Axisymmetric Modeling of Dome Tendons in Nuclear Containment Building
I. Theoretical Derivations

Se-Jin Jeon 1) and Chul-Hun Chung 2)

1) Daewoo Institute of Construction Technology, Suwon, 440-210, Korea
2) Dept. of Civil & Environmental Engineering, Dankook University, Seoul, 140-714, Korea

(Received November 17, 2004, Accepted May 30, 2005)

ABSTRACT

Prestressing tendons in a nuclear containment building dome are non-axisymmetrically arranged in most cases. However, simple axisymmetric modeling of the containment has been often employed in practice to estimate structural behavior for the axisymmetric loadings such as an internal pressure. In this case, the axisymmetric approximation is required for the actual tendon arrangements in the dome. Some procedures are proposed that can implement the actual 3-dimensional tendon stiffness and prestressing effect into the axisymmetric model. Prestressing tendons, which are arranged in 3 or 2-ways depending on a containment type, are converted into an equivalent layer to consider the stiffness contribution in meridional and hoop directions. In order to reflect the prestressing effect, equivalent load method and initial stress method are devised and the corresponding loads or stresses are derived in terms of the axisymmetric model. In a companion paper, the proposed schemes are applied into CANDU and KSNP (Korean Standard Nuclear Power Plant) type containments and are verified through some numerical examples comparing the analysis results with those of the actual 3-dimensional model.

Keywords: nuclear containment building, dome, prestressing tendon, axisymmetric model

1. 서 론

구조물의 축대칭 해석은 전체 3차원 해석의 비교적 대구조 모델링을 위한 입력 자료 작성이 간결해지며, 해석 시간 및 해석 결과의 분석에 소요되는 시간이 단축되는 등 큰 편의를 제공한다. 하지만, 축대칭 해석을 통하여 실제 구조물의 가동을 유추할 수 있는 전체 조건으로 구조물은 축대칭 형태가 가장 가깝다. 또한 하중의 경우에도 특수한 축대칭 요소를 사용하는 것을 예외로 한다면, 축대칭 해석은 일반적으로 축대칭 하중에 대해 설계하게 된다.

원전 격납건물은 전체적으로 축대칭 형태가 가깝지만 일부의 맞게 원판 탄선의 장축을 위한 부택(buttress)이나 개구부(작업원 출입구 및 장비 반입구) 등에 의해 완전한 축대칭 형상을 갖는다는 없다.철근이나 프리스트레싱 탄선의 경우에도 벽체에서는 수직방향 및 원판방향으로 배치되어 축대칭 형상을 이루지만, 돔이나 바닥관에서는 축대칭 형상을 벗어나는 것이 보통이다. 하지만, 대표적인 설계하중인 내압 및 축대칭으로 작용하는 하중에 대한 격납건물의 해석에서는 3차원 해석 이외에도 축대칭 해석이 반드시 수행되어 왔다.2) 이는 엄밀한 3차원 해석은 수행해 보면 부택이나 개구부 등 특정한 부위를 제외하고는 대체로 축대칭에 가까운 가동을 보이기 때문이다. 축대칭 모델링 시 콘크리트의 형상에서는 부택이나 개구부를 무시하게 되며, 비수축성으로 배치된 철근이나 탄선의 경우에면 축대칭 모델에 적합한 병도의 변형 가정이 필요하게 된다.

이 중에서 본 연구에서는 주로 돔 탄선의 축대칭 모델링 기법을 고찰하였다. 비수축성으로 배치된 돔 탄선은 격납건물 형식에 따라 배치 방향에 차이를 보이며, 국내의 대표적인 원전의 돔 탄선을 예로 들자면 한국형(KSNP: Korean Standard Nuclear Power Plant) 격납건물은 2방향으로, CANDU형 격납건물은 3방향으로 배치된다. 또한 탄선 간의 배치 간격이 결정되는 방법론에 있어서도 차이

* Corresponding author
E-mail: jsj@dwconstr.co.kr
©2005 by Korea Concrete Institute
몇 년을 보낸다. 여기에서는 원전 격납건물 동쪽 배치된 탄던의 강성 및 프리서해성 효과를 축대형 모델에서 효과적으로 구현하는 방법론을 CANDU형 및 한국형에 대하여 각각 제시하였다. 기존의 격납건물의 축대형 해석에 관한 연구에서는 CANDU형 둘 탄던의 축대형 근사화10 및 한국형 탄던의 축대형 근사화20 과정이 포함되었으나, 엄밀한 모델과의 해석 결과 차이에 대해 언급되어 있지 않으므로 각 방법론의 정확성을 검증할 수 없었다. 반면, 제안된 모델은 엄밀한 3차원 모델의 해석 결과와 비교하여 근사화 정도 및 탕상성을 검증하였다. 본 연구는 총 2권의 논문으로 작성되었으며, 본 1권에서는 축대형 탄던 모델링에 필요한 이론적인 수식들이 유도되었고, 후속편 2권20에서는 유도된 계차를 적용한 예제들의 비교 분석을 통하여 제안된 수식들을 검증하였다.

2. 탄던 강성의 모델링

2.1 개요

Fig. 1은 각각 CANDU형 및 한국형 원전 격납건물을 동쪽 탄던의 배치를 보여주고 있다. Fig. 1(a)의 CANDU형은 3방향으로 배치된 동 탄던의 뒷면의 측면에 형제되는 형태이다. 반면, Fig. 1(b)의 한국형은 뒷면의 수직 탄던이 그 대로 이어져 동 탄던을 구성하여 3방향으로 배치된다. 한국형에서는 동 탕상에도 전지 높이까지 원한 탄던이 배치되지만 원한 탄던은 그 자체로 축대형이므로 본 논문의 대상에서 제외하였다.

탄던은 탄던 축방향으로만 강성의 기어가 있으므로 Fig. 1의 배치를 참조할 때 각각의 동 탄던은 동의 자오선방향 및 원환방향으로부터 양단에 기여하고 있으며 그러한 기어 비율은 탄던 축상의 위치에 따라 달라진다. 기존 연구에서 자오선방향과 축대형방향으로 기여하는 경우가 있으나21, 이는 탄던의 강성을 파생화하는 결과를 낳 것을 생각한다. 부품에는 엄밀히 탄던의 특성에 관한 점에서 자오선방향 및 원환방향의 강성 기여비율이 유도되어 있다. 그러나, 탄던의 위치마다 달라지는 강성의 기여분을 일일이 고려하여 축대형 모델에서 탄던 강성을 유도하

Fig. 2는 CANDU형에서 3방향으로 배치된 탄던 중에서 특정한 방향으로 배치된 둘 탄던을 보여주고 있다. 각 방향 탄던은 동 두께의 중심에 가깝게 위치하지만 미소한 높이 차이가 있다. 하지만 본 유도에는 모든 탄던이 동 두께의 중간에 위치한다고 가정하였으며, 이 가정이 전체 해석 결과에 미치는 영향은 미미하다. 또한, Fig. 2에서는 수직 두께식의 편의를 위해 평면상 탄던 형상이 동일하고 측면이 가정하였으며, 이는 실제의 배치와 미소한 차이가 있으나 CANDU형 동은 매우 납작한 형태이므로 가정에 따른 탄던 형상의 근사화 정도는 매우 작은 편이다.

Fig. 2에서 1방향으로 별 3개의 탄던이 배치되었을 때, 탄던 간의 간격은 2R/3으로 하여 R만큼 탄대로 치 때
음 식 (1)~(4)가 성립한다. 참고로 $\theta$이 존재가 아닌 경우일 경우에는 $m\theta$에 때 $\theta$가 중복 배치되어 있고
그 위치는 $m\theta$에서 $m(\theta-2\theta)$까지 $\theta$가 배치되어 있다고 가정하는 것이 수식 유도상 간편하고 일반성도 확
보할 수 있으며, 그에 수반되는 오차는 역시 무시할만한 것으로 판단된다.

$$m \cdot m' = \sqrt{R^2 - \left(2mR \over n+1 \right)^2}$$  \hspace{1cm} (1)

$$= {2R \over n+1} \sqrt{\left(\frac{n+1}{2} \right)^2 - m'^2}$$

$$\theta_m = \arctan(mm' / L)$$  \hspace{1cm} (2)

$$R_i = L / \cos \theta_m$$  \hspace{1cm} (3), \hspace{1cm} mm' = R_i \theta_m$$  \hspace{1cm} (4)

따라서, 탄던 한개의 단면적을 $A_{p}$라 했을 때 1방향 탄
들풀의 중 부피는 식 (5)와 같이 구할 수 있다. 여기에서
아래참자 0은 $m\theta$인 경우이다.

$$V = A_{p} \left(4R_2 \theta_0 + 4 \sum_{m=1}^{n} R_i \theta_m \right)$$  \hspace{1cm} (5)

또한 표면적은 식 (6)에서 구할 수 있으므로, 3방향의
모든 탄던의 부피를 일정한 두께를 가진 등가의 종으로
분포시킬 때의 총의 두께 $t$는 식 (7)과 같다.

$$S = {2\pi R^2 \over 1 + \cos \theta_0}$$  \hspace{1cm} (6), \hspace{1cm} t = 3V / S$$  \hspace{1cm} (7)

전술하였듯이 실제 탄던의 강성은 자오평행 및 원판
방향으로 나뉘어 각 방향으로 일정 부분의 강성 기여가
있지만, 여기에서 사용된 층모델의 경우 양 방향의 강성은
좀 더 크게 평가할 것으로 사료된다. 따라서, 적절한 두께
보정계수를 적용하여 식 (7)에서 산정된 두께를 일부 감
소시켜 주는 것이 좀 더 실제 거동에 가까울 수도 있다.
보정계수의 값을 전체적인 탄던 배치 형상의 함수로 되며,
이론적인 유도보다는 3차원 해석과의 비교를 통하여 도출
하는 것이 좀 더 바람직할 것으로 생각된다.

23 한국형

Fig. 3은 한국형에서 2방향으로 배치된 탄던 중에서 특
정한 방향으로 배치된 탄던을 보여주고 있다. 각 방향
탄던은 거의 동 트레일시의 중심에 위치하지만 중복되어 탄

![Fig. 3 Dome tendons (KSNP type)](image)

치기는 어려우므로 미소한 높이 차이가 있다. 하지만
본 유도와 같이 모든 탄던이 동 두께의 중간에 위치한다고
가정하더라도 전체 해석 결과에 미치는 영향은 미미한 것으로
나타났다. CANDU형에서 거의 일정한 간격으로
배치된 등 탄던과 비교할 때 한방향의 가장 큰 차이점은
배체에 원주방향을 따라 일정한 간격으로 배치된 수직 탄
던이 그대로 연장되어 등 탄던을 이루고 있는 판대에 동
정렬부에서 벗어날수록 등 탄던의 간격이 증가한다는 점
이다. 수직 유도시 이러한 차이점이 반영된 것 이외에는
CANDU형에서의 유도 개념과 대체로 대동소이하다.

Fig. 3은 박체의 수직 탄던이 $\beta$의 각도를 가지고 동간
적으로 배치되었을 때, 1방향으로 배열된 $n$개의 등 탄던을
보여주고 있다. 이때 $m$방향 탄던에 대해 다음 식 (8) ~
(9)가 성립한다. 탄던 한개의 단면적을 $A_{p}$라 했을 때 1
방향 탄들도의 중 부피는 식 (10)의 같이 유도되며, 2방향
의 모든 탄들도의 부피 $V$를 반부정 동의 표면적으로 나
누는 등가의 탄던 중 두께를 구할 수 있다. 역시 필요시에
는 이렇게 유도된 두께에 감소계수를 적용하여 층대칭 모
델에서의 탄던 강성을 실제에 가깝게 조절할 수 있다.

$$m \cdot m' = R \cos (m \beta)$$  \hspace{1cm} (8)

$$m \cdot m' = m \cdot m' \times \frac{\pi}{2} = \frac{\pi R^2 \cos (m \beta)}{2}$$  \hspace{1cm} (9)

$$V = A_{p} \left(4R + 4 \sum_{m=1}^{n} R \cos (m \beta) \right)$$  \hspace{1cm} (10)

3. 프리스트레싱 효과의 모델링

3.1 개요
Fig. 4 Tendon-induced equivalent loads

Fig. 4는 프리스트레스가 가해진 특정한 동 탄전이 콘크리트에 작용시키는 힘, 즉, 동가중물의 분포를 보여주고 있다. 동 탄전의 정확부에는 프리스트레스 설명 P와 같은 크기의 집중정량이 탄전 축방향으로 작용하여, 구획을 가진 구선부에는 분포강도가 작용한다. 분포강도 u의 크기는 탄전 미소 요소의 자유롭은도로부터 유도할 수 있으며, 작용량은 구선 탄전이 속해 있는 평면에서 탄전 축방정량도이다.

Fig. 1과 같이 동에 배치된 일련의 탄전들은 Fig. 4와 같은 함을 콘크리트에 조립시키고 있으며, Choo와 김영모는 이러한 함들은 각 방향의 알코로 근사화한 바 있다. 이 연구들에 의하면 엄청난 선분 중 절반적인 것은 동 표면에 작용강도로 작용하고 있는 알코이며 원형방향을 따라 비교적 얇은의 크기로 작용하고 있을 것으로 보였다.

여기에서는 기존 연구와는 또 다른 방법론에 의해 이러한 함들을 변환하여 실제의 3차원 해석 결과와 비슷한 값을 산출하도록 축대칭 모델에서 구현하고자 한다. 프리스트레스 효과를 유한요소 모델상에서 구현하는 방법에는 크게 동가중법(equivalent load method)과 초기상응력 (initial stress method)이 있으며, 이때는 두가지 방법 모두를 비교하여 논하고자 한다. 이 두가지 방법에 대한 유사성은 Roca 등에 서 간략히 언급된 바 있다.

3.2 동가중법

3.2.1 CANDU형
CANDU형에 의한 Fig. 1(a)와 같이 탄전들이 비교적 조밀한 간격으로 동 전체에 걸쳐 3방향으로 고태형에 배치되어 있으므로, 프리스트레스에 의한 압력, 즉, 동가중물 중은 평균화되어 동 전체에 비교적 일정한 크기로 동 표면에 작용강도로 작용하고 있다고 가정해 볼 수 있다. 한편, 동 탄전의 정확부에 작용하는 힘, 즉, 동가중물 중 에서 축대칭 모델에서 구현될 수 있는 힘은 축대칭 평면상의 힘이다. Fig. 2를 참조할 때 정확부 하중 중 원행방향의 성분은 탄전들이 간에 서로 상대적으로 보일 비중 축대칭 모델에서 고려하지 않더라도 해석 결과에 큰 영향을 미치지 않는 것으로 판단된다. 이러한 점에 참조하여 다음과 같이 축대칭 모델상의 정확부 동가중물중을 먼저 유도하고 이를 이용하여 동에 작용하는 동가중물중을 구하는 방법론을 취하였다.

Fig. 2에서 m번째 탄전에 프리스트레스 힘 P가 가해지면 이는 수평 성분 $P_{nh}$ 및 수직 성분 $P_{nv}$로 나눌 수 있으며, 각각의 값은 식 (2)에서 유도된 $\theta_m$으로부터 다음과 같이 산정 가능하다.

$$P_{nh} = P \cos \theta_m$$
$$P_{nv} = P \sin \theta_m$$

또한 $P_{nh}$는 평면상에서 식 (12)와 같이 유도된 $\alpha_m$으로 부터 식 (13)과 같이 받침부대상 성분 $P_{nhr}$ 및 원환방향 성분 $P_{nhr}$로 추가적으로 분리할 수 있으며, 이 중 축대칭 모델에서 고려되는 것은 $P_{nhr}$이다.

$$\alpha_m = \arcsin \left( \frac{2mR/(n+1)}{R} \right)$$
$$\alpha_m = \arcsin \left( \frac{2m}{n+1} \right)$$

$$P_{nhr} = P_m \cos \alpha_m$$
$$P_{nh} = P_m \sin \alpha_m$$

따라서, 식 (14)에서 3방향 탄전 전체에 대한 $P_{nh}$ 값들 의 총합 $P_r$ 및 $P_{nv}$ 값들의 총합 $P_v$를 구하여 합성하면 축대칭 모델의 탄전 중 정확부에 작용길림 집중정량들의 총합 $P_{nh}$를 구할 수 있다. 유한요소해석에 기반한 구조해석 프로그램에 적용시 프로그램상에서 축대칭 요소의 원환방향 적분을 $2 \pi$ radian에 대해 수행할 경우 이러한 적합 을 그대로 작용시키면 되지만, 만약 $2 \pi$ radian에 기초한다고 총합을 $2 \pi$로 나눈 후 적용한다. 아래 식에서 아래절차 0은 $\pi/2$인 경우이다. 기존 연구에서는 CANDU형 동 탄전의 정확부 하중이 수평면과 이루는 각도를 열립히 고려하지 않아서 근사화가 커진 단점이 있었다.

$$P_{hr} = 6 \left( P_{0hr} + 2 \sum_{m=1}^{(n/2)} P_{nh} \right)$$
$$P_{hr} = 6 \left( P_{0hr} + 2 \sum_{m=1}^{(n/2)} P_{nh} \right)$$

이상과 같이 구한 $P_{nh}$를 정확부의 원환방향 각도로 나누면 단위길이당 집중강도 $R_{nh}$를 구할 수 있다. 한편, 실제 탄전들의 고태형에 배치된 관계로 탄전 중의 자요선방향 및 원환방향으로 프리스트레스 효과가 유사하게 발생한다고 가정해 볼 수 있다. 이 때 축대칭 모델에 작용길림 동가중물중은 Fig. 5와 같이 탄전 중의 미소 요소 상에서 $P_{nh}$와 $P_{nv}$가 합하여 이루도록 설계되어서 식 (15)와 같이 유도할 수 있다. 여기에서 $R_{nh}$는 Fig. 2를 참조할 때 동
의 근골반경이자 또한 텐던 충 근골반경에 해당한다.
Fig. 5는 염밀히 말해 텐던 충이 텐던 중 위치의 콘크리트에 작용하는 힘을 표현한 것이며, 텐던 중 자체에 작용하는 힘은 Fig. 5와 크기는 같고 방향은 반대이다.

\[ w = \frac{2P_{tot}}{R} \]  
(15)

3.2.2 한국형

한국형에 대한 정착부 동가중하중의 유도도 기본적으므로 CANDU형과 같다. 정착부 하중이 Fig. 3과 같이 수직방향으로 상분 본리 등의 절차가 필요 없어 수식의 유도가 물리 간편하다. 한국형은 각계 수직 텐던이 그렇게 둘 련대로 이어지므로 실제로 둘 상에는 정착부가 존재하지 않지만 수식의 유도를 위해 임시로 가상의 정착부를 가정한다. 일반의 동가중하중은 15(15)와 같은 방식으로 구할 수 있으며, 단, 한국형에서 \( R_0 \)은 \( R \)로 대체한다.

3.3 초기응력법

텐던 충에 자조성방향 및 원반방향으로 초기응력을 가함으로써 32절에서 유도한 정착부 동가중하중 및 일반부 동가중하중의 효과를 동시에 구할 수 있다. 따라서 초기응력을 적용하는 것이 해석이 좀 더 간편하게 되는 데 있다. 동가중하중은 텐던에 대한 특별한 고려가 없는 프로그램에서도 일관 하중과 유사하게 해석할 수 있는 반면, 초기응력은 텐던에 해당하는 요소에 초기응력을 가할 수 있는 알고리즘을 정의하고 있다. 이 동가중하중 초기응력과 원반방향 초기응력을 갑계 두고 따로 차별화 하는 것이 실제의 3차원 해석 결과와 더 유사한 값을 준다면 초기응력에 대해 보정계수를 적용하는 방법도 가능하다.

4. 결론

원반 간격건물의 축대칭 모델은 해석상의 간편성으로 인하여 내압 등 원반의 주요 하중에 대한 해석이 논리적 사용되지만, 실제 콘크리트의 형상 및 철근과 텐던의 배치는 엄밀한 의미의 축대칭 조건이 아닌 경우가 많으므로 축대칭 모델링시 주의를 요한다. 특히 텐던의 경우 콘크리트에 가져온 물체의 목관이 그의 임의로 배치림에 따라 축대칭 모델링시 텐던 기하 정량에 대한 좀 더 엄밀한 수학적 표현이 요구된다.

본 연구에서는 기존 방법을 개선하여 국내의 CANDU형 및 한국형 원반 간격건물 등에 비주대칭으로 배치된 텐던을 축대칭 모델에 적용하도록 변화하는 합리적인 절차를 제안하였다. 텐던 간격의 모델링에서는 실제 3차원으로 배치된 텐던의 각문방향 및 원반방향으로의 각성 기여를 적절히 고려할 수 있도록 원반을 동등의 가상의 구조화하였다. 프리스트레스의 효과는 각각부행 및 초기응력법 관행에서 고찰하였으며, 각 방식에 적합한 동가중하중 및 초기응력을 축대칭 모델링의 방법론에 적합하도록 유도하였다. 각성 산정에 대해 각성 방법은 일반 수식의 변형을 통하여 한국형 원반 간격건물에서 2방향의 각성으로 배치된 동 간격에서도 적용할 수 있으리라 기대한다. 원폭과 본문에서 제안된 모델을 범용구조해석 프로그램에 적용한 수식 예제들을 통하여 타당성을 비교 검증하였다.

참고문헌

1. 정현태, 장성욱, 조대현, 정종헌, "원반 간격구조물의 동
2. 문일환, 이용열, 이기성, 송중성, "온도 영향을 고려한 프리스트레스 콘크리트 간격건물의 비선형 극한응
3. 전재진, "원반 간격건물 동 텐던의 축대칭 모델링 기법
4. 전재진, 김승우, "프리스트레스 콘크리트 구조물의 해석
6. 김병보, "P.S. 콘크리트 원자로 간격구조물의 동작
부록 : 자오선 및 원환방향으로의 탄전 강성의 분리

본 유도는 문헌의 등에서 수용된 과정의 일부를 발췌하여 경리하였으며, 여기에서는 독자의 1/4 부분에서 긴은 실선으로 표시된 특정한 탄전의 임의점 M에서 자오선 및 원환방향으로 강성을 분리하는 과정을 예시하였다. 탄전의 강성은 탄전의 단면적이 비례하며, 다음과 같이 최종적으로 유도된 식에 $M$에 대응되는 $\gamma$ 및 $\psi$값을 대입함으로써 탄전 단면적 $A$에서 자오선방향의 기여분 $A_m$ 및 원환방향의 기여분 $A_n$를 분리할 수 있다. 이해하기 1, 3 및 $rad$는 각각 최측쪽에서 1방향, 3방향, 그리고 수평면 방향을 의미한다. $\psi$값의 범위를 조정함으로써 본 유도는 반구형 둘 뿐 아니라 부분구형 등에도 적용 가능하며, 다른 방향으로 배치된 탄진에 대해서도 유사한 결과를 적용하면 된다.

\[
\begin{align*}
MH &= R\sin\psi \\
OH &= R\cos\psi \\
OB &= OH\sin\gamma \\
BH &= OH\cos\gamma \\
r &= \sqrt{R^2 - OB^2} \\
\cos\phi &= BH/r \\
\sin\phi &= MH/r \\
A_1 &= A\sin\phi \\
A_2 &= A\cos\phi \\
A_{rad} &= A\cos\gamma \\
A_3 &= A\sin\gamma \\
A_m &= A_{rad}\sin\psi + A_3\cos\phi
\end{align*}
\]

요 약

원전 격납건물의 축대칭 모델은 해석상의 간편성으로 인하여 널리 사용된다. 하지만, 일반적인 둥 탄진의 배치는 축대칭 형태의 아님에 고통을 겪는 과정에 축대칭 근사화시 좀 더 엄밀한 수학적 유도가 요구된다. 본 연구에서는 국 내의 CANDU 및 한국형 격납건물 등에 비축대칭으로 배치된 탄진을 축대칭 모델에 적용하기 위한 합리적인 변환 절차를 제안하였다. 탄진 강성의 모델링에서는 실제 3차원으로 배치된 두 탄진의 자오선방향 및 원환방향으로의 강성 기여를 고려할 수 있도록 탄진을 등각의 것으로 근사화하였다. 프리스트레싱의 효과는 균가증음 및 조기응력량 관점에서 고려하였으며, 축대칭 모델의 방법론에 적용하도록 두가지한 및 초기응력을 유도하였다. 후속 논문에서는 제안된 모델을 적용한 수치 예제들을 범용 구조해석 프로그램으로 해석하고 탐색을 검증하였다.

핵심요의 : 원전 격납건물, 둥, 프리스트레싱 탄진, 축대칭 모델