주식 횡보강근의 구속성을 대상 검토가 필요할 것으로 판단된다.

감사의 글

이 연구는 (주)현대산업개발의 연구비 지원으로 수행된 결과의 일부임.

참고문헌

요 약

본 연구에서는 최근골리트기와 철골로 구성된 혼합골조구조의 접합부에 대한 구조적 특성 평가하였다. 주요변수로는 본 연구에서는 제안한 자주식(子柱式) 횡보강근 상세의 기존의 RCS 공법에서 사용하고 있는 4 조각 조합형 및 응력형 등의 횡보강근 실체를 대상으로 하였다. 실험체는 총 5개의 내부접합부를 대상으로 2/3 측으로 제작하여 접합부의 전단 및 내진성능을 평가하였다. 실험의 결과, 모든 실험체에서 최대값으로 기준 강도 및 강성의 큰 차이가 없어 실험은 종료되었다. 따라서, 자주식(子柱式) 횡보강근을 사용한 RCS 접합부의 구조성능은 4조각 조합형 및 응력형 등의 기존 공법과 동일 이상의 구조적 성능을 확보하는 것으로 나타나 외부열의 전단기능도 압축스트레스에 의해 평가하는 것이 보다 적절할 것으로 판단된다.