Temperature Coefficient of Dielectric Constant in CaTiO$_3$-A(B', B'')O$_3$
Microwave Dielectric Ceramics (A=Ca, La, Li, B'=Al, Fe, Mg, B''=Nb, Ta)

Jeong Seog Kim,* Chae Il Cheon, Chan-Sik Park,* and Jae Dong Byun**
Department of Materials Science and Engineering, Hoseo University, Asan, Chungnam 336-795, Korea
*R & D Conter, Acetronix Co., Seoul 138-050, Korea
**Department of Materials Engineering, Korea University, Seoul 136-701, Korea

(Received July 14, 2003; Accepted September 29, 2003)

ABSTRACT

The dielectric polarization-related factors contributing to the τ_e have been analysed in terms of dielectric permittivity ε, Tolerance Factor (TF), and octahedron tilt angles in (1-x)CaTiO$_3$-x[A(B', B'')O$_3$] (A=Ca, La, Li, B'=Al, Fe, Mg, B''=Nb, Ta) and (Sr$_{2/3}$Ca$_{1/3}$)$_2$TiO$_5$. All the compounds have the orthorhombic Pnmm structure except the end members A'B, B''O$_3$ and the solid solutions of x=0.8. The additional dipole field effect is suggested as a dominant factor contributing to τ_e in CaTiO$_3$-based ceramics having relatively large ε, which has not been generally considered in the previous reports dealing with the τ_e. This study has been focussed on delineating the dipole field effect on the τ_e in comparison to the octahedron tilt effect in CaTiO$_3$-based ceramics.

Key words: Temperature coefficient of dielectric constant, Crystal structure, Dipole field effect, Octahedron tilt angle, CaTiO$_3$-based perovskite

1. Introduction

Considerable amount of studies have been reported concerning the relation among the dielectric permittivity (ε), temperature coefficient of permittivity (τ_e), and crystal structure.1,2 The typical structure-related factors considered in the previous studies are Tolerance Factor (TF) and octahedron tilting especially in ABO$_3$ perovskite ceramics.3,4,5 Regarding the relation between the TF and the τ_e, Reaney et al.6 has provided a prototypical guidance for understanding of perovskite materials. The type of octahedron tilt system determines the overall scheme of the variation of τ_e. And even within the same regime of tilt system, the τ_e depends on the TF. Several reports also have confirmed the relation between the tilt system and the τ_e.11,12

The other important structure-related factor can be the Lorentz local field,13 which has not been taken into consideration in most papers. The Lorentz local field factor is not constant through perovskite lattice points but greatly enhanced at B and O1 sites due to the structurally noncubic point symmetry environment at these sites. Since the enhanced Lorentz local field originates from the interaction between the electronic and ionic polarizabilities in these sites, slight change of electronic polarizability by ionic substitution for the B-site can reduce drastically the Lorentz local field. The magnitude of Lorentz local field can be materialized as the measurable dielectric permittivity ε as described by Slater.14

The enhanced Lorentz local field can be described as an additional dipole field to the value of $\frac{\varepsilon}{\varepsilon_0}$, which is the dipole field of a simple cubic lattice of dipoles at one of its lattices. The effect of this additional dipole field on the τ_e has been discussed by Wersing.15 This study is focussed on delineating the effect of the additional dipole field of Lorentz local field on the τ_e in comparison to the effect of crystal structure-related factors, the TF and octahedron tilt.

The well known form of temperature coefficient of dielectric permittivity τ_e, derived by Bosman and Havinga16 in cubic ionic compounds is as follows.

$$\tau_e = \frac{(\varepsilon-1)(\varepsilon+2)}{3\varepsilon} \left[1 + \frac{\partial \alpha}{\partial T} + \frac{3\varepsilon}{\partial \alpha} \alpha - 3\alpha \right]$$

$$= \frac{(\varepsilon-1)(\varepsilon+2)}{3\varepsilon} (A + B + C)$$

(1)

Where, α, ε, and τ are polarizability, permittivity, and volume, respectively.

The effect of the additional dipole field on the polarizability and local electric field E_{loc} have been studied by Slater17 and Heywang.18 Wersing15 added the additional dipole field effect term into the Eq. (1) as followings.

$$\tau_e = \frac{(\varepsilon-1)(\varepsilon+2)}{3\varepsilon} (A + B + C - k\Delta \alpha \alpha_0)$$

$$= \frac{(\varepsilon-1)(\varepsilon+2)}{3\varepsilon} (A + B + C + D)$$

(2)

$\Delta \alpha$ is the additional polarizability due to the dipole field effect and k is proportionality factor. The $\Delta \alpha$ increases and
makes τ be more negative value. As the $\Delta \alpha$ reaches a critical value the dielectric property changes to a ferroelectric.

The crystal structure is one of the most dominating factors influencing the temperature coefficient of polarizability [term A in Eq. (1)]. However, some of the previous papers dealing with the relation between the τ or temperature coefficient of polarizability (A) and the TF showed quite inconsistent results compared to what has been suggested by Reaney et al. and other reports. The next two cases in the followings briefly show the necessity of the dipole field effect for rationalizing this inconsistency.

The first case is that the temperature coefficient of polarizability (A) varies independently of the TF in the CaTz$_{1-x}$Ti$_{x}$O$_{3}$ and SrZrO$_{3}$ having the same Pbnm structure: the temperature coefficient of polarizabilities of CaZrO$_{3}$ and SrZrO$_{3}$ were in the range of 0 to +10 ppm/°C, while those of CaZr$_{1-x}$Ti$_{x}$O$_{3}$ and SrCa$_{1-x}$Zr$_{x}$Ti$_{1-x}$O$_{3}$ were about −30 to −40 ppm/°C irrespective of TF values. The second exception is observed in Table 1, that shows several different groups of Ca-based perovskite ceramics. The groups of I & II show a decrease of τ with an increase of TF, while the groups III & IV show a decrease of τ with a decrease of TF. The microwave dielectric properties in Table 1 were taken from the previous reports and TF values were calculated using the ionic radii by Muller et al. (The groups I & II follow the well-known structure-τ relation. But, group III & IV show the opposite behavior to groups I & II. These observations imply that the TF and the octahedron tilting could not be the dominant factors controlling τ in these Ca-based perovskites.

The additional dipole field effect on τ can be exemplified by considering the relations between the τ and TF in Table 1. We consider only the terms A and D since the sum (D + E) is known to be nearly constant. According to the structure-τ relation by Joseph et al. and Reaney the decrease of TF, hence the increase of tilt angle, should result in a positive τ in CaTiO$_{3}$-type materials. The τ of the groups II & IV (Table 1) follows this relation. However, it is not clear whether the term A is actually dominant compared to the term D, because the term D becomes less negative with the increase of x.

Contrary to the groups I & II, the τ of the groups III & IV becomes more positive values with an increase of D. Comparing the TFs of CFN, CFTO(0.975), CAT, and CAF(0.98) in groups III & IV to those of CaTiO$_{3}(0.968)$ and CaZr$_{0.5}$Ti$_{0.5}$O$_{3}(0.942)$ in group II, it can be found that the former compounds having larger TF (CFTO, CAT, and CAF) show the positive τ, while the latter having a smaller TF (CaTiO$_{3}$ and CaZr$_{0.5}$Ti$_{0.5}$O$_{3}$) have the large and negative τ. Therefore, the variations of τ's with TF in Table 1 cannot be explained simply by the structure-τ relation, but by the additional polarizability $\Delta \alpha$ originating from the dipole field effect in Eq. (2).

Table 1 shows the essential idea of this study based on this discussion. Two series of CaTiO$_{3}$-based ceramics prepared in this study. The TF values of the solid solutions in the

<table>
<thead>
<tr>
<th>Group</th>
<th>Compounds</th>
<th>Temperature Factor</th>
<th>τ (ppm/°C)</th>
<th>ε</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>(Sr${1-x}$Ca${x}$)$_2$TiO$_3$</td>
<td>0.973</td>
<td>−1375</td>
<td>202</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>(Sr${1-x}$Ca${x}$)2Ti${1-x}$Zr$_x$O$_3$</td>
<td>0.952</td>
<td>−945</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Sr${1-x}$Ca${x}$)2Ti${1-x}$Zr$_x$O$_3$</td>
<td>0.931</td>
<td>−294</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Sr${1-x}$Ca${x}$)$_2$TiO$_3$</td>
<td>0.921</td>
<td>+67</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>CaTiO$_3$</td>
<td>0.968</td>
<td>−1754</td>
<td>175</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>CaZr${0.5}$Ti${0.5}$O$_3$</td>
<td>0.942</td>
<td>−1375</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CaZr${0.5}$Zr${0.5}$TiO$_3$</td>
<td>0.925</td>
<td>−549</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CaZrO$_3$</td>
<td>0.91</td>
<td>+45</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>CaAl${0.2}$Fe${0.8}$O$_3$</td>
<td>0.980</td>
<td>+154</td>
<td>25</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>CaAl${0.2}$Fe${0.8}$O$_3$</td>
<td>0.975</td>
<td>+132</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CaNi${0.2}$Fe${0.8}$O$_3$</td>
<td>0.945</td>
<td>+136</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CaMg${0.2}$Fe${0.8}$O$_3$</td>
<td>0.941</td>
<td>+76</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CaCu${0.2}$Fe${0.8}$O$_3$</td>
<td>0.936</td>
<td>+46</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CaCu${0.2}$Fe${0.8}$O$_3$</td>
<td>0.900</td>
<td>+24</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>CaAl${0.2}$Ta${0.8}$O$_3$</td>
<td>0.980</td>
<td>+160</td>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>CaAl${0.2}$Ta${0.8}$O$_3$</td>
<td>0.975</td>
<td>+158</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CaNi${0.2}$Ta${0.8}$O$_3$</td>
<td>0.945</td>
<td>+140</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CaMg${0.2}$Ta${0.8}$O$_3$</td>
<td>0.941</td>
<td>+102</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CaZr${0.5}$Ta${0.5}$O$_3$</td>
<td>0.936</td>
<td>+112</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CaCu${0.2}$Ta${0.8}$O$_3$</td>
<td>0.900</td>
<td>+62</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Na${2}$La${2}$TiO$_3$</td>
<td>0.959</td>
<td>−880</td>
<td>122</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Na${2}$La${2}$TiO$_3$</td>
<td>0.919</td>
<td>−400</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Li${2}$Pb${2}$TiO$_3$</td>
<td>0.925</td>
<td>+790</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Li${2}$Pb${2}$TiO$_3$</td>
<td>0.816</td>
<td>+500</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.6La${0.4}$Nd${0.6}$TiO$_3$</td>
<td>0.846</td>
<td>−410</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Li${0.6}$Nd${0.4}$TiO$_3$</td>
<td>0.821</td>
<td>+568</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LaMg${0.2}$Nd${0.8}$O$_3$</td>
<td>0.919</td>
<td>+112</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Two Series of CaTiO₃-based Solid Solution Systems Prepared in This Study: The Tolerance Factor in Series I (CT-CN, CT-LMN) is Expected to Decrease with x. While in Series II (CT-CAN, CT-CAT) is Expected to Increase with x

<table>
<thead>
<tr>
<th>Solid Solution</th>
<th>Characteristic change of dielectric property system and structure-related terms with increase of x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series I</td>
<td>ε ↓, δ ↓, γ ↓, TF ↓, A ↓, D ↑</td>
</tr>
<tr>
<td>Series II</td>
<td>ε ↓, δ ↑, γ ↑, TF ↑, A ↑, D ↓</td>
</tr>
</tbody>
</table>

* Decrease and increase of each of the properties with x.

4, 6 are the terms given in Eq. (2).

Series I [(1-x)CT-x(MN, LMN, CZ)] [LMN-La(Mg₀.₁₇, Nb₀.₈₃)O₃] are expected decrease with x, while those of the in series II [1-x]CT-x(CAN, CAT, CFN)] are expected increase with x.

The series II is very rare and unique in the aspect that the unit cell lengths and tilt angles (a, b, γ) pertaining to c' c' tilt system according to Glazer’s description. The calculations, aₐ, bₐ, and cₐ were chosen in the same way a mentioned in the work by Ahteet et al. Relative dielectric constant ε were measured by Hakkii Colemann method. The temperature coefficient of resonant frequency was measured at ~20°C and 60°C. The microwave dielectric properties of the other CaTiO₃ based systems, such as CT-CAN CT-CF, CT-CN, (La₀.₃₃, Nd₀.₆₇)O₃, and CST [CaₓSmₓFeₓTiO₃]-LiNT [(LiₓNd₁₋ₓ)O₃] were obtained from the previously reported papers.

3. Results and Discussion

3.1. Crystal Structure Analysis

Crystal structures of the end members, CAN, CAT, CFN and CMN, have not been known clearly. The crystal structure of CaₓBB'O₃ (B' = trivalent, B = pentavalent ions) can be considered as either monoclinic (a = c = 3.9 Å, β = 90.5°) or an orthorhombic structure (a = b = 5.5 Å, c = 3.9 or 7.8 Å). Kagata et al. indexed the XRD pattern of CFN based on the orthorhombic CaTiO₃ structure. In this study, crystal structure and the tilt angles of the end members and the solid solution have been analysed using the Rietveld refinement.

Table 3. Refined Crystal Structural Parameters of the CAN and CAT

<table>
<thead>
<tr>
<th>Sample</th>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Occup.</th>
<th>d_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td></td>
<td>0.504(24)</td>
<td>0.5276(7)</td>
<td>0.2478(7)</td>
<td>1.0</td>
<td>1.005(109)</td>
</tr>
<tr>
<td>Al/Ta</td>
<td></td>
<td>0.50</td>
<td>0</td>
<td>0</td>
<td>0.4722/0.0278(09)</td>
<td>0.654</td>
</tr>
<tr>
<td>Ta/Al</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.50</td>
<td>0.441(085)</td>
</tr>
<tr>
<td>CAT</td>
<td>O₁</td>
<td>0.2891(23)</td>
<td>0.2773(21)</td>
<td>0.0197(42)</td>
<td>1.0</td>
<td>0.002(645)</td>
</tr>
<tr>
<td></td>
<td>O₂</td>
<td>0.2264(25)</td>
<td>0.8002(29)</td>
<td>0.0330(39)</td>
<td>1.0</td>
<td>0.816(268)</td>
</tr>
<tr>
<td></td>
<td>O₃</td>
<td>0.5787(25)</td>
<td>0.9852(21)</td>
<td>0.2557(22)</td>
<td>1.0</td>
<td>0.200(372)</td>
</tr>
<tr>
<td>Monoclinic P2/n, Z = 4, a = 5.3592(42), b = 5.3970(42), c = 7.6092(59), β = 90.04(49)</td>
<td>R_p = 6.65, R_w = 9.21, R = 6.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAN</td>
<td>O₁</td>
<td>0.4913(16)</td>
<td>0.5252(6)</td>
<td>0.2518(6)</td>
<td>1.0</td>
<td>1.766(8)</td>
</tr>
<tr>
<td></td>
<td>O₂</td>
<td>0.50</td>
<td>0</td>
<td>0</td>
<td>0.3848(3)/0.1152(3)</td>
<td>0.6512</td>
</tr>
<tr>
<td></td>
<td>O₃</td>
<td>0.2943(20)</td>
<td>0.2682(16)</td>
<td>0.0348(31)</td>
<td>1.0</td>
<td>0.609(566)</td>
</tr>
<tr>
<td></td>
<td>O₄</td>
<td>0.2318(18)</td>
<td>0.8027(26)</td>
<td>0.4050(03)</td>
<td>1.0</td>
<td>0.955(71)</td>
</tr>
<tr>
<td></td>
<td>O₅</td>
<td>0.5746(9)</td>
<td>0.9848(21)</td>
<td>0.2646(02)</td>
<td>1.0</td>
<td>0.760(29)</td>
</tr>
<tr>
<td>Monoclinic P2/n, Z = 4, a = 5.3846(7), b = 5.4016(7), c = 7.6079(10), β = 89.98(1)</td>
<td>R_p = 12.03, R_w = 16.89, R = 9.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
[CAT, LMN, CFN, CMN] showed a similar structural transition to the monoclinic with increase of \(x \). The other end members, LMN and CFN could be refined by either the \(P2_1/n \) or the \(Pnma \) model.\(^\text{21}\) The B-site splits into two distinct positions and becomes ordered structure of the \(P2_1/n \). The degree of ordering of the B-sites in CAT is larger than CAN as shown in Table 3.

Figs. 1 and 2 show the lattice parameters, Tolerance Factor (TF), and octahedron tilt angles of \((1-x)\text{CT}-x\text{CAN}\) and \((1-x)\text{[Ca}_{a}\text{Sr}_{b}\text{]TiO}_{x}\text{Ca}_{a}\text{Sr}_{b})\text{ZrO}_{3}\) solid solutions. The octahedron tilt angles follow Glazer's description. As shown in Table 1, CAN, CAT, and CFN are very rarely found compounds which have larger TF than that of CT. Hence, the tilt angles of the \((1-x)\text{CT}-x\text{CAN}\) decrease with \(x \). The decrease of octahedron tilt angles conforms to the TF increase with \(x \). The other systems, \((1-x)\text{CT}-x\text{CAT}\), were also expected to show the same trends with \(x \).

On the contrary, in \((1-x)\text{Ca}_{a}\text{Sr}_{b}\text{]TiO}_{x}\text{Ca}_{a}\text{Sr}_{b}\text{ZrO}_{3}\) (Fig. 2) the TF and the tilt angles varied in opposite way to that of Fig. 1. The solid solutions \((1-x)\text{CT-xCMN}\), LaNT, LMN and CST-LiNT are also expected to show the same behavior as shown in Fig. 2, since the TF values of CMN, LaNT, and LMN are smaller than that of CT.

3.2. Temperature Coefficient of Dielectric Constant \(\tau_e \)

Fig. 3 shows the \(\tau_e \) and \(\varepsilon \) with \(x \) in the \((1-x)\text{CT-x [CAN, LMN]}\). The \(\tau_e \) becomes positive values with the decrease of \(\varepsilon \). Fig. 4 shows the variation of the sum \(M \) \((A+B+C+D)\) in

Eq. (2) for both the series I (CT-CMN, CT-LMN) and II (CT-CAT, CT-CAN) in relation with TF. The sum \(M \) \((A+B+C+D)\) is calculated using the data in Fig. 3 and the previously reported paper.\(^{11,22-25}\) Except the compounds of \(x \geq 0.8\),
The calculated $M (A+B+C+D)$ of the CaTiO₃-based microwave dielectric ceramics plotted in relation to tolerance factor.

Fig. 5. The temperature coefficient (τ_ε) of the CaTiO₃-based microwave dielectric ceramics plotted as a function of ε.

Fig. 6. The calculated $M (A+B+C+D)$ of the CaTiO₃-based microwave dielectric ceramics plotted in relation to ε.

All the compounds have the orthorhombic Pnam structure. The τ_ε of the CT-CAT are selected from the previously reported paper. Fig. 4 shows that the M values do not have any relation with TF as expected in the introduction regarding the additional dipole field. The minimum point at $T=0.97$ simply corresponds to CT. Considering that most of the samples in Fig. 4 except the end members near the left-side and right-side have the same Pnam crystal structure, there cannot be found any consistent trend in the variation of M values with TF among the four solid solution systems.

The τ_ε (ppm/K) as a function of the ε are plotted in Fig. 5. All the compounds plotted in Fig. 5 have the Pnam structure except the end members, such as CMN, LMN, CAN, C VT, and LiNT¹⁰ and the solid solutions of $x \geq 0.8$. The two dotted lines represent the simple relation $\tau_\varepsilon = -\alpha \varepsilon$ ($\alpha = 8$ or 11 ppm). Only the CT and CST lie inside the two boundary lines. The other solid solutions substantially deviate from this simple relation. The compounds containing Li-ion (group B), such as CST-LiNT, CT-LiNT, and CST[Ca,Sm]/TiO₃]-LiST (Li$_{12}$Sm$_{12}$/TiO₃) show more drastic deviation with a decrease of ε.

Fig. 6 shows the variation of the M with epsilon replotted using the data in Fig. 5. The M varies in the range of about -25 to $+20$. All of the solid solution systems in the series (CT-CMN, CT-LMN) and II (CT-CAN, CT-CAT) in Table 2 belong to the group A in Fig. 5. The TF and tilt angles of the series I vary in opposite way to the series II. This means that the term A in the series I varies in opposite direction to that of the series II with x and ε. Considering that the sum of $(B+C)$ remains nearly constant of about $+10$ to $+20$ ppm/k, the term D in both series can be judged to have a dominant effect rather than the term A.

An approximate relationship between the M and ε can be obtained for the group A as follows: $M = 421.7 - 7.94 \varepsilon - 0.022 \varepsilon^2$. This relation suggests that both the M and τ_ε are mainly determined by the term D if the dielectrics have the same crystal structure as the CaTiO₃-based compounds even though they have substantially different TF and tilt angles.

The sum M becomes negative values at $\varepsilon = 40$ in the group A (CT-CMN, CT-LMN, CT-CAN, and CT-CAT) in Fig. 5 and at $\varepsilon = 80$ in the group B (CT-LiNT, CST-LiNT, and CST-LiST). This implies that the sum of the term A in the CaTiO₃-based dielectric compounds is positive in nature. And with the increase of the term D corresponding to the dipole field effect increases in a negative way the sum $M (A+B+C+D)$ becomes negative values. Most of the microwave dielectric compounds having near zero τ_ε show the ε values in the range of $25 - 45$, such as BZT, BMT, ZST, and Ba$_3$TiO$_{9}$⁴. The compounds of the group B containing Li-ions, BNT [BaO₅NdO₄/TiO₄] of a tungsten bronze type,²¹ and Pb, CaZrO₃ are exceptional case because they have zero τ_ε at $\varepsilon < 80$. These exceptional properties are considered to originate from the characteristic features of small radius of Li ion and structural difference.¹⁵

4. Conclusions

The crystal structures, temperature coefficient of dielectric constant (τ_ε), and dipole field effect on the τ_ε have been analyzed in the complex perovskites and their solid solu-
tions with CT. The complex perovskite end members i.e., CAN, CAT, CFN, and LMN, are the monoclinic P2₁/n. The latter two compounds, CFN and LMN can also be described by the orthorhombic Pbnm model with nearly the same level of reliability. The crystal structures change to the orthorhombic Pbnm at 0.8 ≤x.

The sum of the four terms M (A + B + C + D) contributing to the temperature dependence of the dielectric permittivity becomes positive at 30 > ε in the CaTiO$_3$-based perovskites (group A) and at 80 > ε in the Li- containing compounds (group B). The CaTiO$_3$-based compounds of large ε have large negative value of M due to the large additional dipole field effect (term D). The phenomenological relation between the ε and the sum (A + B + C + D) was $M = 421.7 - 7.94ε - 0.023ε^2$. The dipole field effect term D dominates the change of M in the solid solutions of both the group A and group B. The structural effect term A i.e., the effect of octahedron tilt angle was completely overwhelmed by the term D in the same Pbnm structure. The results of this study is a phenomenological but could provide a principal guide for predicting the property of other solid solution ceramics.

REFERENCES

25. E. S. Kim, B. S. Chun, K. S. Bang, and J. C. Kim, “Microwave Dielectric Properties of Low Temperature Fired (Pb$_{0.4}$Ca$_{0.6}$)(Fe$_{0.6}$Nd$_{0.4}$)$_2$O$_{12}$ Ceramics with Various Additives” J. Kor. Ceram. Soc., 38 [7] 597-601 (2001).