Fabrication of Cement-fly ash Mortar by Using Mechanochemical Processing(MP)

Hyung-Jik Lee†, Ja-Hun Koo, In-Sang Yoo, Doo-Gyoo Song, Hae-Kyoung Joung, Hyouk-Byoung Kwon, Sang-Ok Yoon, Hyung-Bock Lee* and Hong-Lim Lee**
Department of Ceramic Engineering, Kangnung National University, Kangnung 210-702, Korea
*Department of Ceramic Engineering, Myongji University, Yongin 449-728, Korea
**Department of Ceramic Engineering, Yonsei University, Seoul 120-749, Korea
(Received July 10, 2001; Accepted December 28, 2001)

Abstract

Mechanochemical Processing(MP) is a method of processing cement(MPC) or Fly Ash(MPFA) by using ball milling processing system. In this study, we fabricated the mortar specimens containing fly ash as received fly ash (ARFA) in addition to the mixed cement, and compared the specimens with the control specimens. The results indicated that the use of fly ash as received fly ash (ARFA) in the mixture with the cement increased the mechanical properties of the mortar specimens.

Keywords: Mortar, Fly ash, Mechanochemical processing, Microstructures

1. 서 론

석재의 연소 과정에서 부수적으로 생성되거나 fly ash는 산업 폐기물을 분류되어 배출되어 왔으나 최근 들어 con-
이 경우 총화용량은 18.3%에 해당하는 49만 톤에 불과하다.

Fly ash의 가장 큰 용도는 건축 및 도목구조재료에 사용되고 있다. 이러한 재료를 사용한 고공질이더라도 저가의 mortar 재료의 제조기술 개발은 cement 및 concrete 산업의 경제적 효율성 제고에 크게 기여할 것이다.

일반적으로 fly ash를 mortar의 혼합재료로 사용하게 되면 작업성 항상, 수화물의 감소, 장기강도의 증진, 내구성 향상 등 mortar의 품질을 개선하는데 여러 가지 장점을 지니고 있어 근래에 와서 고강도 mortar 제조시설의 필수적인 구성재료로 인정되고 있다. Fly ash를 우수한 품질의 건축재료로 사용하기 위해서 가장 중요한 요소가 미연한소분의 저감, 균일한 입도, 균일한 화학적성이며 하나 발견소 전기점전기에서 나온 fly ash는 석탄의 종류와 발전소 출력의 증강정도, 발전물의 조건 등에 따라 달라지며 더욱더 유연한 균일한 종류에 따라서 날아가게 다른 상황의 품질이 생산된다. 이러한 미약한 특성의 품질로 recimic 등에 토건재료 등으로 사용하게 되면 우수한 품질의 난연재료로 이용할 수 있다.

강도면에서는 fly ash를 함유하지 않은 mortar에 비해서 fly ash를 함유한 mortar의 강도가 크지만 초기강도가 저하되는 단점이 있으며, 이러한 단점은 fly ash가 cement 또는 물질(모래 또는 작은 자갈)과 초기에 붙어버린 점착력을 나타내기 때문이며, 또한 품질관리의 측면에서 석탄의 재료와 분석조건에 따라 fly ash의 품질의 편차가 심하기 때문에 알려져 있다. 그러므로 이러한 단점을 보완하기 위해서 mortar를 보강시킬 때 fly ash 또는 cement의 밀도, 활성화 및 발전화의 기준, mortar의 다양한 원료를 사용하는 mortar의 생산이 가능해질 것으론 고려된다. 그러나 이에 대한 연구는 거의 보고되고 있지 않다고 한다.

따라서 본 연구에서는 fly ash 및 cement의 표면활성화 방법으로써 ball milling에 의한 mechanochemical processing에 개발한 방법을 도입하여 cement 입자와 fly ash 입자간의 친화성을 증가시키는 fly ash의 사용량을 증가시킨 강도 강화 mortar를 개발하고자 하였으며 하중강도와 수화물의 fly ash의 미세구조의 관계에서 고찰하였다.

Table 2. Experimental Condition

<table>
<thead>
<tr>
<th>[1] Fabrication of cement mortar</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Properties of materials</td>
</tr>
<tr>
<td>▪ density of cement (g/cm³): 3.15</td>
</tr>
<tr>
<td>▪ density of small aggregate (g/cm³): 2.63</td>
</tr>
<tr>
<td>(2) Water - cement ratio (%): 48.8</td>
</tr>
<tr>
<td>(3) Ball-mill processed cement (BPC)</td>
</tr>
<tr>
<td>100 wt% as received cement (ARC) → ball-mill processing</td>
</tr>
<tr>
<td>(4) Mechanochemically processed cement (MPC)</td>
</tr>
<tr>
<td>(90 wt% cement + 10 wt% fly ash) → ball-mill processing after mixing</td>
</tr>
<tr>
<td>(5) Ball-mill processed fly ash (BPGA)</td>
</tr>
<tr>
<td>100 wt% as received (AR) fly ash → ball-mill processing</td>
</tr>
<tr>
<td>(6) Mechanochemically processed fly ash (MPFA)</td>
</tr>
<tr>
<td>(90 wt% fly ash + 10 wt% cement) → ball mill processing after mixing</td>
</tr>
<tr>
<td>(7) Adding amount of fly ash (wt%)</td>
</tr>
<tr>
<td>(AR, BP or MP) fly ash wt / (AR, BP or MP) cement wt + (AR, BP or MP) fly ash wt) × 100 = 0, 10, 20, 30</td>
</tr>
<tr>
<td>(8) Curing condition</td>
</tr>
<tr>
<td>▪ 7 days curing in a water at 20 ± 3°C</td>
</tr>
<tr>
<td>▪ 28 days curing in a water at 20 ± 3°C</td>
</tr>
</tbody>
</table>

Table 1. Chemical Components of Materials

<table>
<thead>
<tr>
<th>Components</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>TiO₂</th>
<th>CaO</th>
<th>MgO</th>
<th>SO₃</th>
<th>K₂O</th>
<th>Na₂O</th>
<th>Ig.Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland Cement (BP¹, MP²)</td>
<td>22.7</td>
<td>4.7</td>
<td>2.87</td>
<td>(3.39², 7.82²)</td>
<td>63.9</td>
<td>1.2</td>
<td>2.1</td>
<td>0.6</td>
<td>0.2</td>
<td>10.1</td>
</tr>
<tr>
<td>Fly Ash (BP¹, MP²)</td>
<td>48.6</td>
<td>28.3</td>
<td>6.91</td>
<td>(6.60², 3.23²)</td>
<td>1.01</td>
<td>0.87</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>10.3</td>
</tr>
<tr>
<td>Sand</td>
<td>90.6</td>
<td>5.1</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
</tbody>
</table>

*BP : ball-mill processed
*MP : mechanochemically processed

제39권 제2호(2002)
2. 실험방법

2.1. 원료 특성 및 조제

Table 1에서 알 수 있는 바와 같이 본 연구에 쓰인 원료는 portland cement, fly ash 및 모래였으며, 특히 fly ash는 SiO$_2$와 Al$_2$O$_3$가 주성분인 전형적인 fly ash 성분인데 특징으로서는 가열감량(Ig. Loss)은 2차 열처리에 의해 낮추지 않았기 때문에 10.3% 정도이다.

Mechanochemically Processed Cement(MPC) 및 Mechanically Processed Fly Ash(MPFA)는 Table 2의 [1]의 (4)와 (6)에 나타낸 바와 같이 원료입수 그대로의 cement(As Received Cement, ARC) 및 fly ash(As Received Fly Ash, ARFA)로서 90 wt% cement와 10 wt% fly ash 및 90 wt% fly ash와 10 wt% cement를 혼합한 후 ball milling processing을 거쳐 fly ash에 cement 침착성을 나타내도록 하였다. 또한 mechanocchemical processing은 particle size reduction 효과도 있으므로 mechanocchemical 효과와 particle size reduction 효과를 구분하여 검토할 수 있도록 100 wt% cement 또는 100 wt% fly ash를 같은 시간 ball milling하여 Ball-mill Processed Cement 또는 Fly Ash(BPC 또는 BPFA)를 준비하였다.

Fig. 1은 cement 및 fly ash의 입자의 크기에 따른 누가 % 체하(cumulative % undersize) 곡선과 비어번적을 아울러 나타낸 것이다. MPC가 BPC 보다 입자크기가 큰쪽으로 분포되어 있는 것을 MPC측에 들어있는 fly ash의 입자 때문으로 고려되며 MPFA가 BPFA 보다 입자 크기가 큰 쪽으로 분포되어 있는 것을 MPFA 측에 들어있는 cement가 ball-mill processing 중에서 particle size reduction 진행에 유리한 경향을 받 것으로 고려되며 이때 fly ash 표면에 cement 침착성이 mechanocchemical적으로 생기는 것으로 고려된다. 이렇게 준비한 BPC, MPC 및 ARFA, BPFA, MPFA를 가지고 mechanocchemical processing의 morta 고시성, 강도, 촉진에의 효과를 검토하기 위해서 (BPC+ARFA), (BPC+BPFA), (MPC+ARFA), (BPC+MPFA) 및 (MPC+MPFA)등의 원료 조합의 공시의 효과를 비교하였다.

Fig. 2의 (a), (b)는 각각 ARFA와 MPFA의 SEM 사진이다. 이 그림에서 보는 바와 같이 AR fly ash의 분말의

Fig. 1. Cumulative percentage undersize as a function of particle size for (a) cement and (b) fly ash.

Fig. 2. Scanning electron micrographs of (a) As Received(AR) and (b) Mechanocchemically Processed(MP) fly ash used in this study.
Fig. 3. Typical X-ray diffraction pattern of Mechanically Processed(MP) fly ash used in this study.

Table 3. Mixing Contents of Mortar Containing Fly Ash

<table>
<thead>
<tr>
<th>Fabrication Series No</th>
<th>Fly ash content¹ (wt%)</th>
<th>Used fly ash (AR, BP or MP)</th>
<th>Cement² (kg/m³)</th>
<th>Used cement (BP or MP)</th>
<th>Sand (kg/m³)</th>
<th>Water (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BPCᵃ + ARFA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>32</td>
<td>AR</td>
<td>292</td>
<td>BP</td>
<td>828</td>
<td>167</td>
</tr>
<tr>
<td>20</td>
<td>65</td>
<td>AR</td>
<td>259</td>
<td>BP</td>
<td>828</td>
<td>167</td>
</tr>
<tr>
<td>30</td>
<td>97</td>
<td>AR</td>
<td>227</td>
<td>BP</td>
<td>828</td>
<td>167</td>
</tr>
<tr>
<td>Series 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPCᵇ + ARFAᵃᵇ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>32</td>
<td>AR</td>
<td>292</td>
<td>MP</td>
<td>828</td>
<td>167</td>
</tr>
<tr>
<td>20</td>
<td>65</td>
<td>AR</td>
<td>259</td>
<td>MP</td>
<td>828</td>
<td>167</td>
</tr>
<tr>
<td>30</td>
<td>97</td>
<td>AR</td>
<td>227</td>
<td>MP</td>
<td>828</td>
<td>167</td>
</tr>
<tr>
<td>Series 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BPC + BPFAᵃᵇ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>32</td>
<td>BP</td>
<td>292</td>
<td>BP</td>
<td>828</td>
<td>167</td>
</tr>
<tr>
<td>20</td>
<td>65</td>
<td>BP</td>
<td>259</td>
<td>BP</td>
<td>828</td>
<td>167</td>
</tr>
<tr>
<td>30</td>
<td>97</td>
<td>BP</td>
<td>227</td>
<td>BP</td>
<td>828</td>
<td>167</td>
</tr>
<tr>
<td>Series 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BPC + MPFA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>32</td>
<td>MP</td>
<td>292</td>
<td>MP</td>
<td>828</td>
<td>167</td>
</tr>
<tr>
<td>20</td>
<td>65</td>
<td>MP</td>
<td>259</td>
<td>MP</td>
<td>828</td>
<td>167</td>
</tr>
<tr>
<td>30</td>
<td>97</td>
<td>MP</td>
<td>227</td>
<td>MP</td>
<td>828</td>
<td>167</td>
</tr>
<tr>
<td>Series 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPC + MPFAᵃᵇ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>32</td>
<td>MP</td>
<td>292</td>
<td>MP</td>
<td>828</td>
<td>167</td>
</tr>
<tr>
<td>20</td>
<td>65</td>
<td>MP</td>
<td>259</td>
<td>MP</td>
<td>828</td>
<td>167</td>
</tr>
<tr>
<td>30</td>
<td>97</td>
<td>MP</td>
<td>227</td>
<td>MP</td>
<td>828</td>
<td>167</td>
</tr>
</tbody>
</table>

¹True fly ash content
²True cement content
ᵃBPC: Ball milling processed(BP) cement
ᵇMPC: Mechanically processed(MP) cement
ᶜARFA: As received(AR) fly ash
ᵈBPFA: Ball milling processed(BP) fly ash
ᵉMPFA: Mechanically processed(MP) fly ash
3. 결 과

3.1. Mechanically Processed(MP) Cement 혼합에 의한 Mortar의 강도 증대 효과

Fig. 5는 cement에 대한 mechanochemical processing 처리가 mortar의 초기강도에 미치는 영향을 검토하기 위해 Table 3의 series 1과 2의 실험 조건에 의해 BP 및 MP cement에 AR fly ash를 10%, 20%, 30% 혼합한 mortar의 7일과 28일 제경후의 압착강도 결과이다. 여기에서 알 수 있는 바와 같이 7일과 28일 제경 공히 fly ash의 혼합량이 증가함수록 압착강도가 감소하는 일반적인 경향을 나타내지만 MP cement 혼합 mortar 공식계가 BP cement 혼합 mortar 공식계에 비해 같은 제경시간과 같은 fly ash 함량 조건에서 28일 제경 기간에는 5-7%, 28일 제경기간에서는 8-11% 상승한 우수한 압착강도 값을 나타내고 있다. 동일한 ball-mill processing에 따라 BP 및 MP cement가 조제되었으며 MP cement의 입자크기가 BP cement의 입자크기 보다 끝으로 분포되어 있음(동. 1a)에도 MP cement를 혼합한 mortar 공식계보다 높은 강도를 보이는 것은 mechanochemical processing에서 cement이 fly ash에 대한 친화성이 향상되어 강도가 증진하는 것으로 고려된다.

Fig. 6의 (a)-(d)는 Fig. 5의 각각 (a)-(d)에 해당하는 공식계 파단면에 대한 SEM 사진이다. 7일 제경후의 미세구조의 변화를 Fig. 6a와 Fig. 6b를 비교하면 BP cement를 혼합한 Fig. 6a에서는 경화한 cement paste의 조직에서 전형적으로 관찰되는 초중간 I-C-SH가 관찰되었고, MPC를 혼합한 Fig. 6(b)에서는 대부분 밀층된 III-C-SH가 관찰된다. 또한 28일 제경후의 공식계 미세구조에서도 수화의 진행으로 인해 fly ash가 수화물로 밀착되어 있는 것을 관찰할 수 있으나, Fig. 6c와 Fig. 6d를 비교해 보면 MP cement를 혼합한 Fig. 6d에서 fly ash 주변에 더욱 더 많은 부분이 밀착된 수화조각을 관찰할 수 있다. III-C-SH 모양의 미세한 구형의 입자를 관찰할 수 있는데 이는 수화초기에 주상 단면의 초중간 I-C-SH가 수화가 진행됨에 따라 동근 형태로 바뀌 것으로 고려된다.

3.2. Mechanically Processed(MP) Fly Ash 혼합에 의한 Mortar의 강도 증대 효과

Fig. 7은 MP fly ash 혼합가 7일 및 28일 제경 후 공식계의 강도향상에 미치는 영향을 검토하기 위해 Table 3의 series 3, 4 및 5의 실험조건에 의해 BP cement 및 MP cement에 BP fly ash 및 MP fly ash를 10%, 20%, 30% 혼합한 mortar의 7일 및 28일 제경후의 압착강도 결과이다. 여기에서도 알 수 있는 바와 같이 fly ash의 함량이 증가함에 따라 압착강도가 떨어지는 경향을 나타낸다. 그러나 먼저 BP cement에 MP fly ash를 혼합한 mortar 공식계에 대한 압착강도 결과(■ 및 ▲ symbol)에서 알 수 있는 바
Fig. 6. Scanning electron micrographs for the mortar specimens after 7 and 28 days curing in a 20 ± 3°C water. Micrographs (a), (b), (c) and (d) correspond to (a), (b), (c) and (d) in Fig. 5 respectively.

Fig. 7. Compressive strength of mortar samples containing different fly ash content after 7 and 28 days curing in a 20 ± 3°C water for each cases of using (MP cement + MP fly ash), which is compared to the case of using (BP cement + MP fly ash) and (BP cement + BP fly ash).

와 같이 동일한 함량, 동일한 재료기간에서는 BP cement에 MP fly ash를 혼합한 공식체가 BP cement에 BP fly ash 를 혼합한 것보다 7일 재량한 공식체의 경우 10-20%, 28일 재량 공식체의 경우 14-18% 상승하는 우수한 압축강도 값을 나타낸다.

다시이 ▲ 및 ▼ symbol으로 알 수 있는 바와 같이 MP cement에 MP fly ash를 혼합 했을 경우는 다른 어떠한 조건에서 보다 우수한 압축강도 값을 나타내는데, MP fly ash 혼합에 의한 강도 향상 비율과 MP cement 혼합에 의한 강도 향상 비율의 합에 가까운 강도 향상을 나타내고 있다. 특히 fly ash 혼합량 20 wt% 공식체에서는 강도 상승률 24%를 나타내었는데, 이 값은 MP cement 사용에 의한 강도 향상비율(8%)과 MP fly ash 혼합에 의한 강도 향상비율(12%)의 합을 상회하기로 synergy 효과를 나타내는 것을 알 수 있다.

Fig. 8(a), (b)는 Fig. 7(a), (b)에 대응하는 공식체의 파단면에 대한 SEM 사진이다. 7일 재량의 미세구조 (a)에 비해 28일 재량의 미세구조 (b)에서는 구형의 fly ash 주위로 밀착된 구형 수화체가 강하게 고착되어 있는 것이 관찰되는데 여기에서도 재량이 진행됨에 따라 C-S-H의 수화가 진행되면서 전형적인 III-C-S-H의 밀착단 구조로 바뀌면서 MP fly ash의 강력한 결합을 형성하여 강도를 증진시킨 것으로 고려된다.10)
Fig. 8. Scanning electron micrographs of mortar samples of 7 and 28 days curing for MP cement + MP fly ash. Micrographs (a) and (b) correspond to (a) and (b) in Fig. 7 respectively.

Fig. 9. Scanning electron micrographs representing the affinitive behaviours between cement and fly ash.
(a) BP cement and AR fly ash. (b) MP cement and AR fly ash. (c) BP cement and MP fly ash. (d) MP cement and MP fly ash.

4. 고찰

4.1. BP 및 MP Cement와 AR 및 MP Fly Ash의 친화성

Fig. 9는 BP 및 MP cement와 AR 및 MP fly ash의 각각의 응집성 및 상호간의 친화성을 검토하기 위해서 Table 2의 [3]의 실험조건에 의해 준비한 시료의 SEM 사진이다.

Fig. 9(a)에서 관찰되는 바와 같이 AR fly ash 표면에는 BP cement 입자가 부착되지 않고 있다. 이것은 cement는 자기 응집성(self agglomeration)이 강하지만 AR fly ash과는 친화성을 나타내지 않기 때문에다. 또한 Fig. 9(b)에서 관찰되는 바와 같이 MP cement는 AR fly ash의 표면에 조금 더 많은 cement의 부착양이 관찰된다. 이것은
MP cement과 AR fly ash의 양각한 천화성을 나타내기 때문에 고려된다.

한편, Fig. 9(c)에서는 MP fly ash 표면에 부착된 BP cement의 양이 AR fly ash 표면에 부착된 BP cement의 양보다 더욱 많고 또한 강고한 결합가동이 관찰되는데 이 것은 MP fly ash가 BP cement에 높은 천화성을 나타내기 때문으로 고려된다. 더욱이 Fig. 9(d)에서는 MP fly ash의 표면에 부착된 MP cement의 양이 상기 Fig. 9(a)-(c)의 어느 경우보다도 많으므로 이 경우 가장 높은 천화성을 나타내는 것을 알 수 있다.

Fig. 10(a),(b)는 Fig. 9(a),(b) 영역의 에너지 분산형 원소 분석기(Energy Dispersive Spectroscopy, EDS)의 분석 결과이다.

Fig. 10(a)에서 알 수 있는 바와 같이 BP cement와 AR fly ash를 혼합한 경우에는 AR fly ash의 표면에는 cement의 구성 성분인 Ca 성분이 극히량 검출되지만, Fig. 10(b)에서 알 수 있는 바와 같이 MP cement와 MP fly ash를 혼합한 경우에는 Ca 성분의 검출량이 크게 증가하고 있으며 상기의 MP fly ash 표면에 MP cement 천화성이 대한 synergy 효과는 확실하다.

Fig. 11. Strengthening model for the mortar of simultaneously using MP cement affinitive to fly ash and MP fly ash affinitive to cement obtained by Mechanochemical Processing(MP).

4.2 강도 증진 Model

MP cement와 MP fly ash을 사용하여 강도가 증진되었는데(Fig. 7(●, ▼ symbol)) 이에 대한 model을 Fig. 11에 나타내었다. 4.1장에서 고찰한 바와 같이 일반적인 AR fly ash와 BP cement를 혼합한 경우에는 cement와 fly ash 입자는 서로 천화성을 나타내지 않는다. 이러한 BP cement와 AR fly ash로 mortart를 제조하고 반드 재료가 불균질하게 혼합하게 되며 또한 수화물중에서 서로에 대한 검착성이 나빠지게 되는데 이러한 이유로 mortart의 강도가 저하하게 된다. 그러나 MP 처리에 의해, 90 wt% fly ash와 10 wt% cement 또는 90 wt% cement와 10 wt% fly ash를 혼합한 후 ball milling process를 거친을 하게 되면 fly ash와 cement 입자는 혼합되면서 거래적 에너지가 공급되며 이로 인하여 cement와 fly ash 입간의 서로에 대한 천화성이 증대되어 수화물 생성시 cement와 fly ash 입간의 결합력이 증가하게 된다.

5. 결 론

Mechanochemical Processing(MP)을 거친 Cement(MPC) 또는 Fly Ash(MPFA)를 사용하여 fly ash 담량 천화 mortart의 강도 증진을 위한 연구를 수행하였다. MP 처리하지 않은(as received) cement(ARC) 또는 단지 Ball-mill Processing(BP)를 거친 Cement(BPC)와 Fly Ash(BPFA) 혼합시의 공시제와 비교하여 동일한 fly ash의 혼합량, 동일한 재료의 압축강도 및 미세구조의 관점에서 고찰하여 다음과 같은 결론을 얻었다.

1. MPC와 ARFA를 사용한 mortart 공시제가 ARC와 ARFA를 혼합한 것보다 10-20% 상승한 압축강도 값을 나타내었으며 BPC와 MPFA를 사용한 mortart 공시제가 BPC
와 ARFA를 사용한 것보다 5-11% 상승한 압축강도 값을 나타내었다.
2. 더욱이 MPC와 MPFA의 동시 혼합을 mortarr 균질화에 압축강도가 fly ash 혼합량 20 wt% 균질화에서 강도 상승률 24%를 나타내었는데 이 값은 MPC 사용에 의한 강도 향상 비율(8%)과 MPFA 혼합에 의한 강도 향상 비율(12%)의 합을 상회하는 synergy 효과를 나타내는 강도 향상율을 나타냈다.
3. 심기의 강도 증진은 MPC에 의한 fly ash와 cement 입자가 혼합되면서 기계적 에너지가 공급되므로 각 입자의 서로에 대한 친화성이 증가되며, 이로 인하여 수화물 생성시 cement와 fly ash 입자의 결합력이 더욱 증가하게 되어 압축강도가 증가하는 것으로 고려된다.

REFERENCES