Fabrication and Ion Irradiation Characteristics of SiC-Based Ceramics for Advanced Nuclear Energy Systems

Weon-Ju Kim,*† Seok Min Kang,* Kyeong Hwan Park,** Akira Kohyama,** Woo-Seog Ryu,* and Ji Yeon Park*

*Division of Nuclear Materials Technology and Development, Korea Atomic Energy Research Institute, Daejeon 305-600, Korea
**Institute of Advanced Energy, Kyoto University, Uji, Kyoto, Japan

(Received July 13, 2005; Accepted July 22, 2005)

ABSTRACT

SiC-based ceramics are considered as candidate materials for the advanced nuclear energy systems such as the generation IV reactors and the fusion reactors due to their excellent high-temperature strength and irradiation resistance. The advanced nuclear energy systems and their main components adopting ceramic composites were briefly reviewed. A novel fabrication method of SiC/SiC composites by introducing SiC whiskers was also described. In addition, the charged-particle irradiation (Si⁺ and H⁺ ion) into CVD SiC was carried out to simulate the severe environments of the advanced nuclear reactors. SiC whiskers grown in the fiber preform increased the matrix infiltration rate by more than 60% compared to the conventional CVI process. The highly crystalline and pure SiC showed little degradation in hardness and elastic modulus up to a damage level of 10 dpa at 1000°C.

Key words: SiC/SiC composites, Advanced nuclear reactors, CVI process, Ion irradiation

1. 서론

탄화규소(SiC) 세라믹스는 열적, 기계적, 화학적 안정성이 우수하기 때문에 항공기 엔진이나 가스터빈 부품 등 의 고온 구조용 소재로 적용하기 위해 많은 연구가 이루어지고 있다. 이러한 특성을 뛰어나다고 할 수 있으나 SiC는 내방선 특성이 우수하고 섬유가 조사에 의한 유도 방사능이 매우 낮기 때문에 제4세대 원전 중 가스냅프 고속로(Gas-Cooled Fast Reactor, GFR) 및 초고온 가스냉각로(very High Temperature Gas-Cooled Reactor, VHTR) 등의 가스냉각형 원자로나 대로(DEMO)형 또는 상용 베타열로와 같은 미세형 원자력 시스템의 노내 구조물 후보재로 고려되고 있다.1,2) 일반적으로 단일(monolithic) 세라믹스 소재는 취성파괴를 하기 때문에 높은 신뢰성을 요구하는 원자로용 구조재로서는 장성유로 강화된 세라믹스 복합체(SiC/SiC)가 주요 고려 대상이다. SiC의 우수한 고온 기계적 특성, 화학적 안정성 등으로 인해 원자로는 800~1100°C의 높은 냉각각도 운도를 달성할 수 있고, 이에 따라 연료 온도가 45~60%에 이르는 우수한 성능의 원자로 설계가 가능해진다.

Fig. 1(a)는 VHTR 시스템의 일체를 나타낸 것으로 높은 노상온도로 인해 원자로 용기를 제외하고는 대부분의 노상구조물이 고플레 및 세라믹스 복합체로 구성된다.3) C/C, C/SiC 및 SiC/SiC와 같은 세라믹스 복합체의 후보재로 고려되고 있는 부품은 제어용 피복판 및 안내판, 상부 노심지패널 블록, 상부 단열판, 하부 단열재 지지블록, 고온가스패널 라이너 등이다. 이들 부품은 중·단기적으로는 C/C 및 C/SiC, 장기적으로는 SiC/SiC 복합체 등이 후보재로 고려되고 있다.4) 또한 SiC/SiC는 중간 열교환 기의 열교환 튜브, GFR 시스템의 핵연료 피복관 등으로 작용하기 위한 연구도 이루어지고 있다. 한편, VHTR 및 GFR 등의 가스냉각형 원자로는 노상구조물 뿐만 아니라 핵연료도 기존의 경우보다는 많은 차이를 갖는다. 고온 가스로의 핵연료는 Fig. 1(b)에 나타낸 것처럼 직경이 약 0.5 mm 단로 핵에 다중공 열연합 탄소층, 내·외부 지름 열연합 탄소층, SiC 등의 4개 층이 코팅된 피복입자를
Fig. 1. (a) reactor system cutaway and (b) coated fuel particle of the Very High Temperature Gas-Cooled Reactor (VHTR).3,5

사용한다.31 SiC 층은 기상 및 고상의 핵분열 생성물이 외부로 방출되지 못하게 하고 기계적 강도를 유지하여 경수로의 핵연료 파복화와 같은 구조적 역할을 수행한다. 핵융합의 플라즈마 방출부와 이웃하여 위치하는 블랭킷 구조물은 100~150 dpa 이상의 조사손상을 견디기 하며, 시스템의 효율을 고려하면 냉각제의 출구 온도가 높음수록 유리하다. 따라서 2015년에 건설될 국제 핵융합 협력 실력형(ITER)에 부착될 시험용 벨랭킷 모듈(Test Blanket Module : TBM)에는 현 시점에서 검증된 재료인 FMS(Ferritic Martensitic Steel)를 구조로 적용하려 하지만, 궁극적으로는 고온 내방사선 특성이 우수한 재료인 바나듐 합금이나 SiC/SiC 복합체가 요구되고 있다. ITER 완성 이후에 건설 예정인 실증 핵융합 개발 중에서 SiC/SiC 복합체 구조재료 고려한 모형들은 미국의 ARIES-I, ARIES-IV, ARIES-AT와 유럽연합의 TAURO 및 일본의 DREAM 등이 있다.22 Fig. 2에 SiC/SiC를 블랭킷 구조재로 사용하는 핵융합의 블랭킷 개념도를 나타내었다. Table 1은 각 핵융합의 주요 성과 SiC/SiC 복합체의 사용환경을 나타낸 것이다. SiC/SiC 복합체가 차세대 원자로의 노심과 같은 극한환경에서 우수한 특성을 발휘하기 위해서는 고온도, 고결정성, 화학환경의 심유 및 기지성이 요구된다. 따라서 Hi-Nicalon Type S, Tyranno-SA와 같은 고온절의 3세대 SiC 성유가 사용되며, 기지상의 제조방법도 고온도 SiC를 얻을 수 있는 화학적 집합법(CVI, Chemical Vapor Infiltration) 법이 주로 이용된다.

본 연구에서는 CVI 방법을 통한 SiC/SiC 복합체의 제조공정에서 SiC whisper 성상의 결과와 SiC의 Si2+ 및 He+ 이온조사를 통한 조사손상 모의 기온 평가 결과는 고찰하고자 하였다. CVI법을 이용하여 SiC/SiC 복합체를 제조할 때 있어 문제점은 표면부의 기기부 공정 초기에 약히는 현상을 줄이기 위해 종착속도가 매우 낮은 조건에 서 공정이 이루어진다는 점이다. 따라서 기지상의 종착효율이 낮아 매우 긴 공정시간이 요구되며, 성유의 bundle 또는 fabric layer 사이에 존재하는 큰 기간이 판정기준으로 낮아 복합체의 열적, 기계적 특성을 저해하는 요인이 된다. 이러한 문제점을 개선하기 위하여 기지상의 종착공 정 전에 SiC 성유의 프리즘 내부에 whisper를 성장시킴으로써 기지상의 종착이 일어나는 표면적을 증가시키며 치밀화 효율을 증가시키고 잔류기공의 양과 크기를 줄이고자 하였다. 한편, 이온빔 조사법은 중성자 조사손상의 모의 시험용으로 주목 받고 있다. 차세대 원자로의 노심에서는 높은 에너지의 중성자, 1000\textdegree C를 넘는 고온 환경 그리고
Table 1. Major Specifications for Recent International Projects Using SiC/SiC as Structural Material for Breeding Blankets

<table>
<thead>
<tr>
<th></th>
<th>TAURO, '96</th>
<th>ARIES-I</th>
<th>ARIES-AT</th>
<th>DREAM, '97</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusion power</td>
<td>3000 MW</td>
<td>1925 MW</td>
<td>1719 MW</td>
<td>5500 MW</td>
</tr>
<tr>
<td>Electrical power</td>
<td>1000 MW</td>
<td>1000 MW</td>
<td>1000 MW</td>
<td>3000 MW</td>
</tr>
<tr>
<td>Net efficiency</td>
<td>45%</td>
<td>49%</td>
<td>59%</td>
<td>>45%</td>
</tr>
<tr>
<td>Blanket lifetime</td>
<td>5 years</td>
<td>7.2 years</td>
<td>2 years</td>
<td><4 years</td>
</tr>
<tr>
<td>Mode of operation</td>
<td>continuous</td>
<td>continuous</td>
<td>continuous</td>
<td>continuous</td>
</tr>
<tr>
<td>Plasma geometry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major plasma radius</td>
<td>9.4 m</td>
<td>6.75 m</td>
<td>5.2 m</td>
<td>16 m</td>
</tr>
<tr>
<td>Aspect ratio</td>
<td>4.5</td>
<td>4.5</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Wall loads (FW, divertor)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. FW surf. heat flux</td>
<td>0.5 MW/m²</td>
<td>0.5 MW/m²</td>
<td>0.7 MW/m²</td>
<td>0.5 MW/m²</td>
</tr>
<tr>
<td>Max. Div. surf. heat flux</td>
<td>5 MW/m²</td>
<td>4.5 MW/m²</td>
<td>5 MW/m²</td>
<td>5 MW/m²</td>
</tr>
<tr>
<td>Avg. Neutron Wall load</td>
<td>2 MW/m²</td>
<td>2.5 MW/m²</td>
<td>4.3 MW/m²</td>
<td>3 MW/m²</td>
</tr>
<tr>
<td>In-vessel components</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structural material</td>
<td>SiC/SiC</td>
<td>SiC/SiC</td>
<td>SiC/SiC</td>
<td>SiC/SiC</td>
</tr>
<tr>
<td>Breeding material</td>
<td>Pb-17Li</td>
<td>Li₂ZrO₄</td>
<td>Pb-17Li</td>
<td>Li₂O</td>
</tr>
<tr>
<td>Neutron multiplier</td>
<td>Be</td>
<td>Be</td>
<td>Be</td>
<td></td>
</tr>
<tr>
<td>Coolant</td>
<td>Pb-17Li, 2 MPa</td>
<td>He, 10 MPa</td>
<td>Pb-17Li, 1 MPa</td>
<td>He, 10 MPa</td>
</tr>
<tr>
<td>Coolant inlet/outlet temp.</td>
<td>450/860°C</td>
<td>350/650°C</td>
<td>650/1100°C</td>
<td>600/900°C</td>
</tr>
<tr>
<td>FW protection</td>
<td>SiC (CVD)</td>
<td>SiC (CVD)</td>
<td>SiC (CVD)</td>
<td>SiC (CVD)</td>
</tr>
</tbody>
</table>

학변환 가스(He, H 등)의 발생이 구조재료에 직접적으로 영향을 미치게 된다. 현진하는 중성자 조사실험 양비로 차세대 원자로와 같은 극한환경의 모의실험이 가능한 곳은 극히 제한되어 있으며, 그 대안으로 이온빔을 이용한 조사순상 평가법이 제안되고 있다. 따라서 화학증착법으로 제조된 고순도 고결정성 SiC를 차세대 원자로의 노심 환경과 유사한 방사선 순상조건이 되도록 Si²⁺와 H⁻ 이온으로 모의 조사 실험을 하고 조사된 시편의 기계적 특성을 나노 압입법을 이용하여 평가하였다.

2. 실험 방법

2.1. SiC Whisker를 이용한 CVI SiC/SiC 복합체 제조
SiC 섬유 프리폼의 제조를 위해 Tyranno-SA (Ube Ind., Japan) 직물의 적층하고, 메탄을 원료로 하여 950°C, 110 torr에서 열화해 탄소를 섬유와 기지상의 중간층으로婚纱하였다. 이 때, 메탄의 충 유량은 200–800 sccm이었고, 3–6 시간간동안 중합하였다. 이렇게 준비된 프리폼에 SiC의 원료가스로 MTS(CH₂=SiCl), 운반가스와 최적가스로 수소를 사용하여 WA-CVI(Whisker growing Assisted CVI) 공정을 이용해 복합체를 제조하였다. WA-CVI 공정은 1100°C 에서 3시간동안 수행한 whisker 성장 공정과, 1000°C에서 3시간간 수행한 기지상 채용공정으로 이루어지며, 이러한 whisker 성장과 기지상 채용공정을 2회 반복하고 최종적으로 24시간동안 기지상 채용공정을 실시하여 복합체를 제조하였다. 자세한 WA-CVI 공정은 이미 발표된 문헌에 나타내었다.7) 제조된 복합체는 주사전자현미경(SEM, JSM 5200, Jeol, Japan)을 이용하여 미세구조를 관찰하였고, 섬유와 기지상의 중간층은 열화하 단소 층의 두께에 따른 강도의 변화를 3점 궤강도를 측정하여 고찰하였다.

2.2. SiC의 이온조사 실험
이온 조사실험을 위해 화학증착법으로 제조된 다결정 SiC(β-phase, Room and Haas Advanced Materials) 조사재료로 이용하였다. 이온 가속기는 DuEET(Dual-beam Energy Technology, Kyoto University)를 이용하였고, Si⁺, He⁺ 이온을 조사하였다. Si⁺의 가속 에너지는 5.1 MeV (terminal voltage : 1.7 MeV)이었고, 1 MeV의 He⁺ 이온을 동시에 조사하였다. 이온 조사 후 Si 이온 주입에 의한 조사 순상 분포와 Si와 He 이온 분포를 TRIM 코드로 계산하여 예측하였고 그 결과를 Fig. 3에 나타내었다. 조사 순상된 시편의 기계적 특성 평가는 나노 압입법을 이용하였다. 압입 하중은 0.5–1.6 g였고, 경도와 탄성계수는 Oliver 등이 제안한 압착(indenter) 투영점측면 보정을 하여 계산하였다.10) 측정 업임 값은 조사 순상영역과 압임에 의해 생성되는 소성영역을 관찰하고 결정하였다.11)

3. 결과 및 고찰

3.1. SiC Whisker 성장을 통한 SiC/SiC 복합체의 제조
Fig. 4(a)은 프리폼 내부에 1차 whisker를 성장시킨 후 미세구조를 나타낸 것이다. SiC 섬유의 주변공간을 효율
경이 1μm 이상으로 성장된 것을 볼 수 있다. 또한 2차 whisker 공정을 통해 성장한 whisker의 직경은 0.1~0.3μm 로 1차 공정에서와 비슷한 직경을 갖고 기지상 채움 재료에 제거되지 않은 공간을 다시 분할하고 있다. 이와 같이 부분적인 기지상 채움과 whisker의 공간분할을 통하여 효과적인 기지상 채움이 가능할 것으로 생각된다. Fig. 5는 일반적인 CVI 공정과 WA-CVI 공정의 시간당 밀도 증가 분을 나타낸 것이다. One-step은 1차 whisker 성장 후 24시간의 최종 기지상 채움공정을 행한 것이고, two-step은 whisker 성장공정을 2회 반복한 후 24시간의 최종 기지상 채움을 행한 것이다. 일반적인 CVI 공정보다 one-step은 30%, two-step을 이용할 때 시간당 60% 가량 빠른 밀도 증가를 보였다. 따라서 SiC 성유의 프리즘 형태의 whisker를 성장시킴으로 복합체의 치밀화를 효과적으로 향상시킬 수 있다고 생각되며, 기지상에 성장된 whisker는 복합체의 물성에도 영향을 미치리라 예상된다.

Fig. 6은 섬유와 기지상 사이의 중층층이 일반적 탄소 층의 두께가 150nm와 300nm인 SiC/SiC 복합체의 파란색 면체구조를 나타낸 것이다. 중층층의 두께가 150nm 이하인 경우 SiC 성유의 pull-out이 없이 채두 파괴의 유사한 과정을 보였다. 반면, 중층층의 두께가 300nm 이상의 경우 성유의 pull-out 현상이 잘 일어나는 것을 알 수 있다. 이는 100~200nm 정도의 중층층 두께가 최적인 것으로 보고되고 있는 CG-Nicalon이나 Hi-Nicalon 성유를 이용하여 제조된 SiCp/SiC 복합체의 차이가 보이는 결과로서 Tyranno-SA 성유의 다른 표면 거칠기에 기인하는 것으로 여겨진다.22) Fig. 7은 중층층의 두께에 따른 SiCp/SiC 복합체의 3점 공장도를 측정한 결과이다. 그림에서 볼 수 있듯이 공장도 값은 중층층의 두께가 150nm일 때 최대 610MPa이고, 그 이상의 두께에서는 다시 감소하는 경향을 나타내고 있다. 일반적 탄소 중층층은 SiC에 비해 내열성 특성이 좋지 않고 산화에 취약하기 때문으
에 두께를 가능한 최소화할 필요가 있다.

3.2. 이온조사에 의한 SiC의 조사손상 평가

이온 조사된 SiC의 경도와 탄성계수의 결과를 시점 표면으로부터의 깊이의 함수로 Fig. 8에 나타내었다. 조사손상 분포의 관계를 표현하기 위해 TRIM 코드로 계산한 손상분포와 경도, 탄성계수 결과를 동시에 나타내었 다. 경도와 탄성계수는 압입강이 50~400 nm에서 결정하였고, 각 결과를 평균하여 평가하였다. Fig. 8은 여러 조사조건 중 600℃에서 Si⁺⁺+He⁺ 이온을 동시에 조사하여 SiC의 경도와 탄성계수 변화 결과이다. 경도는 비조사에 비해 증가하였고, 탄성계수는 감소하는 경향을 보였다. 탄성계수가 감소하면서 경도가 증가하는 결과로부터 조사에 의해 SiC의 취성이 증가하지 않을 것이라고 예측할 수 있다. 최근의 연구 보고에 따르면 조사 후 고온도 SiC의 파괴성이 증가하는 결과가 보고되고 있다.\(^{13,14}\) Fig. 9는 중성자 및 이온조사 후 SiC의 경도와 탄성계수의 변화를 비교한 결과다. Si⁺⁺ 이온 조사에 의한 경도와 탄성계수의 변화는 중성자 조사 결과와 거의 유사한 경향을 보였다. 조사 후 증가하는 경향을 보이는 SiC의 경도는 조사온도와 조사손상량에 따라 극히 작지 않았다. 고온도, 고결정 SiC는 세포학적 중 생성한 직접결합(stacking fault) 이외에는 내부 결함을 거의 갖지 않았지만, 본 연구에서 수행한 400~1000℃ 조사온도 범위에서는 결함이 가 존재하고 점결합 점결합(point defects & point defect cluster)과 주요한 조사결합으로 생성된다. 이런 점결합 점결합의 생성은 압입에 의해 생성되는 전위(dislocation)의 이동을 방해하고, 경도증가의 원인으로 보고되고 있다.\(^{13,14}\) 한편 SiC의 탄성계수는 조사에 의해 감소하는 경향을 보였고, 조사온도에 큰 영향을 받았다. 약 300℃ 이하의 조사조건에서는 큰 감소를 보였으나, 조사에 의한 SiC 조직의 비정질화(amorphization)가 그 원인이다.\(^{15}\) 400℃ 이상의 조사온도에서는 탄성계수의 감소 경도가 줄어들고 있으며, 점결합 점결합의 생성에 의한 폐합과 적자간 거리 증가가 탄성계수 감소의 원인으로 생각된다.\(^{16}\) 그리고 1000℃ 이상에서 조사된 SiC의 탄성계수는 비조사와의 탄성계수 값으로 돌아왔다.

고온도, 고결정 SiC는 극한 조사환경에서 강도 저하는 없고, 오히려 증가하는 경향을 보였다. 또한 최근의 연구에 따르면 Tyranno-SA 섬유와 CVI 기지상으로 이루어진
Fig. 9. (a) Relative hardness and (b) Young's modulus of SiC after ion and neutron irradiation. The neutron irradiation data were cited in the references.

SiC/SiC 복합체는 10 dpa 이상의 중성자 조사 하에서도 강도변화가 거의 없는 것으로 확인되고 있다. 이와 같은 SiC의 탑원한 내방사선 특성으로부터 CVI 공정에 의한 고순도, 고질량 기지상의 SiC/SiC 복합체 제작이 진행되고 있고, 차세대 원자로 재료연구의 허심이 되고 있다.

4. 결 론

기지상의 재료공정 전에 SiC whisker요 SiC 섬유 프라 콜 내에 성장시키는 WA-CVI 공정의 적용을 통해 일반적인 CVI 공정에 비해 빠른 치밀화 속도를 얻을 수 있었다. WA-CVI 공정은 CVI 공정시간의 단축과 더불어 거래 관류기공의 양과 크기를 증명으로써 SiC/SiC 복합체의 일 전도도, 파괴강도, 기지상 파괴단점 및 흡수 기계적 특성 등의 향상을 가져올 수 있을 것으로 기대된다. 이온조사를 통한 SiC의 조사손상 모의 연구를 통해 중성자 조사 손상의 경우와 유사한 평가결과를 얻을 수 있었으며, 고순도, 고질량성 SiC는 10 dpa, 조사량의 조사량에서는 특정 변화가 거의 없는 것으로 확인되었다. SiC계의 치밀 유강화 세라믹스 복합재료는 일반 산업 분야의 필드에서 등은 통해 우수한 성능을 발휘하는 것으로 나타나고 있으며 일부는 이미 실용화도 이루어지고 있다. 원자력 분야의 융연에 있어서도 그 동안의 기술개발을 통해 SiC/SiC 복합체의 일부 특성들은 성층 핵융합 등에서 요구하는 수준을 만족하고 있지만, 전자도, 가스 기밀성, 핵융합 환 영향, 연합기술, 원자로 운전환경에서의 장기화 화학적 안전성, 고조사량 하에서의 내방사선 특성, 데이터베 이스와 확보 등에 있어 많은 연구가 필요하다. 산업구조의 고도화는 보다 혹독한 환경에서 사용이 가능한 소재를 요구하게 된다. 국내에서도 우주항공 기술개발, 에너지 효율의 극대화, 환경에 대한 관심 증대, 제4세대 원자로의 건설 추진, ITER 참여 등으로 고성능 세라믹스 복합재료에 대한 필요성이 증대될 것으로 여겨진다.

REFERENCES

