외부 프리스트레싱으로 보강된 R.C 보에서 강재량 및 텔런.depth에 따른 프리스트레싱 강재의 극한응력

박성열 1)
1) 제주대학교 토목환경공학전공
(2003년 3월 25일 원고접수, 2003년 6월 13일 심사완료)

Ultimate Stress of Prestressing Steel with Different Reinforcement and Tendon Depth in R.C Beams Strengthened by External Prestressing

Sang-Yeol Park 1)*
1)* Dept. of Civil and Environment Engineering, Cheju National University, Cheju, 690-756, Korea
(Received March 25, 2003, Accepted June 13, 2003)

ABSTRACT

This study deals with literature review, developing a predicting equation for the ultimate stress of prestressing steel, and experimental test with the parameters affecting the ultimate stress of prestressing steel in reinforced concrete beams strengthened by external prestressing. The ACI predicting equation for the ultimate stress of unbounded prestressing steel is analyzed to develop a new integrated predicting equation. The proposed predicting equation takes rationality the effect of internal reinforcing bars into consideration as a function of prestressing steel depth to neutral depth ratio. In the experimental study, steel reinforced concrete beams strengthened using external prestressing steel are tested with the test parameters having a large effect on the ultimate stress of prestressing steel. The test parameters include reinforcing bar and external prestressing steel reinforcement ratios, and span to depth ratio. The test results are analyzed to confirm the rationality and applicability of the proposed equation for predicting the ultimate stress of external prestressing steel.

Keywords: external prestressing, ultimate stress, strengthening, unbounded, predicting equation

1. 서 론

외부 프리스트레싱(external prestressing)은 기존 콘크리트 교량의 보강에 가장 적합한 기술 중의 하나이며, 특히 시공의 용이성과 경제적인 이유로 기존 콘크리트 구조물의 보강에 가장 널리 쓰이고 있는 공법중의 하나이다. 2) 외부 프리스트레싱 보강공법은 프리스트레싱 강재를 부채질된 박에 설치하여 보강하는 방법인데, 근래에는 기존 교량의 보강뿐만 아니라 추후 보강의 필요성에 대비하기 위하여 실시설림에도 사용되고 있다.

외부 프리스트레싱 보강공법의 장점은 크게 세 가지로 첫째는 시공의 단순성으로 강재 설치가 매우 용이하다. 둘째는 프리스트레싱 강재가 외부에 노출되어 강재의 상해를 감소하기 쉽고, 부식이나 기타 이유로 강재에 해가 발생할 경우 대체가 가능하다. 셋째는 다른 공법에 비해 보강효과가 매우 크고, 보강 정도를 조정하기 쉬운 점이 다. 구조적으로 외부 프리스트레싱으로 보강된 철근콘크리트 보는 외부 비부착 강재를 가진 부분 프리스트레싱 콘크리트 보로 분류될 수 있는데, 이 부재는 철근 및 외부 비부착 프리스트레싱 강재로 보강되어 있다. 그러나 이 러한 다른 종류의 강재를 조합하여 사용하는 것은 부재의 해석과 설계를 보다 복잡하고 어렵게 만든다. 비록 외부 프리스트레싱 보강공법이 시공의 단순성이나 경제적인 이유로 선호되지만 외부 프리스트레싱 탄력으로 보강된 콘크리트 보의 활용도 강도 계산을 위한 프리스트레싱 강재의 극한응력 예측식은 아직까지 우리나라 콘크리트 구조 설계기준에 미치지 못하고 있다. 이 두 방식의 상용 예측식은 그 내용에 있어서 거의 동일하다.

이것까지 외부 비부착 프리스트레싱 강재로 보강된 철근콘크리트 보의 극한상태에서의 해석방법은 철근 및 외부 프리스트레싱 강재의 합성력을 각각 계산하고 이를
합한 총 인장력으로 단면해석을 실시하여 극한 홀모멘트 강도를 구하였다. 이 기사 우리나라 콘크리트 구조설계기준
이거나 ACI 시방서의 비부착 프리스트레싱 강재의 극한용
력식은 주변강재로서 프리스트레싱 강재를 사용하였을 때로
철근의 영향을 고려하지 않은 예측식으로 이를 철근과
외부 비부착 탠德尔을 함께 갖는 콘크리트 보에 적용하는
것은 적합하지 않다. 왜냐하면 외부 비부착 프리스트레싱
강재의 극한용량은 내부철근의 영향을 받기 때문이다.
Du와 Tao, Campbell과 Chouinard는 최소 척근량 이
상을 갖는 비부착 프리스트레싱 콘크리트 보에서 비부
착 프리스트레싱 탠德尔의 극한용량은 철근의 영도 증가함
에 따라 감소한다는 사실을 실험연구로부터 확인하였고
철근의 영향을 포함한 총 보강저수의 극한용량 예측에 합
리적인 변수임을 주장하였다. 또한 ASSHTO LRFD 시방
서와 Canada 시방서 CANY-A23.3-M936는 비부착 프리
스트레싱 강재의 극한용량은 탠德尔과 콘크리트의 갈이 차의
함수로 표현하고 있다.
한편, 프리스트레싱 강재가 콘크리트에 부착되어 있지
않을 때에는 극한하중 상태에서 보의 형 곡동 해석은 어
려움에 부딪힌다. 이 경우 프리스트레싱 강재의 주인 콘
크리트의 완전부착 가정은 더 이상 유용하지 않게 되어,
의 변형은 단면중첩(section dependent)이 아니라 부재
중첩(member dependent)이 된다. 완전부착 가정을 사용할
수 없음을 많은 연구자들로 하여금 실험 결과들을 과학주
점(curve fitting)함으로써 보의 해석을 해석하게 되었다.
이에 그들로 하여금 극한하중에서 보의 비부착 프리스트레
싱 강재의 응력 실험론을 기초로 예측하였고610-19, ACI 시
방서에서 비부착 프리스트레싱 강재의 극한용량을 예측하
는 데 실험론을 사용하여 있다. 우리나라에서 비부착 강재의
극한용량과 해석방법에 대한 최근의 연구는 참고된 14
~20 등이 있다.
외부 프리스트레스트 보는 내부 비부착 프리스트레스트
보의 문제뿐만 아니라 보의 변형에 따른 편심변화와 타
마력의 deviator에서의 지속력의 문제를 가졌다. 또한, 외부
탄德尔의 경우 deviator에서의 감각력 신뢰성에 따른 마
상력에 의해 프리스트레싱 응력이 갱소될 수 있다. 그러
나 본 연구에서는 이러한 영향을 제외하였다.
따라서 본 연구는 외부 프리스트레싱 강재로 보강하기
나 축옥부터 외부 프리스트레싱 강재를 일부 갖는 철근콘
크리트 보에 있어서 극한하중에서의 비부착 프리스트레싱
강재의 극한용량을 예측하고자 기존의 통합된 시험방
철근의 영향을 고려하기 위하여 확장하고 분석하여 새로
운 응력 예측식을 제안하고자 한다. 이를 위하여 콘크리
트 구조 설계기준과 같은 내용의 ACI 시방서를 이용한
프리스트레싱 강재의 예측용량과 제안식의 응력예측
을 실험연구로부터 얻어진 계측용량과 비교하여 그 합리
성과 적용성을 검토하였다.

2. 프리스트레싱 강재의 극한용량

2.1 우리나라 및 ACI, AASHTO 사방식

비부착 프리스트레싱 강재를 갖는 콘크리트 보에서
우리나라 콘크리트 설계기준 및 ACI 시방서에 따른 비부
착 프리스트레싱 강재의 극한용량은 아래와 같다.

\[
\frac{f_{\text{c}}}{f_{\text{y}}} \leq 35 : f_{\text{pm}} = f_{\text{pc}} + 70 + \frac{f_{\text{sh}}}{100} < f_{\text{y}} \\
\text{혹은 } f_{\text{pm}} + 400 \text{ (MPa)}
\]

(1-1)

\[
\frac{f_{\text{c}}}{f_{\text{y}}} > 35 : f_{\text{pm}} = f_{\text{pc}} + 70 + \frac{f_{\text{sh}}}{300} < f_{\text{y}} \\
\text{혹은 } f_{\text{pm}} + 210 \text{ (MPa)}
\]

(1-2)

여기서, \(f_{\text{pm}}\) : 프리스트레싱 강재의 유용용량
\(f_{\text{pc}}\) : 콘크리트의 압축강도
\(f_{\text{sh}}\) : 표준 강재 강도

또한 AASHTO LRFD 사방식에서는 아래와 같이 비부
착 강재의 극한용량을 부착강도계수 \(\Omega_u\)를 사용하여 중
립축과 강재 갯비의 합수로 나타내고 있다.

\[
f_{\text{pm}} = f_{\text{pc}} + \Omega_u E_{\text{c}} \varepsilon_{\text{c}} = \left(\frac{d_k}{c} - 1 \right) \times 0.94 f_{\text{y}}
\]

(2)

여기서, \(E_{\text{c}}\) : 콘크리트의 과부 극한변형률
\(d_k\) : 콘크리트의 최대 극한변형률
\(c\) : 콘크리트의 중립축 깊이의 비

\[
\Omega_u = 1.5 / \left(\frac{f_{\text{pc}}}{f_{\text{y}}} \right) \text{ (일개하증)}
\]

\[
\Omega_u = 3.0 / \left(\frac{f_{\text{pc}}}{f_{\text{y}}} \right) \text{ (일개 하증 그리고 등분포 하증)}
\]

그리나 AASHTO 사방식은 미지의 중립축 깊이, \(c\)의
함수로 되어 있기 때문에 시내 및 단면의 합의 평형조건
식, 두 방정식으로부터 미지수 \(f_{\text{pm}}\), \(c\)를 산간법에 의하여
구해내는 불편함이 있다.

2.2 ACI 사방식의 확장

비부착 프리스트레싱 강재의 극한용량에 대한 독립된
시방식 (1) 혹은 (2)를 살펴보면 모두 강재비의 합수로 되
어 있는데 이는 강재합에 따른 안장장과 강재 갯비의 합
수임을 뜻한다. 또한 안장장은 중립축의 깊이를 결정할
수 있어 강재의 극한용량은 중립축의 깊이와 갯비의 합
수로 나타낼 수 있다. 다음은 그 과정을 설명하고 있다.
비부착 프리스트레싱 강재의 극한용량식 (1-1)을 인
장력의 항으로 나타내면 아래와 같다.
\[f_p = f_{p0} + 70 + \frac{f_{p0}}{100} \left(\frac{A_p f_p}{b_d f'_p} \right) \]
(3)

여기서, \(A_p\) : 프리스트레싱 강재량, \(b\) : 보의 폭
위 식을 살펴보면 프리스트레싱 강재의 극한응력 시험
식은 자신만에 의한 무력의 합으로 표시되어 있다. 따
러서, 외부 프리스트레싱 강재로 보강된 클레공크리트 보
에서의 각 단계의 무력은 사용한다면 프리스트레싱 강재
의 극한응력은 높게 평가하여 결국 정전 클로모프 크기를
높게 평가하는 결과로 가해진다. 그러므로 외부 프리스트
레싱 강재로 보강된 클레공크리트 보에서 프리스트레싱 강재
의 극한응력은 클레공크리트 보의 보강선도에 따라 달리 계산되어져
야 할 것이다. 따라서 외부 프리스트레싱 강재를 갖는 클레
크리트 보에서 프리스트레싱 강재의 응력은 절연의 영향
을 고려하여 다음과 같이 환산할 수 있다.

\[f_p = f_{p0} + 70 + \frac{f_{p0}}{100} \left(\frac{A_p f_p}{b_d f'_p} \right) \]
(4)

여기서, \(A_p\) : 인장절연강, \(A'_p\) : 압축절연강
\(f_p\) : 절연의 영향응력
위 식에서 비부착 강재의 응력은 보수적으로 최대 한계
값을 사용하였다. 위 식을 응력의 위치(\(x_u\))와 강재 응
력\(d_p\)의 합으로 간단히 나타내면 비부착 프리스트레싱
강재의 극한 응력은 다음과 같다.

\[f_p = f_{p0} + 70 + \frac{f_{p0}}{85} \frac{d_p}{c_u} - \frac{f_p}{f_{p0}} \]
(5)

여기서, \(c_u\) = \(A_p f_p + A'_p f'_p - A_f f f_p \cdot f_{p0} \frac{d_p}{b_d} \),\(b_d\) = 각 강재가 극
한상태에서 최대 한계응력에 도달하였을 때의 증폭계
수이며, \(b_d\)는 증폭계수의 증폭계수의 값이됨과
따라서 프리스트레싱 강재의 극한응력 예측식은 외부
프리스트레싱 강재를 함께 사용하는 클레공크리트 보와
극한 클로모프 크기를 계산하기 위하여 절연의 보강효과
를 고려해야 한다. 또한 응력 예측식은 지사계량이나 분
리지가 가진 보 등에도 적용될 수 있는 일반적이고 합리
적이며 높도록 단순해야 한다.

2.2 극한응력 예측 제안식
기존 시험식을 확장하여 분석한 결과 외부 프리스트레
싱 강재의 극한응력은 프리스트레싱 강재와 증폭계수의 값
이의 함수임을 알 수 있다. 따라서 극한상태의 단면해
식에서 완전부착 기준을 전체로 이론적으로 변형을 적합
조건식을 이용하여 부착 프리스트레싱 강재의 응력은 다
음 식과 같이 나타낼 수 있다.

\[f_{p(t,b)} = f_{p0} + E_p d_p + f_{p0} + E_p d_p \frac{d_p}{c_u} \left(\frac{d_p}{c_u} - 1 \right) \]
(6)

여기서, \(e_p\) : 부착 프리스트레싱 강재의 극한 변형률
\(c_u = A_p f_{p0} + A'_p f'_p - A_f f f_p \cdot f_{p0} \frac{d_p}{b_d} \),\(b_d\) = 각 강재가 극한상태에
서 최대 한계응력에 도달하였을 때의 증폭계수의 T형
보의 경우는 아래와 같다.

\[c_u = A_p f_{p0} + A'_p f'_p - A_f f f_p \cdot f_{p0} \frac{d_p}{b_d} \]
(7)

여기서, \(b_d\) : 보폭, \(h_f\) : 클레공크리트 두께
그러나 위의 식\(e_p\)의 경우 일반적 프리스트레싱 강재
의 단면계수 \(E_p\)를 사용함으로 인한 선형성 가정과 극
한상태에서 증폭계수의 값이 구할 때 프리스트레싱 강재의
최대응력을 가정하였기 때문에 실제 실험값들과 차이가
나올 수 있다. 이러한 영향을 고려하여 프리스트레싱 강재
강과 극한상태에서의 증폭계수는 비로 보정적 1차 함수
적용으로 표시하면 아래와 같다.

\[f_{p(t,b)} = f_{p0} + E_p d_p + \left[\beta + a E_p d_p \frac{d_p}{c_u} \left(\frac{d_p}{c_u} - 1 \right) \right] \]
(8)

여기서, \(\beta\)와 \(a\)는 위의 기본정리이나 외부 프리스트레
싱 강재의 선형변화 등 기타 요인 등으로 인한 응력수정
계수로 설계 등을 통하여 통계적으로 구할 수 있다.
그러나 외부 프리스트레싱 강재의 경우는 비부착 되어
응력이 단면중심이 아닌 부재중심이라는 특성을 고려하
여 단면의 변형을 적합조건식으로부터 구한 응력과 전
부재강이에 걸린 응력의 평균화에 따른 감소계수를 고려
해야 할 것이다. 즉, 응력평균화를 위한 감소계수는 보의 길
이\(x\)에 따른 강재길이의 변화\(d_p\)와 계하측면에 의한
모멘트 변환\(M_d\)의 영향을 고려한 것이다. 따라서 이를
고려한 외부 프리스트레싱 강재의 극한응력은\(e_p\)의 식을
수정하여 다음과 같이 표시할 수 있다.

\[f_{p(t,b)} = f_{p0} + E_p d_p + f_{p0} \frac{d_p}{c_u} \left(\frac{d_p}{c_u} - 1 \right) \]
(9)

\[\Phi_u = \Phi_u \times \Phi_{um} \] : 응력 평균화 계수
\[\Phi_{um} = \frac{d_p}{d_p} = \int_0^L \int_0^L \int_0^L M_\text{d}(L \text{d}_p) \] : PS 강재길이의 변화를 고려한 응력 평균화 계수
\[\Phi_{um} = \frac{1}{M_\text{d}} = \int_0^L \int_0^L \int_0^L M_\text{d}(L \text{d}_p) \] : 외부 변환으로 고려한 응력 평균화 계수

외부 프리스트레싱 강재의 선형성 가정과 최대 증폭
계수를 고려하여 일반적인 형태로 프리스트레싱 강재의
길이와 극한상태의 증폭계수의 값으로 나타내면 다음과
같다.

\[f_{p(t,b)} = f_{p0} + \left[\beta + a E_p d_p \frac{d_p}{c_u} \left(\frac{d_p}{c_u} - 1 \right) \right] \]
(10)
3. 실험연구

3.1 실험계획

3.1.1 시험체

외부 프리스트레스가 높담된 절연콘크리트 보의 외부 프리스트레스 강재의 극한응력에 영향을 미치는 여력 및 그 영향을 평가하기 위해 이를 기초로 극한상태에서 프리스트레스 강재의 극한응력을 측정할 수 있는 모델링을 통해 실험을 실시하였다.

실험에 사용된 시험체는 총 10개의 T형 콘크리트 보로 시험체 제작과 하중재료 장치는 Fig. 1과 같다. 모든 보는 230 mm 깊이로 총길이 2.4 m, 지지점 사이의 길이는 2.1 m의 단순 T형보로서 극한 짐거동을 관찰하기 위해 4점 제하방식을 사용하였다. 외부 프리스트레스 강재는 지간 중앙부에는 deviator를 이용하여 유효길이를 유지하였고 단부에서는 단면의 도움에 일시적인 정확하였다.

스테이핑 고정을 위해 압축부에 H13 철근을 2개 배치하였으며, 이하 과제의 전단파괴를 방지하기 위하여 U형 스테이핑은 H10철근으로 100 mm 간격으로 배치하였다.

3.1.2 실험 데이터 수집

하중은 4점 제하방식으로 1/3 지점 두 곳에 하중이 작용될 수 있도록 강재부를 설치하고 거력 프레임에서 유압회로를 사용하여 회피되며 제어 하였다. 하중은 변위조절 방법으로 본당 약 1.5 mm의 속도로 체하하였으며 제하중 약 30t마다 균열을 표시하였다. 데이터 수집은 동적변형 측정기를 사용하여 컴퓨터 자동 데이터 수집프로그램을 이용하여 하중중 및 체량과 하중과 콘크리트, 외부 프리스트레스 강재의 변형률을 측정하였다. Fig. 2는 시험 데이터 수집을 위한 기기 및 strain gage의 위치를 나타내고 있다.

3.1.3 시험변수

외부 프리스트레스 강재의 극한응력에 영향을 미치는 인자들에 대한 이론적 연구결과를 평가 분석하여 시험변수를 결정하였는데 변수들은 내부철근비, 외부 프리스트레스 강재의 지간/유 효길이 비 등이다. Table 1은 철근콘크리트 시험의 시험인자 및 변수를 나타내고 있다.

3.2 재료

3.2.1 콘크리트

절연콘크리트 시험체에 사용된 콘크리트는 설계강도 20 MPa의 해미콘으로 Type-1의 보통시멘트, 자연모래, 최대 콘크리트 25 mm의 콘크리트를 사용하였다. 현장에서 측정한 슬럼프 값은 15 cm였으며 시험체의 실험 시 측정된 공시체의 평균 압축강도는 30.5 MPa이었다.

3.2.2 철근 및 프리스트레스 강재

시험체에 사용된 철근은 철근콘크리트 보의 경우 SD40 동급의 H25, H22, H19, H16을 사용하였고 압축철근으로는 H13을, 스테이핑으로서는 H10을 사용하였다.

Fig. 1 Dimensions and loading layout of test beam

Fig. 2 Layout for data acquisition

Table 1 Parameters and variables of test beams

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Beam ID</th>
<th>Reinforcing bar</th>
<th>External PS steel</th>
<th>PS steel depth (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>RC1</td>
<td>2H22A, 7.74 cm²</td>
<td>-</td>
<td>dₖ = 190</td>
</tr>
<tr>
<td></td>
<td>RC2</td>
<td>2H16A, 3.97 cm²</td>
<td>0.65P₁₉₉₀</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RC3</td>
<td>2H19A, 5.73 cm²</td>
<td>0.45P₁₉₉₀</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RC4</td>
<td>2H22A, 7.74 cm²</td>
<td>0.65P₁₉₉₀</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RC5</td>
<td>2H25A, 10.10 cm²</td>
<td>0.75P₁₉₉₀</td>
<td></td>
</tr>
</tbody>
</table>

Re-bar ratio

<table>
<thead>
<tr>
<th>Beam ID</th>
<th>2H22A, 7.74 cm²</th>
<th>dₖ = 190</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC2</td>
<td>2H16A, 3.97 cm²</td>
<td></td>
</tr>
<tr>
<td>RC3</td>
<td>2H19A, 5.73 cm²</td>
<td></td>
</tr>
<tr>
<td>RC4</td>
<td>2H22A, 7.74 cm²</td>
<td></td>
</tr>
<tr>
<td>RC5</td>
<td>2H25A, 10.10 cm²</td>
<td></td>
</tr>
</tbody>
</table>

External PS steel ratio

<table>
<thead>
<tr>
<th>Beam ID</th>
<th>2H22A, 7.74 cm²</th>
<th>dₖ = 190</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC6</td>
<td>2H22A, 7.74 cm²</td>
<td></td>
</tr>
<tr>
<td>RC7</td>
<td>2H22A, 7.74 cm²</td>
<td></td>
</tr>
</tbody>
</table>

Length/depth ratio

<table>
<thead>
<tr>
<th>Beam ID</th>
<th>2H22A, 7.74 cm²</th>
<th>dₖ = 190</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC8</td>
<td>2H22A, 7.74 cm²</td>
<td></td>
</tr>
<tr>
<td>RC9</td>
<td>2H22A, 7.74 cm²</td>
<td></td>
</tr>
<tr>
<td>RC10</td>
<td>2H22A, 7.74 cm²</td>
<td></td>
</tr>
</tbody>
</table>
한편 외부 프리스트레싱 강재는 SWPC 7B의 지름 5.20 mm와 4.35 mm의 강재 3개와 지름 12.7 mm의 7면선을 사용하였다. 아래 Table 2에서는 사용된 철근 및 프리스트레싱 강재의 인장시험결과를 요약하였다.

<table>
<thead>
<tr>
<th>Type</th>
<th>Diameter (mm)</th>
<th>Yield stress (MPa)</th>
<th>Ultimate stress (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H25</td>
<td>459.4</td>
<td>649.9</td>
<td></td>
</tr>
<tr>
<td>H22</td>
<td>427.6</td>
<td>650.3</td>
<td></td>
</tr>
<tr>
<td>H19</td>
<td>472.9</td>
<td>685.8</td>
<td></td>
</tr>
<tr>
<td>H16</td>
<td>466.4</td>
<td>683.2</td>
<td></td>
</tr>
<tr>
<td>H13</td>
<td>447.9</td>
<td>676.7</td>
<td></td>
</tr>
<tr>
<td>H10</td>
<td>405.9</td>
<td>648.2</td>
<td></td>
</tr>
<tr>
<td>PS steel</td>
<td>45.20/45.2</td>
<td>1,798.8</td>
<td>2,006.8</td>
</tr>
<tr>
<td>PS steel</td>
<td>44.35/44.127</td>
<td>1,835.9</td>
<td>2,009.3</td>
</tr>
</tbody>
</table>

Table 2 Test results of tensile strength of reinforcement

3.3 실험결과 및 분석

외부 프리스트레싱 탄단으로 보강된 철근콘크리트 보의 실험결과(Table 3)를 제안된 프리스트레싱 강재의 응력에 측정하여 추정된 외부 프리스트레싱 강재의 응력은 PS강재와 절연재의 길이의 함수이(\(d/L\))로 표시하여 응력수정계수 \(a\)와 \(b\)를 구하여 제안한 일반식으로 나타내었다. 제안된 외부 프리스트레싱 강재의 극한 응력의 예측식(9)은 다음과 같다.

\[
f_{ps,ue} = f_{ps} + \Delta f_{ps,ue} = f_{ps} + \left[b + a\Phi \frac{d}{c_w} \left(\frac{d}{c_w} - 1 \right) \right]
\]

또한, 본 시험에서 응력정립계수를 \(\Phi = 0.445\),
\[
\Phi_{ue} = \int_0^L \frac{M_{ps}dx}{LM} = 0.657, \quad \Phi_{dim} = \frac{\int_0^L M_{ps}dx}{LM} = 0.657
\]

Table 4는 극한상태에서 각 시험체의 외부 프리스트레싱 강재의 측정 및 예측 응력을 모멘트량을 비교하고 있다. 예, 3은 PS강재의 응력을 \(\frac{d}{c_w}\)의 함수로 나타낸 것으로 제안된 응력의 예측식(9)은 응력수정계수 \(a\)가 0.85, \(b\)가 2.000이면 실제 측정된 외부 PS강재의 극한응력 증가분의 경향을 가장 잘 표현해주고 있는데, PS강재와 절연재의 길이의 비가 증가함수록 외부 프리스트레싱 강재의 극한응력은 증가한다.

Table 3 Summary of test results

<table>
<thead>
<tr>
<th>Beam LD</th>
<th>Ultimate load (KN)</th>
<th>Ultimate deflection (mm)</th>
<th>Ultimate strain of external PS steel (+10)</th>
<th>Ultimate stress of external PS steel (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC1</td>
<td>185.7</td>
<td>40.72</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RC2</td>
<td>210.9</td>
<td>51.31</td>
<td>4.43</td>
<td>886</td>
</tr>
<tr>
<td>RC3</td>
<td>241.2</td>
<td>44.52</td>
<td>3.65</td>
<td>730</td>
</tr>
<tr>
<td>RC4</td>
<td>269.2</td>
<td>40.75</td>
<td>3.16</td>
<td>632</td>
</tr>
<tr>
<td>RC5</td>
<td>285.9</td>
<td>34.65</td>
<td>2.48</td>
<td>496</td>
</tr>
<tr>
<td>RC6</td>
<td>248.2</td>
<td>40.82</td>
<td>3.68</td>
<td>736</td>
</tr>
<tr>
<td>RC7</td>
<td>286.8</td>
<td>29.74</td>
<td>2.16</td>
<td>432</td>
</tr>
<tr>
<td>RC8</td>
<td>292.5</td>
<td>39.24</td>
<td>3.92</td>
<td>784</td>
</tr>
<tr>
<td>RC9</td>
<td>257.9</td>
<td>41.21</td>
<td>3.04</td>
<td>608</td>
</tr>
<tr>
<td>RC10</td>
<td>288.5</td>
<td>38.04</td>
<td>2.45</td>
<td>490</td>
</tr>
</tbody>
</table>

* Deflection at the ultimate load
** Increased strain from the effective strain and increased stress from the effective stress

Table 4 Ultimate stress of external prestressing steel

<table>
<thead>
<tr>
<th>Beam LD</th>
<th>(f_{ps}) (MPa)</th>
<th>Measured (\Delta f_{ps}) in Eq.(1) (MPa)</th>
<th>(\Delta f_{ps}) in Eq.(2) (MPa)</th>
<th>(\frac{d}{c_w})</th>
<th>(\omega_{e}) of re-bar</th>
<th>(\omega_{p}) of PS steel</th>
<th>(L/L_p)</th>
<th>(\frac{d}{c_w}) in Eq.(9) (MPa)</th>
<th>(\frac{d}{c_w}) in Eq.(9) (MPa)</th>
<th>Measured (M_s) (KN.mm)</th>
<th>Calculated (M_s) (KN.mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC2</td>
<td>8459</td>
<td>866</td>
<td>206.5</td>
<td>610.7</td>
<td>4.09</td>
<td>0.101</td>
<td>0.132</td>
<td>11.05</td>
<td>752.8</td>
<td>902.1.</td>
<td>1741.7</td>
</tr>
<tr>
<td>RC3</td>
<td>8340</td>
<td>730</td>
<td>206.5</td>
<td>458.8</td>
<td>3.18</td>
<td>0.148</td>
<td>0.132</td>
<td>11.05</td>
<td>584.3</td>
<td>694.8</td>
<td>1395.8</td>
</tr>
<tr>
<td>RC4</td>
<td>8510</td>
<td>622</td>
<td>206.5</td>
<td>322.7</td>
<td>2.75</td>
<td>0.181</td>
<td>0.132</td>
<td>11.05</td>
<td>471.7</td>
<td>562.7</td>
<td>1412.2</td>
</tr>
<tr>
<td>RC5</td>
<td>7943</td>
<td>496</td>
<td>206.5</td>
<td>233.8</td>
<td>1.64</td>
<td>0.254</td>
<td>0.132</td>
<td>11.05</td>
<td>170.0</td>
<td>345.2</td>
<td>1395.9</td>
</tr>
<tr>
<td>RC6</td>
<td>7296</td>
<td>736</td>
<td>233.8</td>
<td>458.5</td>
<td>3.21</td>
<td>0.281</td>
<td>0.132</td>
<td>11.05</td>
<td>501.4</td>
<td>705.6</td>
<td>1431.2</td>
</tr>
<tr>
<td>RC7</td>
<td>683.3</td>
<td>432</td>
<td>233.8</td>
<td>300.5</td>
<td>1.56</td>
<td>0.218</td>
<td>0.132</td>
<td>11.05</td>
<td>100.6</td>
<td>362.5</td>
<td>1039.5</td>
</tr>
<tr>
<td>RC8</td>
<td>783.1</td>
<td>784</td>
<td>233.8</td>
<td>472.4</td>
<td>3.04</td>
<td>0.181</td>
<td>0.199</td>
<td>10.00</td>
<td>544.4</td>
<td>660.0</td>
<td>1394.1</td>
</tr>
<tr>
<td>RC9</td>
<td>783.8</td>
<td>608</td>
<td>192.0</td>
<td>309.6</td>
<td>2.48</td>
<td>0.181</td>
<td>0.148</td>
<td>12.35</td>
<td>399.9</td>
<td>583.3</td>
<td>1321.1</td>
</tr>
<tr>
<td>RC10</td>
<td>842.1</td>
<td>490</td>
<td>177.7</td>
<td>223.3</td>
<td>2.17</td>
<td>0.181</td>
<td>0.167</td>
<td>14.00</td>
<td>322.6</td>
<td>485.5</td>
<td>1507.6</td>
</tr>
</tbody>
</table>
한편, Fig. 4에서 보인 바와 같이 시험체의 예측된 프리스트레스 유형으로 계산된 모멘트강도는 실험에서 측정된 모멘트강도의 약 92%로 매우 양호하게 예측하고 있다.

1) 철근비의 영향
외부 프리스트레스 탄단으로 보강된 철근콘크리트 보에서 내부 철근비가 외부 고단의 극한응력에 미치는 영향을 알아보기 위해 시험체 RC2, RC3, RC4, RC5를 비교하였 다. Fig. 5에서 보는 바와 같이 내부철근의 강재지수 즉, 철근량이 증가하면 외부 프리스트레스 강재의 극한응력 증가량이 감소하는데, 기존 ACI 사방석(1)은 내부 철근의 영향을 전혀 반영하고 있지 못하다. 반면 제안식(9)은 PS 강재와 중첩된 값이기의 합수로 표현함으로써 내부철근의 영향을 합리적으로 고려하여 실제 응력값의 평형을 잘 나타내고 있다. 그림에서 예측식의 그래프가 하나의 곡선으로 표시되지 못한 이유는 철근량의 증가에 따라 시험체가 T형보 기둥을 하기 때문이다.

Fig. 6은 철근콘크리트 보의 내부 철근비에 따른 하중-처짐도를 나타내고 있는데, RC1은 외부 보강이 없는 기준 보이다. 기준보 RC1과 같은 철근량을 가진 RC4를 비교하

Fig. 5 Increased ultimate stress of external PS steel and reinforcing index of re-bar

Fig. 3 Increased ultimate stress of external PS steel

Fig. 6 Load-deflection curves with different re-bar ratio

Fig. 4 Comparison of measured and calculated moment

Fig. 7 Deflection-strain of external PS steel with different re-bar ratio
아 보면서 전체적인 기동의 경향은 비슷하며 다만 외부 프리스트레싱 강재로 보강한 RC1과 첫 번째 극한강도를 가진 것이 알 수 있다. 내부 천장벽이 다른 RC2, RC3, RC4, RC5를 비교하여 보면 외부 프리스트레싱 강재의 양이 증가함수록 극한강도가 증가하고 극한점점은 감소함을 알 수 있다. Fig. 7은 천장벽에 따른 처짐과 외부 프리스트레싱 강재 변형률과의 선형적 관계를 나타내고 있는데 천장의 증가에 따라 같은 처짐량에서 응력의 증가율은 천장의 적응수록 크다는 것을 그래프의 기울기로서 알 수 있다.

2) 외부 PS강재의 영향

외부 프리스트레싱 탄단으로 보강된 천장콘크리트 보에서 외부 프리스트레싱 강재가 극한 응용력 증가에 미치는 영향을 알아보기 위해 시험체 RC6, RC4, RC7을 비교하였다. Fig. 8에서 보는 바와 같이 외부 프리스트레싱 강재가 증가함수록 외부 프리스트레싱 강재의 극한응력 증가율은 감소되며, 기존 ACI 시방식(1)은 외부 프리스트레싱 강재의 영향을 고려하고 있지만 실험과와 기울기에 있어서 차이를 보이고 있다. 이는 기존의 ACI 시방식의 최소 내부철근을 갖는 외부 프리스트레싱 강재로 한 인적응력을 지정하는 경우의 시방식이기 때문에 단점이다. 반면 제안식(9)은 PS강재와 종합적으로 산입함으로써 외부 프리스트레싱 강재의 영향을 허용적으로 고려하고 있어 실측 응력값의 경향을 잘 반영하고 있다.

Fig. 9는 외부 프리스트레싱 강재비에 따른 각 시험체의 압축- 처짐도를 나타내고 있는데, RC1은 외부 보강이 없는 기준체이다. 그림에서 보는 바와 같이 외부 프리스트레싱 강재 보강이 증가함에 따라 극한강도가 증가하고 극한점점은 비슷하나, 외부 강재비가 과도한 RC7의 경우만 극한점점이 상당히 감소함을 알 수 있다.

Fig. 10은 외부 프리스트레싱 강재량에 따른 처짐과 프리스트레싱 강재의 변형률과의 관계를 나타내고 있는데 내부 천장벽에 따른 영향에서와 같이 선형적으로 비례하고 외부 프리스트레싱 강재가 증가함수록 같은 처짐량에서 응력의 증가가 조급하게 나타나고 있다.

외부 프리스트레싱 탄단으로 보강된 천장콘크리트 보에서 자산과 프리스트레싱 강재의 값비가 극한 응용력과 외부 탄단의 극한응력에 미치는 영향을 알아보기 위해 시험체 RC8, RC4, RC9, RC10을 비교하였다. Fig. 11에서 보는 바와 같이 자산/강재비가 증가함수록 외부 PS 강재의 극한응력 증가율은 감소되며, ACI 시방식은 자산과 보중이 비에 따른 영향을 다른 두식(식 1, 2)으로 표현하고 있어 그 영향을 충분히 표현하고 있지 못하다. 그림에서 ACI 시방식이 조금이나마 경력을 나타내는 이유는 시방식에 포함되어 있는 보중이 강재점과 관련되어 외부 PS강재계산에서 고려하기 때문이다.
국내 건설부가 증가되고 있다. Fig. 13에서 보인 바와 같이 처짐과 외부 프리스트레싱 강재의 변형률정수는 선행적으로 비례하고 있으나 강재강의 영향은 다른 영향요인보다는 크다는 것을 기울기의 차이에서 알 수 있다.

4. 결론

외부 프리스트레싱 텐션으로 보강된 철근콘크리트 보에 있어서 프리스트레싱 강재의 극한응력에 관한 연구로부터 다음과 같은 결론을 얻을 수 있다.

1) 기존 ACI 시방서이나 우리나라 시방서의 외부 비부착 프리스트레싱 강재의 응력에측측은 비부착 강재가 주 인장재인 콘크리트 보를 기준으로 하고 있기 때문에 외부 프리스트레싱 강재로 보강된 철근콘크리트 보의 프리스트레싱 강재의 극한응력 예측에 부적합하다. 이는 기존 시방서의 외부 프리스트레싱 강재의 극한응력 예측식이 내부철근의 영향을 고려하고 있지 않기 때문이다.

2) AASHTO 시방서는 프리스트레싱 강재의 극한응력을 강재와 중심축 길이비의 함수로 나타내고 있어 그 경향성을 비슷하나 실측값들과 오차가 크며 극한응력을 구하기 위해서는 중심축 길이를 가정하여 단면의 평형 조건을 만족할 때까지 시산법으로 평가하는 여러 경우 병합함이 있다. 또한 보 전계 길이에 따른 프리스트레싱 강재 길이의 변화와 최하한에서 따른 모멘트의 변화를 합리적으로 고려하고 있지 못하다.

3) 외부 프리스트레싱 강재의 극한응력은 이론적으로 PS 강재 길이와 중심축 길이비의 비의 함수로 합리적으로 나타낼 수 있으며 실험을 통한 응력수정계수의 결정으로 정확한 응력예측식을 만들 수 있다.

4) 외부 프리스트레싱 강재의 극한응력 예측에서 부착강도 계수와 비슷한 응력 평균계수를 사용하여 부재길이에 따른 PS 강재길이 변화와 재하하중에 의한 모멘트 변화를 합리적으로 고려할 수 있다.

5) PS강재의 길이와 중심축의 길이의 비로 나타낸 프리스트레싱 강재의 극한응력 제안식은 응력 평균계수와 응력수정계수 등을 도입하여 심리에서 실측된 프리스트레싱 강재의 극한응력을 매우 정확하게 예측하고 있다.

6) 철근콘크리트 보에서 외부 프리스트레싱 강재의 극한 응력은 내부 철근과 외부 프리스트레싱 강재비의 증가에 따라 감소한다.

7) 외부 프리스트레싱 강재의 극한응력은 지대/PS강재의 길이 비의 증가에 따라 감소한다.

8) 외부 프리스트레싱 강재의 극한응력은 철근콘크리트 보의 차점과 선행적으로 비례한다.

감사의 글

본 연구는 한국과학기술원 공학기초연구(과제번호: R005-2000-000-00374-0) 지원사업에 의해 이루어졌으며 이에 감사드린다.
참고문헌

5. ACI Committee 318, "Building Code Requirements for Reinforced Concrete (ACI 318-95)," American Concrete Institute, Detroit, Michigan, 1995.

요 약

본 연구는 외부 프리스트레싱으로 보강된 철근콘크리트 보에 관한 문헌연구와 프리스트레싱 강재의 극한용역 예측의 개발, 극한용역에 영향을 미치는 변수들에 대한 실험 결과를 근거로, 새로운 통합 예측 방법을 위하여 비바닥 프리스트레싱 강재의 극한용역에 대한 ACI 사항을 확장하고 분석하였다. 본 논문에서는 외부 프리스트레싱 강재의 극한용역에 대한 새로운 통합적 예측을 제안하고 있는데, 프리스트레싱 강재의 극한용역에 영향을 미치는 변수들에 관한 연구자가 제안한 ACI 사항을 확장하고 분석하였다. 본 실험연구에서는 프리스트레싱 강재의 극한용역에 영향을 미치는 변수들을 가지고 외부 프리스트레싱으로 보강된 철근콘크리트 보를 실험하여 실험하였다. 실험연구에서 제안한 영향요인들은 벽재편이가, 외부 프리스트레싱 강재의 길이, 구조의 PS 강재는 비 등이다. 실험결과는 분석되어 외부 프리스트레싱 강재의 극한용역에 대한 제안된 예측법의 합리성과 적합성을 확인하였다.

핵심요인 : 외부 프리스트레싱, 극한용역, 보강, 비바닥, 예측식

외부 프리스트레싱으로 보강된 RC 보에서 강재량 및 현장적용에 따른 프리스트레싱 강재의 극한용역