An Estimate of Flexural Strength for Reinforce Concrete Beams Strengthened with CFRP Sheets

Jong-Sup Park*1, Woo-Tai JungI2, Young-Jun YouI3, and Young-Hwan ParkI4

1) Korea Institute of Construction Technology, Goyang, 411-712, Korea
(Rceived April 1, 2004, Accepted March 31, 2005)

ABSTRACT
Carbon fiber reinforced polymer (CFRP) sheets are becoming increasingly popular for strengthening deteriorated concrete bridges due to their excellent strength and stiffness-to-weight ratio, corrosion resistance, and convenience of construction work. The purpose of this study is to compare the performance of CFRP-strengthened reinforced concrete (RC) beams and to develop a new design formula. Simple beams with 3 m span length were tested to investigate the effect of reinforcing steel ratio and CFRP-reinforcing ratio on the flexural behavior of strengthened RC beams. The test results were analyzed with the special emphasis on the failure mode, the maximum load, and the strain distribution in the section.

It is shown that the strain of the strengthened beams is not linearly distributed in the section. A new design formula based on the non-linear distribution of the strain has been derived and showed that it has a good agreement with the various domestic and foreign test results.

Keywords: carbon fiber reinforced polymer, reinforced concrete bridge, strengthening, strain distribution, design formula

1. 서 론

노후화된 철근콘크리트 구조물에 대한 보강기술은 다양하게 개발되어 적용되고 있으며, 최근에는 섬유복합재료 (fiber reinforced polymer, 이하 FRP)를 보강재로 이용하는 사례가 급증하고 있다. FRP에 의한 RC구조물의 보강은 대부분 접착용 액체시에 의해 기존 콘크리트 표면에 FRP를 부착하는 방법으로 이루어지고 있으며, 지금까지의 연구 또한 주로 FRP 부착공법의 보강효과와 파괴모드를 규명하는데 집중되어 왔다.

특히, FRP의 부착공법과 부재의 성능을 좌우하는 중요 파괴모드임이 규명된 이후 부착공법을 파악하기 위한 다양한 정책이들이 제안되고 있다. 아직까지 FRP와 콘크리트와의 부착공법에 대해 명확히 밝혀진 바는 없으나, ACI 440-2R을 비롯한 최근의 보강설계지침에서는 이러한 부착공법 거동에 대해 FRP의 변형률을 제한하는 방법 등에 의해 설계에 반영하고 있다.

한편, 기존 연구에 따르면 FRP로 보강된 RC보의 경우 이론적으로 추정된 최대 활성능을 발생하기 이전의 낮은 하중범위에서 파괴되는 현상을 나타내고 있으며, 이러한 현상은 부착공법뿐만 아니라 FRP 복합재료가 파단되는 인장파괴시에도 동일하게 나타나는 것으로 보고되어 있다.

이처럼 보강된 RC보에 대한 기존의 설계방법은 보강된 보의 활성능을 파악하기에 이는 보강설계시 파소 설계로 이어질 우려가 있다. 따라서, 적절한 보강능을 확보하기 위해서는 보강된 RC보의 거동특성을 반영한 합리적인 설계방법의 마련이 필요하다고 할 수 있다.

본 연구에서는 보강된 부재의 설계 거동을 반영한 보강 설계식을 제안하기 위하여 탄소섬유재료로 보강된 RC보에 대한 정책적시험을 수행하고, 여기서 측정된 실제 변형률을 이용하여 보강단면의 변형률 분포를 고찰하였으며, 이를 바탕으로 보강부재의 변형률 분포에 근거한 설계적인 활성능 조정방법을 제안하고자 하였다.
2. FRP로 보강된 RC로의 변형률 분포
고찰을 위한 실험

2.1 실험 계획

지금까지 FRP로 보강된 철근콘크리트보의 단면기동을 해석할 때에는 단면내에서의 변형률 분포를 선형으로 가정하는 일반적인 Bernoulli–Navier의 가정을 적용해 왔다. 또한, 해석에서 있어서 근ющей에서의 구부러짐 및 구부려진 변형률이 나 박리에 의한 영향은 무시하는 것이 일반적이었다. 그러
나, 실제 보강된 보에 있어서는 보강재의 박리 등에 의한 영향이 크게 나타나기 때문에 FRP와 콘크리트가 일체
가동을 하는 것으로 가정하여 단면내에서의 변형률 적합 조건을 이용해서 보강된 보의 활성도를 추정하는 기존의 단
면해석방법은 수정될 필요가 있다3).

본 연구에서는 단소실험유닛으로 보강된 철근콘크리트보에 대한 정적특성 시험을 통해 하중단계별 변형률을 측정하고 보강된 보의 단면내에서의 변형률 분포를 고찰하였다.

2.2 시험제작 및 FRP 보강

실험을 위하여 제작된 보시건은 Fig. 1과 같이, 서계기준강도 26.5 MPa의 레미콘을 사용하여 제작하
였다. 인장철근은 SD40의 D10 철근을 절단비 0.0041로 배
근하였으며, 압축철근에는 D13를 세 가닥 배근하였다. 전
단과제를 방지하기 위하여 전단구간에는 D10의 전단철근
을 100 mm 간격으로 배치하였다. 단소실험유닛은 실험변
수에 따라 본 실험에 120 mm의 길이를 1/4 쪽까지 시행하였다. 실험에 사용된 재료의 물리적 성질은
Table 1과 같다.

<table>
<thead>
<tr>
<th>Table 1 Material properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFRP sheets</td>
</tr>
<tr>
<td>3479 MPa</td>
</tr>
<tr>
<td>Concrete</td>
</tr>
<tr>
<td>Steel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2 Parameters and test results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen</td>
</tr>
<tr>
<td>COND10</td>
</tr>
<tr>
<td>SH1D10</td>
</tr>
<tr>
<td>SH2D10</td>
</tr>
<tr>
<td>SH3D10</td>
</tr>
<tr>
<td>SH4D10</td>
</tr>
</tbody>
</table>

하중은 초기 20 kN까지는 하중계어로 초당 0.2 kN의 속도
로 재하하였으며, 이후에는 변위계어로 재하방식을 변경하
여 초기 15 mm 변위발생시까지 초당 0.02 mm의 속도로
재하하고, 15 mm 이상의 변위가 발생한 시점부터 해석
까지는 초당 0.05 mm의 속도로 재하하였다. 각종 실험내
역의 계측은 측정페이지 토거 및 컴퓨터를 이용하였으며,
매 3초 간격으로 측정을 실시하였다. 변형률 측정을 위하여
인장철근에는 경간 중앙과 L/4 위치에 전기저항식 변형률
게이저를 매립하였으며, 경간중앙의 측면에는 최상단과 최
상단에서 50 mm 아래에 콘크리트를 게이저를 부착하였다.

2.4 실험결과 고찰

각 보시건에 대한 실험변수, 최대하중, 최저 및 최고모
드는 Table 2와 같다. 여기서 최대하중의 이론값은 일반
적인 Bernoulli–Navier의 가정을 적용한 단면해석에 의해
구한값을 하중계어로 해석방식은 3.2절에 나타났다. Table 2에서
항복변위는 인장철근 항복시에 측정된 변위이고 극단변위
는 최대하중에서 측정된 변위이다. 보강된 실험체는 부착

Fig. 1 Dimension of test specimen (unit : mm)
파괴로 인해 무보강 실험체에 비해 상당히 작은 변위에서 최대하중을 나타냈다.

2.4.1 파괴모드

실험 결과 무보강 실험체는 인장철근 함복 후에 압축파괴로 진행되는 전형적인 횡 파괴 형태를 나타냈다. 보강 실험체에 있어서는 모든 실험체에서 횡 균열부에서부터 시작하는 중간부 부착파괴가 발생하였으며, 인장철근의 함복이후 부착파괴가 발생하여 급격히 진행되었다. 보강량이 적은 SH1D10, SH2D10 실험체는 중앙 횡 균열부에서 발생한 부착파괴가 단부곡으로 진행하는 양상을 보이며 파괴되었으며, 보강량이 상대적으로 많은 SH3D10, SH4D10 실험체는 가략적으로 하단 균열부에서 발생한 부착파괴가 중앙과 단부곡으로 진행하여 최종 파괴에 도달하였다. 보강된 실험체에서 부착파괴의 시작점은 콘크리트의 인장균열폭이 확대된 부분인 점으로 미루어 콘크리트 균열이 보강재의 부착파괴 모드를 결정짓는 중요한 인자임을 판단할 수 있다.

2.4.2 역학적 거동

보강 실험체는 보강량에 따라 무보강 실험체에 비해 함복하중은 15～44%까지 증가하는 것으로 나타났으며, 최대하중은 4～57%까지 증가하는 것으로 나타났다. 탄소섬유의 1배로 보강된 SH1D10 실험체의 경우에는 인장철근의 함복이후 확대된 중앙 균열부에서 부착파괴가 발생함에 따라 보강효과가 거의 발휘하지 못한 것으로 나타났다. 탄소섬유의 보강량이 증가할수록, 비록 부착파괴가 발생하는 경우라도 보강량에 따라 보강효과가 증가하고 있을음을 알 수 있다. 이러한 경향은 무변에 나타난 기존의 유사한 실험들과도 일치하고 있다.

2.4.3 단면내에서의 변형률 분포

Fig. 3에는 보강된 실험체의 경간 중앙단면에서의 하중단계별 변형률 분포를 나타내었다. SH1D10을 비롯한 대부분의 보강 실험체에서 인장철근이 함복한 이후에는 단면에서의 변형률 분포가 상당히 높아 있는 것으로 측정되었다.
특히 항복후까지는 종합측의 변화가 거의 없는 것으로 나타났으나, 인장철근 항복이후에는 종합측이 급격히 압축적으로 이동하는 경향을 나타내었다.

실측한 단면 내에서의 변형률이 선형 분포를 이루지 못하는 가장 큰 원인은 단면 내에서의 각 부재가 일체가동을 하지 못하기 때문이다. 즉, 인장측 최하단에 부착된 FRP 복합재료의 경우에는 콘크리트에 인장력이 발생한 후, 계면방향으로 균열이 점차 진행되며 부착된 바닥이 진행되기 때문에 가장 큰 인장 측에 따라 변형이 기대가 어렵게 된다. 이러한 원인으로 인해 인장절단은 항복 후 급격하게 변형률이 증가하는 경향을 나타내게 되며, FRP 복합재료의 변형률은 비부착된 부재의�동과 같아 인장절단에 의해 상대적으로 낮은 변형률의 증가를 나타내게 되는 것으로 판단된다(의 4).

Sergiio화(2003)의 실험을 통해 인장절단 항복시까지는 단면 내에서의 변형률 분포의 선형을 이루지 않지만 균열상태에서는 인장절단의 변형량에 대한 FRP 복합재료의 변형률비가 0.25 0.88 범위에 있는 것을 규명하고, 변형률 분포를 선형으로 가정한 기존의 설계방법에 문제점이 있음을 지적하였다.

3. FRP로 보강된 RC보에 대한 활용

3.1 보강된 RC보의 파괴모드

부착파괴와 같은 조기파괴가 없다면 FRP로 보강된 RC보의 파괴모드는 균열상태에서의 콘크리트, 인장철근, FRP 복합재료의 변형량에 따라 콘크리트 압축파괴와 FRP 복합재료 파단에 의한 인장파괴로 대별될 수 있다. 보다 파괴모드를 세분화하면 다음과 같은 5가지의 파괴모드로 나눌 수 있으며, FRP 복합재료의 보강량에 따라 파괴모드가 결정된다.

![Fig. 4 The cause of strain decrease in FRP sheets](image1)

Fig. 4 The cause of strain decrease in FRP sheets

![Fig. 5 Strain distribution in strengthened beam](image2)

Fig. 5 Strain distribution in strengthened beam

① 철근 항복 → FRP 파단 → 콘크리트 압축파괴
② 철근 항복 → FRP 파단 및 콘크리트 압축파괴 (균형보강량 상대)
③ 철근 항복 → 콘크리트 압축파괴 → FRP 파단
④ 철근 항복 및 콘크리트 압축파괴 → FRP 파단 (최대보강량)
⑤ 콘크리트 압축파괴 → 철근 항복 → FRP 파단

콘크리트의 압축변형량이 균형변형량에 도달하기 전에 FRP 복합재료가 파단하게 되는 ①번 파괴모드와 인장철근 항복 이전에 콘크리트가 압축파괴되는 ③번 파괴모드는 매우 취약적인 파괴모드이기 때문에 FRP 복합재료의 보강량을 균형보강량 이상 최대보강량 미만으로 하여 FRP 보강조직의 파괴내용에 의해 취약성이 지배되도록 설계하는 것이 중요하다.

3.2 보강된 RC보의 기존 헤식방법

FRP 복합재료의 보강량이 얕게 언급한 ③번 파괴모드를 유도하는 범위안에 있는 경우, 균열상태에서의 보강된 단면에서의 변형률 분포 및 응력상태는 Fig. 6과 같이 나타낼 수 있다. Fig. 6으로부터 균열상태에서의 FRP 복합재료의 변형량을 \(\epsilon_f \)는 다음과 같이 표현할 수 있다.

\[
\epsilon_f = \frac{h-c}{c} - \epsilon_b
\]

where \(\epsilon_b = \frac{M(h - kd)}{I_o E_c} \); [reference 1]

여기서, \(\epsilon_b \)는 콘크리트의 최대 압축변형량, \(h \)는 보의 높이, \(c \)는 보의 중립축 위치를 나타내며, \(\epsilon_b \)는 보강 전 하중에 의해 발생한 콘크리트 하단의 변형량을 나타낸다. 한편, 인장철근의 변형량 \(\epsilon_s \)는 식(1)과 마찬가지로 다음과 같이 나타낼 수 있다.

\[
\epsilon_s = \frac{d_s - c}{c}
\]

Fig. 6으로부터 헤식의 헤식방정식을 이용하여 진정하면 다음과 같은 식으로 나타낼 수 있다.

\[
0.85 f_y b_s c b = A_s E_s \epsilon_s + A_f E_f \epsilon_f
\]

여기서, \(f_y \)는 콘크리트의 압축강도를 나타내며, \(b_s \)와 \(b \)는 각각 등가응력시각계수와 보의 폭을 나타낸다. 또한 \(E_s \)는 각각 인장철근과 FRP 복합재료의 탄성계수이며 \(A_s \)와 \(A_f \)는 각각의 단면적을 나타낸다. 한편 식(3)에서 \(\epsilon_s \)는 철근의 항복변형량 \(\epsilon_f \)보다 크게 때문에 식(3)은 철근의 항복강도 \(f_y \)를 대입하여 다음과 같이 나타낼 수 있다.
식(4)에 식(1)을 대입하여 증폭족 c에 대해 정리하면 식(5)과 같은 이차식을 구할 수 있으며, 이 식의 해를 구하면 보강된 RC보의 증폭족을 구할 수 있다.

\[Ac^2 + Bc + C = 0 \]

(5)

이기서, \(A = 0.85f_{ck}b \)

\[B = -A_{f_p} + A_{f'}(\varepsilon_{ca} + \varepsilon_{cb}) \]

(6)

\[C = -A_{f'} \varepsilon_{ca}h \]

\[c = \frac{-B + \sqrt{B^2 - 4AC}}{2A} \]

(7)

최종적으로 증폭족 c를 식(1)에 대입하여 극한상태에서의 FRP 복합재료의 변형률을 계산할 수 있으며 보강된 RC보의 공중모멘트 \(M_u \)은 다음과 같이 나타낼 수 있다.

\[M_u = A_{f_p}d_s - \frac{\beta c}{2} + A_{f'}(h - \frac{\beta c}{2}) \]

(8)

3.3 기존 해석값과 실험값의 비교

보강보에 대한 3.2절 해석변량의 적정성을 검토하기 위하여 본 논문의 실험결과 및 문헌에 나타난 실험결과를 합해석 결과와 비교하였다. 해석에 사용된 계측 모델은 각 문헌에서 실험에 의해 제시된 값을 사용하였으며, 1998년의 문헌에 나타난 총 133개의 보강 실험체에 대한 실험값을 분석대상으로 하였다.\(^{30}\)

Table 2에는 본 논문의 실험값과 해석값을 비교하여 나타내었으며, Fig. 7에는 해석값에 대한 문헌 조사된 실험값의 관계를 나타내었다. 본 논문의 실험체에 대해 해석값은 모두 과대평가되는 것으로 나타났으며, 문헌에 나타난 실험체에 대해서는 전체의 62%에 해당하는 88개의 실험체

![Fig. 6 Strain and stress distribution in strengthened beam at ultimate state](image)

![Fig. 7 Comparison of nominal strength with test results](image)

Table 3 FRP strength reduction factor

<table>
<thead>
<tr>
<th>Design equation</th>
<th>Reduction factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional analysis (M_e = A_f d_s - \frac{\beta c}{2} + A_{f'} (h - \frac{\beta c}{2}))</td>
<td>-</td>
</tr>
<tr>
<td>statistic eq. (^{30}) (M_{e(re)} = T_c(d - k) + T_s(h - k)) (\gamma = 0.25 + 0.58X_0) (X_0 \leq 0.25)</td>
<td>(\phi_{tr} = 0.8)</td>
</tr>
<tr>
<td>ISIS CANADA (^{4}) (M_{e(re)} = 0.8A_f d_s - \frac{\beta c}{2} + 0.8A_{f'} (h - \frac{\beta c}{2}))</td>
<td>(\phi_{tr} = 0.85)</td>
</tr>
</tbody>
</table>

3.4 FRP 복합재료의 유효변량을 제안

본 연구에서는 앞서 실험에서측정된 변형률 분포를 바탕으로 보강된 보의 공중단강도를 감소시키기 위한 FRP 복합재료의 유효변량을 제안하였다. Fig. 4에 나타난 바와 같이 FRP로 보강된 RC보에서 측정한 변형률 분포를 보고자 하여, 보의 공중단강도를 감소시키는 복합재료의 변형률에 의해 결정된다. 이와 같이 선형으로 이상화 된 변형률보다 낮아진 FRP의 변형률을 유효변량이라고 정의하면, 유효변량은 다음과 같은 식으로 나타낼 수 있다.
여기서, ϵ_{fy}는 영향에 따른 정해된 FRP 복합재료의 변형률이며, $\Delta \epsilon_f$는 영향에 따른 FRP 복합재료의 변형률 증분으로 다음과 같이 나타낼 수 있으며, 보의 공정강도는 식(11)의 유의변형률을 식(8)의 ϵ_f함에 대입하여 구할 수 있다.

$$\Delta \epsilon_f = (\epsilon_f - \epsilon_{fy}) \Omega \quad (10), \quad \epsilon_{fc} = \epsilon_{fy} + (\epsilon_f - \epsilon_{fy}) \Omega \quad (11)$$

여기서, Ω는 비무작한 효과로 인한 변형률감소를 고려하는 계수로서 선행분포로 가정하였을 경우 예측되는 변형률 증분에 대한 감소된 변형률 증분의 비율을 의미한다. 본 연구에서는 Fig. 4의 실험결과 및 문헌에 나타난 실험결과를 이용하여 Table 4와 같이 오를 결정하였다.

<table>
<thead>
<tr>
<th>Table 4 Strain reduction factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refer</td>
</tr>
<tr>
<td>This paper</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Refer. 25</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Refer. 26</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Refer. 5</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Average(Ω)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 5 Standard deviation and coefficient of determination (R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_{exp} / M_{n,exp}$</td>
</tr>
<tr>
<td>0.217</td>
</tr>
<tr>
<td>0.554</td>
</tr>
<tr>
<td>0.207</td>
</tr>
<tr>
<td>0.305</td>
</tr>
</tbody>
</table>

M_{exp}: Experiment, $M_{n,exp}$: Proposed Eq., $M_{n,exp}$: Refer. 10, $M_{n,exp}$: Refer. 1, M_n: nominal strength

3.5 제안 해석방법의 검증

3.5.1 국내 실험결과와의 비교

Fig. 8에는 Fig. 7에서 분석한 실험결과에 대해 ACI 440-2R의 강도감소계수를 고려한 경우, 식(8)의 통계적 방법에 의한 강도감소계수를 고려한 경우 및 본 연구에서 제안한 유의변형률을 고려한 경우의 해석값과 실험값을 비교하여 나타내었다. 그림에서 데이터가 직선에 가까울수록, 표준편차치 작을수록 실험값과 잘 일치하는 것으로 볼 수 있으므로 본 연구에서 제안한 유의변형률이 FRP로 보강된 RC보다의 최강도를 예측하는데 적절함을 알 수 있다. 또한, 본 연구에서 제안한 유의변형률에 의한 해석값은

![Fig. 8 Comparison of various design formula with domestic test results](image-url)
전체 실험체중 62%에 대해 파손مين도는 기존의 해석방법에 비해 5%만이 파손실험이 되는 것으로 나타나 설계에 있어서도 적절한 대안이 될 수 있을 것으로 판단된다.

Table 5에서는 실험값과 각 환경도의 결과값의 비에 대해 표준편차 및 결정계수를 나타내었다.

본 연구에서 제안된 유의변형률 개념에 의한 무게가 $M_{e,prov}$는 Table 5와 같이 밀집된 보강된 시험체의 실험값/기계값의 비의 표준편차가 0.217이고 결정계수 R^2은 0.981으로 나타났다. Table 5에서 알 수 있듯이 ACI 식과 공정환장도에 따른 평균이 1.14 작은 값으로 나타나 전체적인 예측값이 안전성이 아닌 것으로 나타났다. 기존 통계식은 실험값/기계값의 비의 표준편차가 0.545로 매우 크게 나타나, 전반적으로 실험값에 비해 지나치게 안전한 즉으로 해석되는 것으로 나타나 설계적 적용하기에는 무리가 있는 것으로 판단된다.

3.5.2 국외 실험결과와의 비교

본 절에서는 국내 실험결과에 의해 제안된 유의변형률 개념에 의한 환경도 추정식이 일반성을 갖는지를 점검하기 위하여 외국에서 수행된 실험결과와 비교하였다. 국외 실험결과는 5편의 논문에 제시된 31개의 실험체로서, 본 연구에서 제안된 식에 의해 추정한 웨이드먼트 실험결과에 의한 웨이드먼트를 비교하여 Fig. 9에 나타내었다[27,30]. Fig. 9에 나타난 바와 같이 제안된 식은 보강도의 실제 환경도를 적절하게 추정하고 있음을 알 수 있다. 따라서, 본 연구에서 도출된 제안식은 탄소강화의 보강된 보의 환경도를 실용적으로 예측하여 보강설계에 반영할 수 있을 것으로 판단된다.

4. 결론

본 연구는 FRP 복합재료로 보강된 RC의 설계 변형률을 이용하여 보강률 단면에서의 변형률 분포를 고려하고 이로 바탕으로 보강부재의 변형률 분포에 근거한 환경도 추정방법을 제안하고자 하는 연구로서 다음과 같은 결론을 도출하였다.

1) 탄소강화유리에 보강된 보는 환경적 영향, 내재화력에 비해 5%만이 파손실험이 되는 것으로 나타나 설계에 있어서도 적절한 대안이 될 수 있을 것으로 판단된다.

2) 보강률 단면에서 취득된 설계변형률에 따라 인장절론 항복이후에 FRP 복합재료에 발생하는 변형률은 변형률 분포를 선형으로 가정했을 때에 비해 현저하게 낮은 것으로 나타나 단면에서의 변형률분포를 선형으로 가정하는 기존의 해석방법에 의해 FRP로 보강된 RC벽에 대한 환경도를 추정하는 경우에는 최대 2배까지도 설계값과 차이가 나는 것으로 나타났다.

3) 전방향으로 이어지면서 추정된 항복이후의 FRP 복합재료의 변형률 분포에서 비해 설계된 변형률 분포는 평균 0.4배 작은 값을 나타내었다.

4) 본 연구에서는 설계된 항복이후의 FRP 복합재료 변형률 분포를 바탕으로 비무적 효과에 따른 변형률 감소계수를 0.4로 제안하였으며, 이를 적용한 FRP 복합재료의 유의변형률을 보완하였다. 기존의 국내외 실험 연구에서 언급된 164개의 보강사례에 대한 본 연구에서 제안한 유의변형률 개념으로 추정한 환경도는 실험값을 적절하게 예측하는 것으로 나타났다. 단, 본 연구에서 제안한 변형률감소계수는 단일한 설계결과를 활용한 것으로서 전반적 보다 많은 연구 및 실험결과에 대한 분석을 통해 수정할 필요성이 있다. 또한 실제 보강설계에 적용하기 위해서는 변형률 감소계수를 보다 안전측으로 수정되어야 할 것이다.

참고문헌

1. ACI committee 440, Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures, American Concrete Institute, 2002.

17. 구순숙 외 2명, " CFRS의 보강작용에 관한 실험적연구", 한국콘크리트학회, 1999년도 학술발표회논문집, 10권 1호, pp.573-582.
23. 장성인 외 3명, "성형체철근보강 철근콘크리트 보의 보강력에 관한 실험적연구", 한국콘크리트학회, 2001년도 학술발표회논문집, 13권 1호, pp.751-756.

요 약
탄소섬유유전자로 보강한 철근콘크리트 보의 보강은 체계의 높은 중량-강도비, 저중량-강도비, 내부손상 및 사용의 편리성 등과 같은 여러 가지 장점으로 인하여 최근 그 사용이 꾸준히 증가하고 있다. 본 연구의 목적은 탄소섬유유전자로 보강한 철근콘크리트 보의 보강성을 비교하고, 그 특성을 고려하여 보강설계를 제안하기 위함이다. 철근보강과 보강재에 따른 철근콘크리트 보의 보강성을 검토하기 위하여 3m 길이의 단순보에 대한 실험을 수행하였으며, 파라로드, 최대하중 및 단면 내에서의 변형률을 보고 결과를 분석하였다.

실험 결과, 보강재 보강은 단면 내에서의 변형률이 선형으로 증가하지 않는 것으로 나타났으며, 본 연구에서는 이러한 실험결과를 바탕으로 보강설계를 제안하고 국내외 여러 실험결과들의 비교를 통해 제안된 보강설계가 타당함을 나타내었다.