A New Refined Truss Modeling for Shear-Critical RC Members (Part II)
- Its Verification -

Woo Kim 1), Jae Pyong Jeong 1), and Haeng Joon Kim 2)
1) Dept. of Civil Engineering, Chonnam National University, Gwangju, 500-757, Korea
2) Dept. of Civil Engineering, Midpko Science College, Mokpo, 530-700, Korea
(Received April 30, 2004, Accepted November 30, 2004)

ABSTRACT

This paper as Part II of the present study deals with the verification of the new truss model that has been conceptually derived and formulated in Part I. Since the model includes the arch coefficient—α, the characteristics of this coefficient are examined, and it appears that the coefficient—α is a function of a/d, P and P_t. After transforming the model into a sectional approach, the formula for predicting the stirrup stress, the longitudinal steel force, and ultimate shear strength are derived. Then, the equations are applied to the test specimens available in literatures, and the predicted values are shown to be in excellent agreement with the experimental results.

Keywords : arch action, beam action, reinforced concrete, shear strength, truss action

1. 서 론

진단의 논문에서 흙과 진단이 작용하고 있는 철근콘크리트 부재의 내력계(internal force flow)를 표현하기 위한 새로운 트리스모델의 개념을 유도하고 기하적 형태를 정식화하였다. 이 모델은 진단력은 모멘트의 변화에 따른 변위의 계수 $V = dM/dr = dU/dr + Tdz/dx$의 역학적 형성을 수치적으로 복제한 것으로써, 부재의 전단력의 메카니즘을 보상과 약사용력이라는 두 구성 성분의 혼으로 표현한 것이다. 전단자량에 의해 단면의 유효성 무게가 변하여 결국 내부 모멘트 관계가 변화하는 현상을 주요 변수로 포함한 것이었다.

즉, 부재의 진단조건에서 내부모멘트관계의 변화를 고려함으로써, dz/dx가 0이 아닌 값을 갖게 되어 약사용력에 의한 전단자량 메카니즘을 표현 할 수 있게 된다는 점에 착안 한 것이다.

이러한 현상의 수치적 복제를 위해, 두 작용의 구성비에 의한 약사계수—α와 약사적합계수라는 새로운 개념을 도입하였으며, 계수—α의 값은 두 작용의 상호 변형적합조건에 의해 결정하였다. 이 때 복부의 변형과 허의 상태를 파악하기 위해 수평면축장이론을 적용하였으며, 타의 변형 은 CEB-FIP MC-90의 해당 규준을 이용하였다. 이러한 과정에 의해 최종적으로 계수—α의 값이 산출되는데, 이 값을 이용하면, 부재의 내력계를 표현할 수 있는 새로운 트리스의 기하적 형태를 결정할 수 있었다.

본 연구의 주요한 이 논문에서는 새로운 트리스모델의 단면 해석법과 극한강도를 산정하는 방법을 다룬 후, 이에 대한 적용성을, 검증하는 부분이다. 첫 부분에서는 처음으로 소개한 약사계수—α의 특성에 대해 고찰한 후, 이를 이용한 단면의 해석법과 강도 산정에 대해 다룬다. 후반부에서는 기존의 연구에 발표된 실험 결과를 이용하여 새로운 모델의 적용성과 그 정확성에 대한 검증 내용을 다룬다.

* Corresponding author
E-mail : wkim@chonnam.ac.kr
©2005 by Korea Concrete Institute
2. 아치계수-α 값의 특성

2.1 하중계수-α 관계

1960년대 슈타트 대학에서 수행한 많은 보의 전단 실험 결과 중에서 스터립의 효율을 조사하기 위해 수행한 부재 실험 결과를 이용하여 세트리스모델을 참조하여 보았다. Table 1에 이 실험 부재의 세척을 정리한 것과 같이, 4개 보는 전단계수-값이 비 α/d가 3.5로 동일할 뿐만 아니라 철근량을 포함한 모든 세척이 같고, 다만 복부 폭 b 면 다다. 따라서 각 보의 주철근비 P와 스탈립비 p가 다르다. 이 4개 보를 대상으로 전단의 논문에서 기술한 방법에 의해 각 보의 전단계수-α 값은 하중과의 관계를 계산하여 Fig. 1에 나타냈다. 이결과를 살펴보면 아래와 같은 중요한 사실들을 관찰할 수 있다.

2.1.1 안정화 단계의 존재

Fig. 1에 나타낸 각 보의 α값의 이들을 살펴보면, 작용 하중 증가에 따라 α값이 증가하는데, 이런 하중 단계에서부터 그 값이 거의 일정해지는 안정화 단계(stabilized stage)가 형성된다는 것을 관찰 할 수 있다. 이 사실은 보의 복부 구멍의 발생 정도에 따라 이차작용이 점차 발견되는 의미이며, 안정화 단계가 존재한다는 것은 세부적 안정화 단계가 존재한다는 중요한 의미가 된다. 이러한 관점에서 철근콘크리트 부재는 하중 단계에 따라 초기 하중 단계의 비균일단계(uncracked stage)와, 철근밀과 복부구멍이 점차 발생하여 안정화단계까지 도달하는 단계 단계(transient stage), 그리고 안정화단계라는 3단계의 내력계로 구분 할 수 있을 것이다. 특히, 마지막 안정화 단계는 지금까지 많은 관련 학자들과 설계자의 주요 관심 대상으로, 이 내력 상태를 표현하기 위한 많은 기법과 이론이 제안되었으며, 본 연구도 이에 해당한다.

Fig. 1에 보인 4개 보의 α값을 살펴보면, 스터립비가 상대적으로 큰 보인 3번에서는 명확한 안정화 구간이 존재한다. 반면, 스탈립비가 가장 작은 보인 ET1에서는 안정화 구간이 명확히 구분되지 않는 특성을 관찰 할 수 있다. 따라서 본 연구에서는 각 보의 안정화단계 또는 최종의 α값을 α두로 정의하여 부재의 극한상태 근거로 사용하였다.

2.1.2 계수-α두 값

Table 1에 정리한 각 보의 전단계수-값을 산정한 α두 값에 살펴보면, 복부복을 제외한 모든 세척(철근량 포함)이 동일한데도 불구하고 각 보의 α두 값은 큰 차이가 있다는 것을 알 수 있다. 작사평형 단면인 ET1의 값은 0.36인데 반해, 복부복이 가장 작은 ET4는 0.43이었다. 이것은 산란의 논문 2절에서 설명한 바와 같이, 복부복이 작을수록 복부 전단강성이 취약하기므로 상대적 타이드-아치 강성이 증대하기 때문에 α두 값이 증가한다는 정성적 추론과 동등한 경향으로 나타난다고 있다는 것을 알 수 있다.

2.2 아치계수-α두의 변화

앞에서 기술한 아치계수-α두 값의 변화를 체계적으로 조사하기 위해 Kim31등이 수행한 실험 보와 Kami32가 수행한 실험 보에 대해 각 보의 α두 값을 산정하여 보였다. Tables 2, 3에 정리한 것과 같이, Kim31등의 실험 보는 기본 복부철근비를 갖는 상태에서 전단계수 값이 비(a/d=2, 2.5, 3, 4), 주철근 비(P=1.08%, 1.94%)를 주요 변수로 하고 있으며, Kami의 실험 보는 복부철근이 없는 상태에서 a/d의 P를 변수로 하고 있다. 이들 보에 대해 각각 계산한 α두 값을 Tables 2와 3에 정리하였으며, 그 일부를 a/d와의 함수로 Fig. 2에 나타냈다. 이 결과를 살펴보면, α두가 α두 값에 가장 크게 영향을 줄 것이라는 일반적 인식과 일치하고 있다는 것을 알 수 있다.
예를 들어, \(a/d=2\)인 2P2W의 값이 0.5에 가까운데 반해, \(a/d=4\)인 4P2W는 0.19로 그 변화가 크다. 즉, 보의 경간이 짧아지면 \(\alpha_v\) 값은 1.0에 접근하고, 경간이 길어지면 0에 접근하고 있다. 이에 비해, 주철근 비가 스티립 비의 영향은 상대적으로 적으며, 주철근 비가 큰수록 \(\alpha_v\) 값이 증가한다는 것을 관찰할 수 있다. 또한, 스티립 비가 증가하면 \(\alpha_v\) 값이 작아진다는 것도 알 수 있다. 이러한 현상은 전면의 논문 2절에서 기술한 타이의 부부의 상대 크기 관점에서 실폐본 결과와 동일한 정향으로 나타나고 있다.

\(\alpha_v\) 값이 전면 극한절단강도 중에서 아치작용이 담당하는 전단강도의 비보다 관찰에서 보의 전단 저장 구성을 Fig. 3과 같이 표현할 수 있다. 이 그림을 살펴보면, \(a/d\) 가 작은 보일수록 아치작용이 주요 전단 저장 범위내림의 반면에 긴 보에서는 주로 보작용에 의해 저장한다는 것을 알 수 있다. 또한, 그 구성을 \(\alpha\)는 세 변수 \(a/d, \rho\) 및 \(\rho_v\)의 조합에 따라 독특한 방평형으로 변화하며, 그 크기는 \(a/d=2\sim3\)에서 약 0.5가 되는 값으로 나타난다.

Table 1 Comparisons with the test results performed by Leonhardt (1965)

<table>
<thead>
<tr>
<th>Specimen</th>
<th>ET1</th>
<th>ET2</th>
<th>ET3</th>
<th>ET4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_a) (MPa)</td>
<td>27.93</td>
<td>27.93</td>
<td>27.93</td>
<td>27.93</td>
</tr>
<tr>
<td>(\theta_v) (cm)</td>
<td>30</td>
<td>15</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>(d) (cm)</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>(a) (cm)</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
</tr>
<tr>
<td>(a/d)</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>(\rho) (%)</td>
<td>1.40</td>
<td>2.80</td>
<td>4.20</td>
<td>8.40</td>
</tr>
<tr>
<td>(\rho_v) (%)</td>
<td>0.17</td>
<td>0.34</td>
<td>0.51</td>
<td>1.03</td>
</tr>
<tr>
<td>(f_p) (MPa)</td>
<td>460</td>
<td>460</td>
<td>460</td>
<td>460</td>
</tr>
<tr>
<td>(f_q) (MPa)</td>
<td>314</td>
<td>314</td>
<td>314</td>
<td>314</td>
</tr>
<tr>
<td>(V_n/f) (kN)</td>
<td>140.9</td>
<td>140.9</td>
<td>140.9</td>
<td>140.9</td>
</tr>
<tr>
<td>Measured value</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_n) (kN)</td>
<td>142.2</td>
<td>116.7</td>
<td>98.1</td>
<td>88.3</td>
</tr>
<tr>
<td>(f_a) at (V_n) (MPa)</td>
<td>161.7</td>
<td>314</td>
<td>314</td>
<td>314</td>
</tr>
<tr>
<td>Predicted value</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha_v)</td>
<td>0.390</td>
<td>0.385</td>
<td>0.415</td>
<td>0.462</td>
</tr>
<tr>
<td>(\theta_v) (x=(a/2)) (degree)</td>
<td>44.6</td>
<td>45.4</td>
<td>43.6</td>
<td>41.4</td>
</tr>
<tr>
<td>(z_v) (x=(a/2)) (cm)</td>
<td>21.04</td>
<td>20.46</td>
<td>20.18</td>
<td>19.63</td>
</tr>
<tr>
<td>(f_a) at (V_n) (MPa)</td>
<td>150.3</td>
<td>315.7</td>
<td>284.2</td>
<td>284.4</td>
</tr>
<tr>
<td>(V_n) (kN)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_n=\alpha_vV_n')</td>
<td>51.2</td>
<td>46.6</td>
<td>42.8</td>
<td>41.2</td>
</tr>
<tr>
<td>(V_n) by Eq(3)</td>
<td>74.5</td>
<td>37.3</td>
<td>24.8</td>
<td>12.4</td>
</tr>
<tr>
<td>(V_n) (kN)</td>
<td>16.5</td>
<td>32.6</td>
<td>34.2</td>
<td>35.9</td>
</tr>
<tr>
<td>(V_n=V_n/V_n) (kN)</td>
<td>142.2</td>
<td>116.5</td>
<td>101.8</td>
<td>89.5</td>
</tr>
<tr>
<td>Failure mode</td>
<td>Flexure</td>
<td></td>
<td></td>
<td>Stirrups yielding</td>
</tr>
<tr>
<td>(V_n/\text{Predicted} / V_n/\text{Measured})</td>
<td>1.00</td>
<td>0.99</td>
<td>1.04</td>
<td>1.01</td>
</tr>
</tbody>
</table>

Fig. 3 Distribution of shear resistances in shear-critical beams

Fig. 3에서 드러난 것은, 중과 전단이 작용하는 부체에 대한 \(a/d=6\sim8\)을 기준으로 중과 전단이 부체의 과거를 지배한다고 알려졌는데, 이를 근거로 전단이 지배하는 부체의 전단 지속을 다룰 때 아치작용은 매우 큰 부분을 차지하고 있으며, 그 구성을 파악하는 것은 무엇보다도 중요하다고 할 수 있을 것이다.

전단이 지배하는 RC 부재의 새로운 트러스 모델링 기법 연구 (후편) - 검증을 중심으로 -
Table 2: Comparisons with the test results performed by Kim, Kim and White

<table>
<thead>
<tr>
<th>Specimen</th>
<th>a/d</th>
<th>a (cm)</th>
<th>ρ (%)</th>
<th>ρ_s (%)</th>
<th>V_u (kN)</th>
<th>α_u</th>
<th>$\theta_{u} \left(a-a/2 \right)$ (degree)</th>
<th>V_r (kN)</th>
<th>$V_r=\alpha_u V_u$</th>
<th>V_u by Eq.(3) (kN)</th>
<th>V_s (kN)</th>
<th>$V_s=V_r=V_u$ (kN)</th>
<th>V_n,f (kN)</th>
<th>$V_n,f/V_u$ Measured</th>
<th>Failure mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>2PW</td>
<td>2</td>
<td>50</td>
<td>1.08</td>
<td></td>
<td>61.3</td>
<td>0.44</td>
<td>47.2</td>
<td>30.5</td>
<td>17.3</td>
<td>21.4</td>
<td>69.2</td>
<td>61.3</td>
<td>0.98</td>
<td>Flexure</td>
<td></td>
</tr>
<tr>
<td>2PW</td>
<td>2.5</td>
<td>62.5</td>
<td>1.08</td>
<td></td>
<td>80.6</td>
<td>0.51</td>
<td>45.0</td>
<td>41.0</td>
<td>17.3</td>
<td>22.1</td>
<td>80.4</td>
<td>79.6</td>
<td>0.99</td>
<td>Flexure</td>
<td></td>
</tr>
<tr>
<td>2PW</td>
<td>2.5</td>
<td>62.5</td>
<td>1.08</td>
<td></td>
<td>48.1</td>
<td>0.34</td>
<td>49.0</td>
<td>20.0</td>
<td>17.3</td>
<td>21.6</td>
<td>58.9</td>
<td>48.1</td>
<td>1.00</td>
<td>Flexure</td>
<td></td>
</tr>
<tr>
<td>3PW</td>
<td>3</td>
<td>75</td>
<td>1.08</td>
<td></td>
<td>38.3</td>
<td>0.25</td>
<td>51.6</td>
<td>12.8</td>
<td>17.3</td>
<td>20.9</td>
<td>51.0</td>
<td>40.1</td>
<td>1.05</td>
<td>Flexure</td>
<td></td>
</tr>
<tr>
<td>3PW</td>
<td>3</td>
<td>75</td>
<td>1.08</td>
<td></td>
<td>55.2</td>
<td>0.30</td>
<td>49.3</td>
<td>16.8</td>
<td>17.3</td>
<td>21.9</td>
<td>56.0</td>
<td>53.0</td>
<td>0.96</td>
<td>Flexure</td>
<td></td>
</tr>
<tr>
<td>4PW</td>
<td>4</td>
<td>100</td>
<td>1.08</td>
<td></td>
<td>30.9</td>
<td>0.10</td>
<td>51.6</td>
<td>4.5</td>
<td>17.3</td>
<td>23.2</td>
<td>45.0</td>
<td>30.1</td>
<td>0.97</td>
<td>Flexure</td>
<td></td>
</tr>
<tr>
<td>4PW</td>
<td>4</td>
<td>100</td>
<td>1.08</td>
<td></td>
<td>40.5</td>
<td>0.19</td>
<td>49.3</td>
<td>9.6</td>
<td>17.3</td>
<td>23.6</td>
<td>50.5</td>
<td>39.8</td>
<td>0.98</td>
<td>Flexure</td>
<td></td>
</tr>
</tbody>
</table>

* $b_w=10.0$ cm, $d=25.0$ cm, $f_{ck}=20$ MPa, $f_y=539$ MPa ($\rho=1.08$%), $f_y=443$ MPa ($\rho=1.90$%), $f_{cu}=308$ MPa ($\rho_s=0.452$%)

Table 3: Comparisons with the test results performed by Kan

<table>
<thead>
<tr>
<th>Specimen</th>
<th>a/d</th>
<th>ρ (%)</th>
<th>f_s (MPa)</th>
<th>V_u (kN)</th>
<th>α_u</th>
<th>V_u by Eq.(3) (kN)</th>
<th>V_u by $V_s=V_r=V_u$ (kN)</th>
<th>$V_n,f/V_u$ Measured</th>
<th>Failure mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>249</td>
<td>1.0</td>
<td></td>
<td>28.0</td>
<td>83.3</td>
<td>0.61</td>
<td>54.6</td>
<td>34.9</td>
<td>89.5</td>
<td>85.2</td>
</tr>
<tr>
<td>250</td>
<td>1.5</td>
<td>0.5</td>
<td>28.0</td>
<td>54.7</td>
<td>0.39</td>
<td>22.1</td>
<td>34.6</td>
<td>56.7</td>
<td>56.8</td>
</tr>
<tr>
<td>251</td>
<td>2.0</td>
<td></td>
<td>26.2</td>
<td>41.7</td>
<td>0.15</td>
<td>5.9</td>
<td>33.7</td>
<td>39.6</td>
<td>42.5</td>
</tr>
<tr>
<td>170</td>
<td>2.5</td>
<td></td>
<td>32.4</td>
<td>33.4</td>
<td>0.00</td>
<td>0.0</td>
<td>33.3</td>
<td>33.3</td>
<td>33.0</td>
</tr>
<tr>
<td>248</td>
<td>3.5</td>
<td>0.8</td>
<td>27.6</td>
<td>25.1</td>
<td>0.00</td>
<td>0.0</td>
<td>24.8</td>
<td>24.8</td>
<td>24.3</td>
</tr>
<tr>
<td>109</td>
<td>1.5</td>
<td></td>
<td>23.0</td>
<td>71.5</td>
<td>0.59</td>
<td>46.5</td>
<td>32.3</td>
<td>78.8</td>
<td>87.5</td>
</tr>
<tr>
<td>102</td>
<td>2.0</td>
<td>0.5</td>
<td>25.3</td>
<td>48.4</td>
<td>0.35</td>
<td>17.4</td>
<td>32.3</td>
<td>49.7</td>
<td>65.7</td>
</tr>
<tr>
<td>105</td>
<td>2.5</td>
<td></td>
<td>26.2</td>
<td>41.5</td>
<td>0.21</td>
<td>8.8</td>
<td>33.2</td>
<td>42.0</td>
<td>52.7</td>
</tr>
<tr>
<td>116</td>
<td>3.0</td>
<td></td>
<td>26.4</td>
<td>39.3</td>
<td>0.17</td>
<td>6.8</td>
<td>33.2</td>
<td>40.0</td>
<td>43.9</td>
</tr>
<tr>
<td>104</td>
<td>4.0</td>
<td></td>
<td>23.3</td>
<td>33.2</td>
<td>0.12</td>
<td>4.4</td>
<td>32.3</td>
<td>36.7</td>
<td>32.8</td>
</tr>
<tr>
<td>107</td>
<td>5.1</td>
<td></td>
<td>26.6</td>
<td>25.2</td>
<td>0.00</td>
<td>0.0</td>
<td>32.9</td>
<td>32.9</td>
<td>25.9</td>
</tr>
<tr>
<td>184</td>
<td>1.5</td>
<td>1.88</td>
<td>35.1</td>
<td>162.0</td>
<td>0.75</td>
<td>114.9</td>
<td>38.3</td>
<td>153.2</td>
<td>193.3</td>
</tr>
<tr>
<td>26</td>
<td>2.0</td>
<td></td>
<td>27.1</td>
<td>78.1</td>
<td>0.57</td>
<td>44.9</td>
<td>33.9</td>
<td>78.8</td>
<td>138.2</td>
</tr>
<tr>
<td>27</td>
<td>2.5</td>
<td></td>
<td>29.8</td>
<td>51.2</td>
<td>0.43</td>
<td>26.7</td>
<td>35.4</td>
<td>62.1</td>
<td>112.7</td>
</tr>
<tr>
<td>35</td>
<td>3.5</td>
<td></td>
<td>26.1</td>
<td>44.3</td>
<td>0.28</td>
<td>12.8</td>
<td>32.8</td>
<td>45.6</td>
<td>78.3</td>
</tr>
<tr>
<td>29</td>
<td>4.5</td>
<td></td>
<td>24.6</td>
<td>43.0</td>
<td>0.22</td>
<td>9.1</td>
<td>32.1</td>
<td>41.2</td>
<td>60.1</td>
</tr>
<tr>
<td>182</td>
<td>5.1</td>
<td></td>
<td>34.0</td>
<td>47.8</td>
<td>0.19</td>
<td>8.7</td>
<td>37.3</td>
<td>46.0</td>
<td>56.6</td>
</tr>
<tr>
<td>88</td>
<td>1.0</td>
<td></td>
<td>31.5</td>
<td>223.7</td>
<td>0.85</td>
<td>201.7</td>
<td>35.6</td>
<td>223.7</td>
<td>387.0</td>
</tr>
<tr>
<td>94</td>
<td>2.0</td>
<td></td>
<td>25.3</td>
<td>109.9</td>
<td>0.69</td>
<td>71.3</td>
<td>32.8</td>
<td>104.1</td>
<td>179.7</td>
</tr>
<tr>
<td>95</td>
<td>2.5</td>
<td></td>
<td>25.3</td>
<td>72.5</td>
<td>0.52</td>
<td>35.0</td>
<td>33</td>
<td>68.0</td>
<td>143.8</td>
</tr>
<tr>
<td>97</td>
<td>3.0</td>
<td></td>
<td>27.3</td>
<td>62.7</td>
<td>0.43</td>
<td>26.0</td>
<td>34.4</td>
<td>60.4</td>
<td>123.2</td>
</tr>
<tr>
<td>84</td>
<td>4.0</td>
<td></td>
<td>27.5</td>
<td>56.8</td>
<td>0.31</td>
<td>15.4</td>
<td>33.9</td>
<td>49.3</td>
<td>92.7</td>
</tr>
<tr>
<td>81</td>
<td>5.9</td>
<td></td>
<td>27.5</td>
<td>51.0</td>
<td>0.20</td>
<td>8.6</td>
<td>34.3</td>
<td>42.9</td>
<td>62.8</td>
</tr>
<tr>
<td>72</td>
<td>7.0</td>
<td></td>
<td>27.5</td>
<td>45.6</td>
<td>0.14</td>
<td>5.5</td>
<td>33.6</td>
<td>39.1</td>
<td>52.9</td>
</tr>
<tr>
<td>82</td>
<td>8.0</td>
<td></td>
<td>27.5</td>
<td>39.7</td>
<td>0.09</td>
<td>3.4</td>
<td>34</td>
<td>37.4</td>
<td>46.3</td>
</tr>
</tbody>
</table>

Mean 0.988
S.D 0.076
C.O.V 0.077

* $b_w=15.2$ cm, $d=27.2$ cm, $f_y=440$ MPa
3. 단면 해석

3.1 구성 성분

전면의 논문에서 기술한 새로운 트러스모델의 기하적 형태를 결정하는 모든 과정에서 평균 응력과 평균 변형을 적용하였다. 그런데 콘크리트 층별 위치에서의 발생하는 응력의 크기가 평균값과 크게 다르다. 콘크리트에 균열이 발생하면 균열 위치에서 인장응력은 소멸되는데 반해, 골격의 응력은 증가한다. 부재의 전단강도는 이 균열면에서 전달되는 값에 주로 지배되는 현상이기 때문에, 전단 강도를 산정하기 위해서는 균열 위치에서의 형태가 완전하게 전달된다는 것을 알 수 있다. Fig. 4는 균열이 발생한 부재의 경사 균열을 가로지르는 단면에 작용하는 전단력을 나타낸 것이다. 단면의 전단력은 세 기존 저항 성분의 합으로 표현할 수 있다는 것을 알 수 있다.

\[
V = V_a + V_{cf} + V_s
\]
(1)

이 기존 성분을 일반적 명확 성분과 비교한다면, 아치전력 \(V_a (\propto V)\)는 비균열 단면의 전단 저항력에 해당하며, \(V_s\)는 스티커와 콘크리트 경사층특별한 직선 트리스를 형성하여 저항하는 전단력으로써 스티커가 기여하는 전단강도 \(V_s\)에 해당하는 것을 알 수 있다. 또한, 균열면에 위치한 골격 실험중작용에 의해 저항하는 전단력 \(V_{cf}\)가 작용하고 있다. 단면 주축근의 다월측응용이 의해 전단저항력 \(V_s\)에 포함된다. 동상적으로 일정성의 콘크리트 기여 전단력 \(V_s\)는 바지저항력 \(V_s\)와 골격 마찰 저항력 \(V_s\)의 합에 해당한다는 것을 알 수 있다.

3.2 골격 맞물림 전단력 \(V_o\)

콘크리트 균열면에서 전달되는 힘의 평가는 간단하지 않으며, 지금까지 몇 가지의 여단이 제안되어 왔다. 이 중에서 본 연구에 적용 가능한 모델로서는 Waraven\(^{9}\)의 전단rightness 실험자료를 바탕으로 단순화한 Blade and Collins\(^{7}\)의 균열 마찰력 모델이다. 이 모델은 균열면에서 마찰력 \(u_s\)를 균열폭 \(u(m)\)과 최대골격 \(d(m)\)의 함수로 나타낸 것이다. 이 마찰력에 균열면을 골과 그 수직 성분을 계산하면 다음과 같은 골격 맞물림 전단력 \(V_o\)가 산출된다.

\[
V_o = \frac{0.18 \sqrt{f_{ck}} b_s z}{0.3 + 24 w / (d_s + 16)}
\]
(2)

여기에, \(f_{ck}\)는 콘크리트 압축강도(MPa)이고, \(u(m)\)는 균열폭 \(u\)는 균열면의 평균 인장주변형 \(v\)와 경사골격 길이의 과수로 계산할 수 있는데, 균열 길이는 CEB-FIP MC-90의 공식을 적용할 수 있다. 이에 대한 푸생한 것은 참고문헌 4를 참조하면 된다. 따라서 식 (2)는 작용중 단계 마다 변하는 \(V_o\)의 산정뿐만 아니라 전단강도에 대한 크기효과 (size effect)를 반영할 수 있는 장점이 있다. 그런데 실제 콘크리트 보어서는 다월작용 또는 골조작용(frame action)에 의해 저항하는 성분이 존재한다. 이러한 저항 성분을 \(V_o\)에 추가한다면, 실제 \(V_o\)는 골격 맞물림 작용만에 의한 값과 다를 수 있으며, 이러한 효과들은 모두 반영한다면 그 과정이 매우 복잡하게 될 것이다. 따라서 간단하면서도 기존 실험 결과 및 설계기준의 접근 방법과 일반성을 확보하기 위한 설계적 대안이 필요하게 된다.

식 (1)의 전단력 \(V_o\)는 부하절연이 제거되지 않으면서 트러스작용이 없으며 \((V_o = 0)\) 동시에 마찰작용이 없는 \((V_s = 0)\) 보고 기본 전단강도에 해당한다는 것을 알 수 있다. 이러한 논리적 관점에서, 부재 전산이 없고 동시에 마찰작용이 발생하지 않는 건 보편 실험하여 얻은 전단강도를 \(V_o\)라고 간주 할 수 있다. 따라서 수많은 실험결과의 토대로 작성된 미국 ACI 설계기준\(^{8}\)에서 사용하고 있는 아래의 최소 전단력을 \(V_o\)로 간주하는 것이 합리적인 대안 중의 하나일 것이다.

\[
V_o = 0.16 \sqrt{f_{ck}} b_s d
\]
(3)

이처럼, 골격 맞물림에 의한 전단저항력을 평가할 수 있는 논리를 지니고 있다. 식 (2)의 방법은 하중이력에 따른 각 단계마다 전단저항력을 평가할 수 있는 장점과 복잡성이 있는 단점이 있는데 반해, 식 (3)은 제안은 간단하지만 극한하중 단계에서만 적용이 가능하다는 한계점이 있다고 하겠다.
33 스티어링 응력 \(f_s \)

주어진 보의 \(\alpha \) 와 \(\theta \)가 주어지고 \(V_g \)를 알면, 수직 스티어링의 응력은 간단하게 계산할 수 있다. 스티어링 코너 크리스트 정사각면과 트러스를 형성하여 저장하는 전단력 \(V_t \) (=\(V' \))는 식 (1)의 형태에 의해 \((1 - \alpha) V - V_0 \)가 되며, 이 힘은 Fig.
4(b)에 나타낸 것과 같이 \(A_0 \)이라는 \(f(z)/\cot \theta \) 평형을 이룬다. 이 조건으로부터 스티어링 응력 \(f_s \)는 다음과 같이 표현된다.

\[
f_s = \frac{1}{\rho_s b_s z_s} [(1 - \alpha) V - V_0] \tan \theta
\]

(4)

34 철근력 \(T \)

Fig. 4(c)에 고려한 것과 같이, 트러스작용은 복구에 촉진 \(V_t \) 콘트리울을 유발 시킨다. 그런데 이 힘은 단면의 모멘트 평형조건에 의해 주철근의 안정성에 변화시키게 된다. 즉, 균열 단면의 주철근 안정력은 다음과 같다.

\[
T_s = \frac{M_s}{z_s} + 0.5[(1 - \alpha) V_s - V_0] \cot \theta_s
\]

(5)

여기서 특기할 것은 \(\alpha = 0 \), \(V_0 = 0 \)과 \(\theta_s = 45^\circ \)인 경우가 고전트리스모델\(^7\)의 철근력 산성적에 해당한다는 것을 알 수 있다. 이 고전모델과 비교한다면, 본 모델은 \(\alpha \), \(\theta \)와 \(V_0 \)의 세 변수를 추가된 역학적 모델이라는 것을 알 수 있다.

4. 극한전단강도 \(V_{u,s} \)

이 연구에서 제안하고 있는 새로운 트리스모델의 가능한 파괴 형태는 크게 복구파괴와 타이드-아치파괴로 분리 해야 할 것이다. 먼저, 다시 스티어링의 측벽의 코너 크리스트 스티어링의 압축 파괴, 후자는 압력 파괴와 타이드의 각각이 복구로 세분화할 수 있다. 이 때 타이드의 파괴는 원화파로 분류해야 하며, 반복진과 하중정의 부구 파괴 형태는 본 연구의 범위에서 제시하였으나, 결국 복구의 코너 크리스트 스타일 압축파괴와 스티어링 형변의 두 종류 파괴 형태가 가능하다. 먼저, 스티어링 측벽에 의한 극한전단강도 \(V_{u,s} \)는 식 (4)의 \(f_s \)가 \(V_s \)에 도달할 때의 전단력 \(V_t \)에 해당한다.

\[
V_{u,s} = \frac{1}{1 - \alpha_s} \left(V_s + A_0 f_s z_s / \cot \theta_s \right) \leq V_{u,f}
\]

(6)

여기서, \(V_{u,s} \)는 활성화가 발생할 때의 전단력을 의미한다. 이 식에서 필요한 \(V_{u,f} \)값으로는 식(2) 또는 (3) 중의 하나를 선택하여 적용할 수 있다. 만약 위 식에 식 (3), \(\alpha_s = 0 \) 및 \(\theta_s = 45^\circ \)을 대입하면, 식 (6)은 현행 ACI-318 설계기준\(^{10}\)과 일관하게 된다는 것을 알 수 있다.

앞 절에서 기술한 것과 같이, 복구법의 파괴되지 않는 보에는 트러스작용이 발생하지 않고, 균열 면적 작용과 이차 작용에 의해서만 전단에 저항할 것이다. 따라서 이 때의 극한전단강도 \(V_{u,s} \)는 식(6)에서 트러스 작용 축성 면적 \(V_s \)를 관측할 수 있는 두변에 합인 \(V_s \)에 해당)을 제외한 나머지로 아래와 형태가 되는데, 이 때 극한 상태의 \(V_s \) 값으로는 복구한 식 (2)보다는 간편한 식 (3)이 실용적으로 더 뚜렷한 것이다.

\[
V_{u,s} = \frac{V_s}{1 - \alpha_s} = \frac{\sqrt{0.016 f_s b_s d}}{1 - \alpha_s} \leq V_{u,f}
\]

(7)

다음으로, 복구 코너 크리스트 스타일의 압축 파괴에 의한 극한전단강도는 본 연구에서 제한하고 있는 논리와 기계에 의해 결정하기 어렵다. 따라서, 이 연구의 논의에서 실제한 바와 같이, 이차작용과 관련된 단면 응력은 부구단 모델 형태이며, 이 응력이 보작약한 압력 전단력과 부구 상부에서 중첩되기 때문에 그 크기를 명시적으로 산정하기 어렵다. 따라서 이 부구단 모델 전단력과 부구단 모델에 대한 어떤 함양적 가정 또는 소정의 정적 값이 필요하게 된다. 이에 대한 내용은 추후 연구에서 계획하여 그 과제이며, 본 연구에서는 ACI-318\(^8\)이나 AASHTO LRFD 설계기준\(^{11}\)처럼 복구의 코너 크리스트 파괴 전단강도에 대한 특정한 공정을 설정하지 않는 대신에 복구의 코너 크리스트의 파괴를 방지하기 위한 최대 전단력 결정을 하는 것이 더욱 합리적일 것이다. 여기서는 AASHTO LRFD 설계기준의 한계값을 적용하는 것이 적절한 것이라고 판단하였다.

\[
V_s \leq 0.25 f_s b_s d
\]

(8)

5. 결론

전단력은 모멘트의 변화량이라는 사실로부터 유도한 식이며, 간단한 형식을 복잡한 새로운 트리스모델은 계수 \(\alpha \)와 함께 위진정조건만으로도 해석할 수 있게 되었다. 이에 이 모델을 실제 철근크리스트 부재에 적용하였을 때 그 간극을 얼마나 정확하게 예측할 수 있는 가로 조사하고 검증해야 할 필요가 있다. 따라서 앞 3절에서 언급하고 Tables 1, 2, 3에 정리한 기존 실험 결과와 비교하여 보았다.
5.1 스타트그램 실험 자료

5.1.1 정하각 θ의 변화

앞서 기술한 Leonard의 실험 보의 α를 전단 논문 섹 (23)에 대입하여 전단진단선에서의 정하각 θ를 계산하여 보였다. 전단 식 (23)은 전단진단값 위치마다 θ가 다르게 산출된다. 이들의 정하각을 추정하기 위해 ET1과 ET3에서 관찰된 균질도에 일정 간격으로 계산한 정하각값을 점차 Fig. 5에 보였다.

이 결과를 살펴보면, 실제 균질각의 크기와 건간에 따른 변화 현상을 상당히 근사하게 예측하고 있다. 특히, 각 보의 건간 중앙 단면에서 계산한 정하각값은, Table 1에 정리된 것과 같이, ET4(ET4)에서 ET1(ET1)까지 변화하는 것으로 예측되었다. 이 값은 실제 실험에서 관찰한 Fig. 5의 균질각과 대체적으로 일치하고 있다고 평가할 수 있다.

5.1.2 스타트의 응력 f 변화

Fig. 6은 식 (4)에 의해 산정한 작용하중 스타트의 응력 관계를 점성으로, 실험의 측정값은 실험으로 나타낸 것이다. 이것은 제안모델에 의한 계산방법은 두가지를 사용하였다. 첫 번째 방법은 각 보의 고정된 α와 식 (3)에 의한 V_c 값으로 평가하였고, 두 번째 방법은 Fig. 1의 각 하중단계별 α 값과 식 (2)를 사용하여 비교하였다. 이 결과를 살펴보면, 복부 콘크리트 측을 제외한 모든 계통이 동일한데도 불구하고 스타트 응력의 해가 현저히 다르게 나타나는 것을 알 수 있을 뿐만 아니라, 새로운 모델은 복부최 균의 응력을 상당히 정확하게 예측하고 있다는 것 알 수 있다. 특히, 고정된 α와 식 (3)에 의한 V_c 값으로도 안정화에 도달하는 하중단계에서는 각 하중단계별 α 값에 의한 예측과 큰 차이가 없음을 알 수 있다.

5.1.3 전단강도 V_c의 변화

식 (6)으로 계산한 각 보의 전단강도를 Fig. 7에 실제 측정값과 비교하였다. 이 결과를 살펴보면, 한 보(ET1)는 원하지 않은 것이고, 나머지 보는 스타트 향복에 의해 파괴되었다는 것을 알 수 있으며, 제안한 실험 결과 맨에 의한 값이지만, 식 (6)에 의해 예측한 전단강도가 실제 강도와 매우 근사하게 일치하고 있다고 한다.

Fig. 7에서 특별히 흥미로운 것은 Fig. 4(c)에 나타낸 각 보의 전단 강도 성분의 구성비이다. 복부 콘크리트 저항 성분의 V_c는 복부 단면에 비례하여 결정하는 값으로 그 단면의 크기에 따라 변화하고, 아래층의 저항 성분의 V_c는 최종 극한 전단력에 α 값을 근거한 값에 따라 변화한다. 그 나머지의 V_c는 스타트와 경각 압축대가 트러스를 형성하여 저장하는 성분으로 소위 복부최 균의 전 단강도 V_c에 해당하며, 반면에 콘크리트 기여 전단강도 V_c
Fig. 7 Comparison of ultimate shear strength of beams with web reinforcement

Table 1에 정리한 바와 같이, 복수철이 가장 큰 ET1의 α_s 값이 0.36인데 반해, 가장 얇은 ET4의 경우 0.46로 증가한 것이다. 이 이차진단력 V_0는 Leonhardt\(^1\)의 논문에서 언급한 경사상한계가 본달리는 진단력인데, 그 크기가 전체 작용 진단력의 30%에서 40%정도에 해당한다고 한 사실과 상당히 부합한다고 하겠다.

52 Kan의 실험 자료

앞에서 다룬 Stuttgart 실험 자료는 스터럽이 배치된 보였다는. 따라서 복수철근의 변형 보에 대해서도 새로운 모델의 성능을 검증해야 할 필요성이 있다. 이 검증에 가장 적합한 실험 자료로는 1990년대 Kan\(^2\)가 수행한 자료일 것이다. 그는 주철근 바와 진단강간 비가 각기 다른 보를 실험하였는데, Table 3에 이들 보의 계산과 실험 결과를 정리하였다. 또한, 이 보들의 대상으로 각 보의 α_s 를 계산하여 그 결과를 Table 3에 실었다.

각 보의 α_s 값을 식 (7)에 적용하여 해당 보의 진단강도를 산정하였으며, 그 결과를 Table 3에 정리하고, 동시에 Fig. 8에 실험값과 비교하였다. 이 결과를 살펴보면, 새로운 트리스모델에 의한 강도 평가는 기존에 비해 상당히 우수하다고 할 수 있을 것이다. 특히, 복수철근이 배치되지 않는 부분의 진단강도 산정식 (7)은 상수 V_0의 계수 $-\alpha$ 만의 힘으로 표현한 공식인데도 불구하고 그 정확성이 탁월하다는 것을 알 수 있다.

Fig. 2의 나타낸 복수철근이 없는 보의 α_s의 변화를 살펴보면, a/d가 2.5인 보의 α_s 값이 0.5와 같은 것을 파악할 수 있다. 이것은 보의 과로 형태를 분류하는 중요 한 기준이 되는 값이라면 알 수 있다. 왜냐하면, α_s는 부재 내부에 발생한 타이드-아치가 지탱하는 진단력 품질원의 의미에서 이 값이 0.5보다 크다는 것은 작용 진단력의 집단이 이미 지나치게 지탱하고 그 나머지를 복구가 분담하고 있기 때문에, 비록 복구가 어떤 형태로 그 한계강도로 도달한 후에도 추가 진단력에 지탱할 수 있다는 의미이다. 반면에 α_s 값이 0.5보다 작다만, 복구가 작용진단력의 집단 이상을 지지하고 있기 때문에 복구의 한계강도에 도달한 바로 전에 보의 파괴가 발생한다. 전자의 과로 형태를 소위 진단-압축파괴(shear-compression failure)라고 하며, 복구 한계강도와 파괴강도의 차이가 잉여강도(reserve strength)가 된다. 반면에 후자의 경우에는 푸랑하파괴(diagonal-tension failure)라고 부른다.\(^3\) 이러한 결과로부터, 새로운 트리스모델은 복수철근이 배치되지 않는 보와 배치된 보에 독립적이 작용 가능한 일관된 논리를 확보한 모델이라고 할 수 있다. 기존의 트리스모델은 복수철근이 없는 보에 적용하는 데 큰 한계성을 갖고 있기 때문에, 이를 보완하려는 의도로 수정트리스모델, 콘크리트트레이 커먼 또는 푸랑하파괴 모델들이 제안되었다는 것을 상기할 필요가 있었다.\(^7\)

5.3 Km, Km and White의 실험 자료

철근콘크리트 부재의 균등 중에서 전단에 크게 영향을 받는 중요한 사항 중 하나가 전단강간 내의 주철근 인장력 7이다.
따라서 전단이 지배하는 부제의 주철근 인장력의 변화를 기준으로 새로운 모델을 적용하는 것은 중요한 사항중 하나일 것이다. 앞 3.4절에서 언급한 바와 같이, 새로운 모델에서 주철근 인장력 T는 식 (5)로 나타나는데 α, θ 와 V_s의 크기에 따라 다르게 산출된다.

여기서는 Table 2에 정리한 Kim 등 실험 보중에서 2 개 보 (2PW, 4PW)의 주철근 인장력 이력 자료를 이용하여 새로운 모델을 검증하고, 다른 모델과 비교하여 보였다. Fig. 9는 하중이력을 모멘트로 표현하여 세 단면에서 측정된 주십자철근의 이력상태를 α 값과 식(5)을 사용하여 비교한 것이다. 이 결과에 의하면, 각 보의 비균열 단면 이후 안정화가 이루어지는 점 하중 단계에서 세 단면 측정값을 정확히 예측할 수 있었다. 그리고 Kim 등이 실험한 각 보의 안정화 하중 단계에서 전단경간 세 단면에서 측정된 주십자 철근의 변화를 Fig. 10에 비교하였다. 이 결과에 의하면, 각 보의 전단경간 세 단면에서 거의 동일한 정확도를 갖는다는 것을 알 수 있다.

6. 결 론

본 연구는 4회 전단이 작용하고 있는 철근콘크리트 부재의 내력계(internal force flow)를 표현하기 위해, 전단경과 모멘트의 관계식 $V=dM/dx=zdT/dx+Tdz/dx$의 역학적 현상을 수치적으로 분해한 새로운 트러스모델을 개발한 것이다. 이 모델은 부재의 전단경간 에너지조 퐁 작용과 비교적asily의 두 기본 구성 성분을 함으로 표현한 것이다. 이 두 성분의 구성비인 α와 θ, 이로 인해 발생되는 모멘트 퍼follower의 변환을 단순화한 아치형성하수

Fig. 9 Comparison of longitudinal steel tensions

Fig. 10 Comparison of distribution of steel tension over the span
수 있을 뿐만 아니라, 복부 보강절근이 없는 부재에도 동시에 적용할 수 있는 일관적 논리를 확보하고 있다.
4) 따라서 이 새로운 트리스 모델을 복합 하중 조합, 즉, 측력, 전단, 힘과 비틀림의 조합 작용을 받는 부재에 동일한 논리로 바탕으로 확장이 가능하며, 그 결과는 기존 모델을 보다 더 일반성과 정확성을 확보 할 수 있을 것으로 예측된다.
결론적으로, 본 연구에서 제안한 새로운 트리스모델을 현행 설계기준에서 적용하고 있는 트리스모델과 비교 해 보면, 해석 결과의 정확성을 크게 향상시킨 반면에 계수-\(\alpha \)를 계산하는 번거로움이 추가되는 단점이 있다. 그러나 평행조건과 적절조건이 모두 필요한 복합 트리스모델들과 비교한다면, 세 모델은 체계적인 변형적합조건식에 의해 산출되는 계수-\(\alpha \)를 이용하여 평행조건식만으로 간단하게 정확한 해석 결과를 얻을 수 있는 모델이라고 할 수 있을 것이다.

감사의 글

본 연구는 한국과학재단 특기기초연구(과제번호 R01-2002-000-0099-0) 지원으로 수행된 결과의 일부이며, 이에 감사드립니다.

참고문헌

요 약

이 논문은 본 연구의 후반부로, 전반의 논문에서 개념적으로 유도하고 정확화한 새로운 트리스모델의 적용성 검증을 다룬 것이다. 이 모델에는 처음으로 소개되는 아치계수-\(\alpha \) 가 포함되어 있기 때문에 이 계수의 특성에 대해 고찰하였다. 계수-\(\alpha \) 의 값은\(\phi, \rho \)와 \(\rho_c \)에 따라 변하며, 주결근비가 커질수록 그리고 스티어링 비가 작아질수록 그 값은 증가하는 특성을 갖고 있다.
이렇게 정확화된 트리스모델을 단면적으로 변환하여 주결근과 복부결근의 응력 및 전단강도를 산정하는 식을 유도하였으며, 이 식을 기존 문헌에 발표된 실험자료에 적용하여 그 정확성을 검증하여 본 결과, 예측값은 실험값과 매우 근사하게 일치하는 것으로 나타났다.

핵심요인 : 아치작용, 보작용, 철근콘크리트, 전단강도, 트리스작용