Applicability of Epoxy Injection Method to Cracked RC Beams
Considering Pre-Loading Conditions

Geon-Ho Hong 1) and Yeong-Soo Shin 2)*

1) Dept. of Architectural Engineering, Hoseo University, ChungNam-Do, 336-795, Korea
2) Dept. of Architecture, Ewha Womans University, Seoul, 120-750, Korea

(Received August 22, 2003, Accepted December 31, 2003)

ABSTRACT

The objective of this study was to investigate applicability of epoxy injection method to cracked RC beams and structural behavior of repaired RC beams considering pre-loading conditions. For this purpose, five test beams were fabricated under two experimental variables. The main variables of this experimental study were pre-loading conditions and repair methods. The two pre-loading conditions were selected as 70% and 90% of nominal strength and the repair methods were to repair the cracked RC beams under free loading after crack and sustained loading. The comparative study was executed to evaluate effects of pre-loading conditions on the structural behavior of the cracked RC beams after crack-repair. The strains of reinforcement and concrete and deflections of beams at each loading step were measured and evaluated. As the results of this study, repair methods have much influence on structural behavior of epoxy injected RC beams and epoxy injection method for cracks of RC structures is appeared to be efficient.

Keywords : crack repair, epoxy, pre-loading condition, epoxy injection method

1. 서 론

철근콘크리트 구조 부재의 성능 저하 현상은 극적으로 부재의 변형 및 균열을 야기하며, 이러한 구조체의 균열은 미관, 내구성 및 구조적 안전성을 저하시키는 경우가 많다. 국내 콘크리트 설계 기준에서도 균열의 폭이 0.3 mm 이상인 경우 내구성을 고려하여 균열을 보수하도록 규정하고 있다. 3) 최근 균열을 보수하기 위한 공법 중 균열에 액체를 주입하여 보수하는 에폭시 주입공법이 가장 널리 사용되어 왔으나, 에폭시 주입공법에 의한 균열 보수공법은 보수 후 쿨 부재의 경량화에 대한 구체적인 검토 없이 적용되어 오는 것이 사실이다. 이러한 에폭시 주입 공법의 성능에 영향을 미치는 주 요소는 사용하는 에폭시의 성능과 균열의 폭에 따라 달라지므로 33) 즉, 건축 구조물의 균열 보수 후 성공을 파악하기 위해서는 에폭시의 종류와 균열의 폭에 따라 연구해 보어야 한다.

본 연구에서는 이러한 성능 영향인자들을 고려하여 에폭시의 종류는 시공 허용으로 가장 널리 사용되는 균열 주입용 에폭시를 선택하여 사용하고, 균열의 폭은 하중의 크기에 비례하게 되므로 하중 하중의 크기를 변환시켜 균열을 발생시키는 후 하중을 제거한 상태에서 균열에 에폭시를 주입하고 다시 가려감하는 방법을 많이 사용해 왔다. 34) 그러나, 실험적으로 정확한 균열 후 가량을 파악하기 위해서는 하중이 제거된 상태에서 균열을 보수하고 재포 시까지 가려함이 필요하다. 35) 즉, 실험 균열 보수//=이 건설을 사용하면서 이루어진다는 점을 고려할 때, 실험기준에 따라 하중을 제거한 상태에서 균열을 보수하고 이를 재포 시까지 실험하는 방법으로 연구해 보다 정확한 부재의 가량을 평가할 수 있다.

본 연구에서는 위의 두 가지 방법으로 실험 및 보수하여 가량 시까지 가려함으로써, 보수방법에 따른 결과와 균열 주입 시 하중의 크기에 따른 결과를 비교하여 균열 보수 후 가량을 파악하고 에폭시 주입공법의 적용성을 평가하고자 한다.
2. 실험계획

2.1 실험체 제작 및 사용재료

본 연구에서는 주 실험 변수를 보수 시 하중의 유무, 하중의 크기 등 2 종으로 하여 실험 변수별 4개의 실험체와 기준 실험체 등 총 5개를 제작하였으며 실험체의 상태는 Table 1과 같다. 실험체의 크기는 단면 $150 \times 250 \times 2800$ mm, 길이 $2,800$ mm으로서 순차간을 $2,400$ mm로 하고, 철근의 배근은 인장철근 2-D13, 압축철근 2-D10으로 제작하였다. 실험체의 재료 사용 재료의 성능은 Table 2 및 Table 3과 같다.

제하 하중의 크기는 균열폭과 관련이 있는 사항으로 당초 공정취장의 50%에서 균열을 보수하는 것으로 하였으나, 균열발생 과정에서 하중이 공정취장의 50%에 도달하여도 균열의 폭이 0.3 mm 미만으로 하중의 폭 을 증가시킬 수 있도록 더 큰 하중을 선택하였다. 이에 따라 균열을 발생시키는 하중의 선택은 균열이 극심한 상

대의 보수 효과를 나타내기 위하여 공정취장의 70%와 90%를 가리키도록 하였다. 균열을 보수한 실험체 중 2개의 실험체는 공정 취장의 70%, 90% 하중에서 균열을 발생시킨 후 하중을 제거한 상태에서 보수하였고, 2개의 실험체는 하중을 유지시킨 상태에서 균열에 예측시를 주입하여 실험체를 제작하였다. 균열 주입에 사용한 예측시는 일반적으로 사용되는 균열용 저정도 예측시를 선택하였고 그 역학적 성질은 Table 3과 같다. 예측시 주입 후 실험체는 모두 7일간 양성시킨 후 실험체를 하였다. 원 실험체의 제작 시에는 가능한 한 콘크리트 재료의 변화를 최소화하기 위하여 베이콘을 사용하였고, 콘크리트 타설 전 철근에 전기식 스프레이서지를 부착하였다.

2.2 기력 및 측정방법

실험 장치의 구성도 및 변위·변형율의 측정위치는 다음 Fig. 1과 같다. 기력 방법은 순차간 $2,400$ mm를 3등분하여 2점에서 가리키는 4점 재하 방식으로 하였으며, 하중에 따른 변위를 평가하기 위해 실험체의 중앙부와 $1/4$ 지점에 LVDT를 설치하여 수직 치수를 측정하였다. 균열 발생한 이후 부재에 따라 변형이 발생하게 되면 전기식 스프레이 케이지로 부재의 변형들을 측정할 수 없게 되므로, 균열 외상의 시점에서의 부재의 변형을 측정하기 위한 포인터를 모멘트가 일정한 중앙부에 설치하여 하중 단계 별로 길이변화를 계측하도록 하였다. 철근 케이지의 인정 및 압축철근 중앙부와 가격정에 설치하였고, 콘크리트 변형율의 측정위치는 Fig. 1과 같다.

3. 실험결과 및 분석

3.1 최대 하중

본 연구의 실험결과를 인정접근 항목 시의 모멘트 및
(a) Test setup

(b) Pointer location

(c) Concrete strain gauge location

Fig 1 Test setup

최대 모멘트에 대하여 정리한 결과는 Table 4와 같다. Table 4에서 인장절근 항복 시의 모멘트를 비교하여 보면, 모든 실험체의 경우에서 기준 실험체와 3% 이내의 모멘트를 나타낼 수로써 균열 및 보수의 효과가 점근 항복 시각에는 거의 영향을 미치지 않음을 알 수 있다. 반면, 실험체의 최대 모멘트의 경우에는 공정모멘트의 70%까지 가력된 상태에서 보수된 실험체가 기준 실험체와 4% 이내의 유사한 결과를 나타내었다. 공정모멘트의 90%까지 가력된 상태에서 보수된 실험체는 그 내력이 30% 정도 증가하는 양상을 나타내었다. 이와 같이 응력이 큰 상태에서 보수된 CR-90M이나 REP-90M의 최대 모멘트의 증가량이 큰 이유는 에폭시의 주입으로 인해 응력을 받는 면적이 증가하였고, 상대적으로 에폭시의 주입량이 많아 에폭시가 균열 주변 콘크리트에 형성되어 강도에 영향을 미친 것으로 보인다. 즉, 에폭시로 보수된 실험체는 주입된 에폭시로 인하여 균열에 의한 불연속성이 없어지고, 오히려 균열면에서 에폭시에 의한 연장용력을 상호 전달하면서 내력이 증가하는 것으로 분석된다.

각 경우에 대하여 하중이 제어한 상태에서 보수한 REP 실험체와 하중을 제거한 후 보수한 CR 실험체의 내력을 비교하여 보면, 인장절근의 항복모멘트와 최대 모멘트 등 모든 경우에서 REP 실험체가 약간의 적은 값을 나타내고 있으나, 그 영향성은 크지는 않은 것으로 판단된다. 이와 같은 결과로 부하 하중을 제거하여 균열면이 일부 단하게 나더라도, 에폭시의 주입이 핵심적으로 이루어졌다면 그 성능을 양호하게 발현할 수 있음을 알 수 있다.

32 하중-차질 곡선

공정항강도의 70%까지 가력한 후 보수한 실험체의 하중-차질 곡선은 Fig 2에서 나타나보면, 보수 하중의 우위에 관계없이 강성과 최대 하중에서 매우 유사한 형태를 나타내고 있다. 그러나, 절근의 항복이후 하중-차질 곡선의 양상을 살펴보면, 기준실험체에 비하여 보수를 실시한 실험체의 곡선이 상호로 움직이는 폭이 커지는 데, 특히 가력한 상태에서 보수한 REP 실험체의 곡선이 움직이는 폭이 크다는 것을 알 수 있다.

이는 초기균열이 발생한 상태에서부터 점진적으로 하중이 증가하는 경우와 달리, 보수하여 균열이 없는 상태에서 다시 균열이 발생하고, 균열 발생과 동시에 같은 하중의 기준 실험체의 균열깊이까지 균등히 전전하므로, 균열이 발생할 때마다 부재의 저항내력이 그림과 같이 상호로 움직이는 현상을 나타내게 된다. 이와 같은 현상으로 인하여 하중을 제거한 상태에서 보수한 후 초기하중중부터 가력한 실험체의 하중-차질 곡선도 계측 상태에서 보수한 실험체의 균열 발생시의 전달성이 달라진다는 것을 알 수 있다. 이와 같이 공정항강도의 70% 하중을 가격하여 순상을 입힌 실험체의 경우, 보수 후 균열 발생 시의 견고성에서는 약간의 차이가 있으나 전체적인 하중-차질 곡선은 유사하다.

공정항강도의 90%까지 하중을 가격했을 경우에는

Table 4 Test results

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Nominal flexural strength</th>
<th>Moment at re-bar yielding</th>
<th>Max. moment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Moment</td>
<td>Ratio with control</td>
<td>Moment</td>
</tr>
<tr>
<td>Control</td>
<td>20.2 KN · m</td>
<td>17.5 KN · m</td>
<td>0.99</td>
<td>20.8 KN · m</td>
</tr>
<tr>
<td>CR-70M</td>
<td></td>
<td>17.0 KN · m</td>
<td>1.00</td>
<td>21.5 KN · m</td>
</tr>
<tr>
<td>REP-70M</td>
<td></td>
<td>17.2 KN · m</td>
<td>1.00</td>
<td>20.9 KN · m</td>
</tr>
<tr>
<td>REP-90M</td>
<td></td>
<td>17.0 KN · m</td>
<td>0.97</td>
<td>24.8 KN · m</td>
</tr>
</tbody>
</table>

90

한국크리트연구회 논문집 제18권 1호(2004)
Fig. 2에서 나타나듯이 부재의 강성 및 최대 내력에 약간의 차이가 발생하게 되는 것을 알 수 있다. 즉, 공정 횡단도의 90%까지 하중을 가해도가 하중을 제거한 후 보수한 실험체의 경우를 살펴보면, 균열의 폭 및 길이가 증가하여 주름되는 예폭시의 양이 증가하게 되고, 콘크리트에 비하여 상대적으로 강도 및 강성이 큰 예폭시의 주입은 부재 전체의 강성 및 최대 내력을 증가시키는 결과를 가져오게 된다. 인장절근의 함복 후 보수된 실험체의 하중-처짐 곡선이 상하로 옮기는 현상은 공정 횡단도의 70% 하중을 준 경우와 동일하게 나타났다.

3.3 균열의 형태

 보수를 실시하지 않은 기존 실험체의 예폭시 주입공법으로 보수된 실험체의 최종 균열양상은 Fig. 3과 같다. 그림에서와 같이 기존 실험체의 최종 균열과 보수 후의 최종 균열은 다른 양상을 보여 준다.

즉, 기존 실험체의 경우에는 보 중앙부로부터 균열이 발생하여 점진적으로 단부로 균열의 발생이 확산되거나는 전형적인 원파괴의 양상을 나타내는 반면에, 보수된 실험체의 균열은 기존 실험체에서 발생한 균열과 동일한 부위에서 발생하지 않고 기존 균열의 주변에서 다시 균열이 발생하는 형태를 보여 준다. 특히 재료 중재 보수를 실시한 REP 실험체의 경우에는 기존 균열 사이에서 급격하게 보수 접이지 전진되는 큰 균열이 개개 발생되며 부재의 파괴에 도달함으로써, 최종 파괴 시의 균열의 수는 기존 실험체나 CR 실험체보다 훨씬 적은 것을 알 수 있다.

![Fig. 3 Failure aspect](image-url)
하중을 재가하고 보수한 실험체의 균열 발생은 기존 실험체의 균열과 유사하게 하중의 투명 개방에서 균열이 먼저 발생하고 이후 지점 방향으로 점진적으로 전진되어 가는 형태를 보여주지만, REP 실험체의 경우 하중이 증가함에 따라 급격히 균열이 전진되는 현상은 보이지 않는다. 기 보수한 균열에서 균열이 다시 발생하거나 전진되지 않는 현상은 REP 실험체와 동일하게 나타났다.

이와 같이 보수 후 균열의 발생이 기존 균열의 위치에서 발생하지 않는 이유는 예측시에 의해 인장응력에 대한 연속성이 충분히 보완되고, 균열 면이 일체화되었으며, 예측시의 인장강도가 콘크리트의 인장강도보다 크기 때문에 예측시 보수된 지점 인쪽의 콘크리트 면에서 균열이 다시 발생되는 것으로 분석된다.

이상에서, 균열 보수 시 하중의 유무와 관계없이 균열의 형태는 이미 보수된 균열에서는 발생하지 않고 주변에서 발생하여, 하중이 증가함에 따라 급격히 혹은 점진적으로 종합측으로 전진하는 형태를 나타내고 하중증에 따른 균열 발생에 지점 균열으로 진행되는 현상을 나타내었 다. 따라서, 콘크리트 주입 균열 보수 공법은 균열면을 충분히 일체화시키면 안정 응력을 전달시킬 수 있도록 하므로, 예측시에 의한 균열 보수는 안정된 구조적 기능을 보이며 내구성을 확보할 수 있는 방법이라고 할 수 있다.

3.4 보 길이에 따른 변형률의 변화

보수 후 하중 상태에 따른 보 길이 방향의 변형률 변화를 과학하기 위하여 중앙부와 중앙부에서 각각 600 mm, 1200 mm 지점에 스트레인 게이저를 부착하였다. 각 하중 조건에 따른 실험체별 변형률의 변화는 대체로 유사하였으며, 대표적인 경우를 Fig. 4에 나타내었다. Fig. 4에서는 제한 상태에서 보수 작업이 이루어진 REP-70M 및 기존 실험체를 비교하도록 하였으며, REP-70M의 보수 전 변 형률 분포는 기존 실험체와 동일하므로 나타내지 않았다.

Fig. 4(a)에서 기존 실험체는 초기하중 시 중앙부에서 변형률이 크게 발생하나, 하중이 점차 증가함에 따라 가 릭지점 부근에 해당하는 중앙부에서 600 mm 위치에 부착한 스트레인 게이저에서 최대 변형률을 나타내는데, 이와 같은 현상은 REP-70M 실험체에서도 동일하게 중앙부에서 600 mm 지점에서 최대 변형률을 나타내고 있음을 알 수 있다. 변형률의 크기를 비교하여 보면, 동일 하중 하에

![strain distribution diagram](image-url)
서 REP-70M 실험체의 변형률이 기존 실험체의 변형률 보다 적게 나타남을 알 수 있는데, 이는 보수제료 주입된 예측시의 안정성가도 부재의 안정내력에 기여함에 따른 현상으로 분석되며, 그 영향성은 크지 않은 것으로 보인다. 전체적으로 부재의 변형률 분포는 상대적으로 변형률의 크기에서 약간의 차이가 있으나, 대체적으로 보수된 실험체의 변형률 분포는 유사하게 겸주한다는 것을 알 수 있다. 이상에서 예측시 주입법으로 인한 균열의 보수는 효율적인 것으로 평가할 수 있다.

4. 결 론

본 연구결과 다음과 같은 결론을 얻었다.

1) 균열의 양이기 보수된 곳에서는 발생하지 않고, 기존 균열의 주변에서 발생하여 하중에 따라 진전하는 형태로 나타나므로, 예측시의 주입법으로 인한 균열은 충분히 보수되어 일체화되었다고 볼 수 있다.

2) 각 실험변수에 따른 현상 흐름 시의 내력은 약간 차이가 있으나 매우 유사하며, 최대 내력은 균열 상황에서 보수된 실험체(90M)의 경우 주입된 예측체의 양이 증가함에 따라 30% 정도 내력의 증가를 나타내었다.

3) 기존 실험체에 비하여 가격 상태에서 보수된 실험체의 하중-저감 계선은 늘어진 주파수의 증가 이후 흐름 형태로 상수로 유사하게 견인상을 나타내는데, 이는 균열을 보수한 상태에서 하중이 증가함에 따라 발생되는 균열이 보수 전 균열의 높이까지 급속히 강화되며 진전하였다가 나타난 현상이다.

4) 보의 강도에 따른 변형률의 분포 및 최대 변형률의 발생 위치가 기존 실험체의 가격 상태에서 보수한 실험체에 동일하며, 전체적으로 유사한 경로를 한다.

5) 예측시 주입의 원인 균열 보수는 하중의 재기어부에 관계없이 균열 면이 일체화되어 안정된 구조적 기능을 보이며, 충분히 균열 보수공법으로 적용할 수 있다.

참고문헌

3. 김수연, 신영수, 홍건호, "재하상태에 따른 탄소섬유 싸트 및 강판의 전단 보강 효과", 한국콘크리트학회 학술발표회 논문집, 12권 1호, 2000, 5, pp.775-780.

7. 건설교통부, "콘크리트구조설계기준", 한국콘크리트학회, 1999, pp.73-89.

