Influence of Sintering Atmosphere on Abnormal Grain Growth Behaviour in Potassium Sodium Niobate Ceramics Sintered at Low Temperature

John G. Fisher**, Si-Young Choi***, and Suk-Joong L. Kang*†

*Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejon 305-701, Korea
**School of Materials Science and Engineering, Chonnam National University, Gwangju 500-757, Korea
***Korean Institute of Materials Science, Changwon 642-831, Korea

(Received September 24, 2011; Revised September 29, 2011; Accepted September 30, 2011)

ABSTRACT

The present study aims to identify the effect of sintering atmosphere [O₂, 75N₂-25H₂ (mol %)] on microstructural evolution at the relatively low sintering temperature of 1040°C. Samples sintered in O₂ showed a bimodal microstructure consisting of fine matrix grains and large abnormal grains. Sintering in 75 N₂ - 25 H₂ (mol %) and H₂ caused the extent of abnormal grain growth to increase. These changes in grain growth behaviour are explained by the effect of the change in step free energy with sintering atmosphere on the critical driving force necessary for rapid grain growth. The results show the possibility of fabricating (K₀.₅Na₀.₅)NbO₃ at low temperature with various microstructures via proper control of sintering atmosphere.

Key words: Lead-free piezoelectric, Grain growth, Grain boundaries, Sintering atmosphere, Niobates

1. Introduction

In recent years, a great deal of effort has gone into finding lead-free replacements for Pb(Zr,Ti)O₃ piezoceramics. One promising family of ceramics is based on solid solutions in the KNbO₃-CaNaNbO₃ pseudo-binary system. Ceramics of the composition (K₀.₅Na₀.₅)NbO₃ have moderate piezoelectric properties (d₃₃ = 70-90 pC/N, k₃₃ = 0.36-0.39, t₃₃ = 0.4)⁴,⁵ that can be improved by addition of compounds which form solid solutions with (K₀.₅Na₀.₅)NbO₃⁶,⁷ or by producing grain-oriented ceramics.⁸,⁹

It has been noted in the literature that (K₀.₅Na₀.₅)NbO₃ displays abnormal grain growth, with the microstructure consisting of large abnormal grains surrounded by fine matrix grains.⁵,¹⁰ Abnormal grain growth is generally undesirable as it can inhibit densification¹¹,¹² and may also lead to unfavourable dielectric and mechanical properties.¹⁰,¹¹ Although many studies have been carried out on improving the sinterability of (K₀.₅Na₀.₅)NbO₃, few detailed studies exist concerning microstructural development. Recent experiments have shown that sintering (K₀.₅Na₀.₅)NbO₃ in reducing atmospheres can reduce abnormal grain growth.¹³,¹⁴ Samples sintered in O₂ or N₂ had very coarse microstructures with grains up to 50 µm in diameter but in samples sintered in 75 N₂-25 H₂ (mol %) or H₂, the amount of abnormal grain growth could be reduced or entirely suppressed. This change in microstructure was caused by an increase in the concentration of oxygen vacancies in the samples sintered in reducing atmospheres.¹⁵,¹⁶ This reduced the critical driving force necessary for grain growth, causing a transition from abnormal to pseudo-normal grain growth.¹⁷ In the previous work, samples were sintered at 1100°C. Changes in sintering temperature can also have an effect on abnormal grain growth behaviour as the critical driving force for grain growth is also dependent on temperature.¹⁸ In the present work the effect of sintering at a lower temperature in various atmospheres will be studied.

2. Experimental

The mixed oxide method was used to prepare powders of (K₀.₅Na₀.₅)NbO₃, K₂CO₃ (99.5%, Junsei), Na₂CO₃ (99.8%, Acros) and Nb₂O₅ (99.9%, Grand Chemical & Material) were mixed in appropriate amounts and ball milled in ethanol for 24 h, using ZrO₂ milling media and polypropylene jars. In order to remove any adsorbed water, the K₂CO₃ and Na₂CO₃ powders were dried at 250°C overnight and the Nb₂O₅ powder was dried at 80°C overnight before weighing. After ball milling, the ethanol was evaporated using a hot plate and magnetic stirrer. The resulting powder was ground with an agate mortar and pestle and passed through a 180 µm sieve. The powder was loaded into an alumina crucible with a lid and calcined at 750°C for 5 h. The calcined powder was examined by X-ray diffraction (Rigaku D/MAX-IIIC, Tokyo, Japan) and found to be single phase perovskite. The calcined powder was ball milled and sieved as before to break up any agglomerates. The particle size distribution after ball-milling was measured using a laser particle size analyser (Photal Otsuka Electronics ELS-22, Hirakata, Japan). The particle size distribution of

*Corresponding author : Suk-Joong L. Kang
E-mail : sjkang@kaist.ac.kr
Tel : +82-42-350-4113
Fax : +82-42-350-3310
the starting powder was asymmetric, with a peak at 205 nm and a tail out to 310 nm. The mean and standard deviation of the particle radius were 217 nm and 25 nm respectively.

Samples were made by compressing by hand 0.5 g of powder in a steel die 10 mm in diameter. Samples were then removed from the die and cold isostatically pressed at 200 MPa.

Samples were sintered in a closed-end alumina tube in a vertical tube furnace in atmospheres of flowing \(\text{O}_2 \), 75 \(\text{N}_2 \)-25 \(\text{H}_2 \) (mol%) or \(\text{H}_2 \) (flow rate \(= 150 \text{ cm}^3 \cdot \text{min}^{-1} \)) at 1040°C for 0.5-10 h. The heating and cooling rates were 5°C·min\(^{-1}\). The crucible was lined with square spacers made from sintered (K\(_{0.67}\)Na\(_{0.33}\))NbO\(_3\) to prevent the samples from touching the crucible walls. To prevent the samples from sintering to each other, a small amount of (K\(_{0.67}\)Na\(_{0.33}\))NbO\(_3\) powder was placed between samples.

The density of the sintered samples was measured by Archimedes’ method in distilled water. For each sintering experiment, three samples were measured three times each, and the mean and standard deviation taken. For microscopy, samples were sectioned and polished to a 0.25 µm finish. Scanning electron microscopy (SEM) was carried out using a Philips XL30 SEM (Phillips, Eindhoven, Netherlands). To observe the microstructure, polished samples were thermally etched at temperatures between 990-1035°C for 60 min in air. All samples were Pt coated. Grain size distributions were measured using the same method as in our previous work. Microscopy was also carried out on polished but un-etched samples.

For Transmission Electron Microscopy (TEM), samples were prepared by the normal methods of dimpling and ion beam milling. Conventional TEM micrographs were taken using a JEOL 3010 and a JEOL JEM-2100F TEM (JEOL, Tokyo, Japan). Electron Energy Loss Spectroscopy (EELS) was carried out in the JEOL JEM-2100F across grain boundaries in the samples sintered for 2 h in \(\text{O}_2 \) and \(\text{H}_2 \). The O/K ratios were measured at ~30 nm intervals crossing the grain boundary. The probe size was ~3 nm.

X-ray diffraction (XRD) of samples sintered for 10 h was carried out on a Rigaku D/MAX-2500 diffractometer (Rigaku, Tokyo, Japan). Scans were carried out using a 2θ scan range of 20-60°, a scan speed of 1°·min\(^{-1}\) and a step size of 0.01°. The unit cell parameters and volume of the samples were determined by Rietveld refinement.

3. Results

The density of the samples is shown in Fig. 1. The theoretical density of (K\(_{0.67}\)Na\(_{0.33}\))NbO\(_3\) is 4.51 g·cm\(^{-3}\). In the samples sintered in \(\text{O}_2 \), the density increases with sintering time up to 2 h and then the rate of densification decreases. The density of the samples sintered in 75 \(\text{N}_2 \)-25 \(\text{H}_2 \) (mol%) is noticeably higher than that of the \(\text{O}_2 \)-sintered samples, even after only 0.5 h. Density increases with sintering time up to 2 h, and then decreases. Sample density increases further as the sintering atmosphere changes from 75 \(\text{N}_2 \)-25 \(\text{H}_2 \) (mol%) to \(\text{H}_2 \).

For the samples sintered in \(\text{H}_2 \), density increases with sintering time up to 2 h, and then levels off.

SEM secondary electron images of samples sintered for 2 h are shown in Fig. 2 (a)-(d). The sample sintered in \(\text{O}_2 \) has a bimodal microstructure consisting of matrix grains between 1-3 µm in diameter and abnormal grains up to 70 µm in diameter [Fig. 2 (a)]. Both the matrix and the abnormal grains are cuboid in shape with faceted edges. The abnormal grains contain many trapped pores. There is also intergranular porosity between the matrix grains. The sample sintered in 75 \(\text{N}_2 \)-25 \(\text{H}_2 \) (mol%) has an extremely coarse microstructure, with grains up to 140 µm in diameter [Fig. 2 (b)]. Large pores are visible at the grain boundaries and triple junctions, and many pores are trapped within the grains. Some of the grains lose their cubic shape and appear to have curved grain boundaries. However, at higher magnification the boundaries show micro-faceting, indicating that they are still faceted [Fig. 2 (c), marked with arrows]. The sample sintered in \(\text{H}_2 \) has a similar microstructure, but with smaller grains (maximum grain diameter of ~120 µm) [Fig. 2 (d)]. The number of pores trapped within the grains also appears to decrease. Fig. 2 (e) and (f) show backscattered electron images of polished samples sintered in \(\text{O}_2 \) and 75 \(\text{N}_2 \)-25 \(\text{H}_2 \) (mol%) for 2 h. No secondary phases are visible. No secondary phases were also visible on backscattered electron images of a polished sample sintered in \(\text{H}_2 \).

Grain size distributions of the samples are shown in Fig. 3. In the samples sintered in \(\text{O}_2 \), abnormal grain growth has already taken place after sintering for 0.5 h [Fig. 3 (a)]. The grain size distribution is bimodal; the majority of grains are micron-sized, but abnormal grains up to 50 µm in diameter are also present. As sintering proceeds, the grain size distribution becomes broader as the number and size of abnormal grains increase. The samples sintered in 75 \(\text{N}_2 \)-25 \(\text{H}_2 \) (mol%) have a much broader grain size distribution than the samples sintered in \(\text{O}_2 \). Abnormal grain growth is essentially complete after only 0.5 h of sintering, with grains up to 60 µm in

![Fig. 1. Density of (K\(_{0.67}\)Na\(_{0.33}\))NbO\(_3\) samples sintered in different atmospheres at 1040°C for different times.](image-url)
Fig. 2. (a)-(d): SEM secondary electron micrographs of \((\text{K}_{0.5}\text{Na}_{0.5})\text{NbO}_3\) ceramics sintered at 1040°C for 2 h in: (a) \(\text{O}_2\), (b) and (c) 75 \(\text{N}_2\)-25 \(\text{H}_2\) (mol%), (d) \(\text{H}_2\). White arrows in (c) show microfaceting.

(e)-(f): SEM backscattered electron micrographs of \((\text{K}_{0.5}\text{Na}_{0.5})\text{NbO}_3\) ceramics sintered at 1040°C for 2 h in: (e) \(\text{O}_2\) and (f) 75 \(\text{N}_2\)-25 \(\text{H}_2\) (mol%).

Fig. 3. Grain size distributions of \((\text{K}_{0.5}\text{Na}_{0.5})\text{NbO}_3\) ceramics sintered at 1040°C in: (a) \(\text{O}_2\) (b) 75 \(\text{N}_2\)-25 \(\text{H}_2\) (mol%), and (c) \(\text{H}_2\).
diameter [Fig. 3 (b)]. The grain size distribution broadens further with increased sintering time. The samples sintered in H$_2$ show similar behaviour to those sintered in 75 N$_2$-25 H$_2$ (mol%), but the grain size distribution is narrower and the maximum grain size smaller [Fig. 3 (c)].

Conventional TEM micrographs are shown in Fig. 4 (a) and (b). Micro-faceting is visible at the grain boundary of the sample sintered in O$_2$ [Fig. 4 (a)]. Ferroelectric domains are also visible. Micro-faceting is also visible at the grain boundary of the sample sintered in H$_2$ [Fig. 4 (b)]. In the sample sintered in H$_2$, the ferroelectric domains are much reduced in size. The reduction in domain size indicates that the sample is changing from a normal first-order ferroelectric material to a relaxor material, as observed in our previous work. TEM electron energy loss spectroscopy (TEM-EELS) results are shown in Fig. 4 (c). For the sample sintered in O$_2$, four grain boundaries were observed and for the sample sintered in H$_2$, five grain boundaries were observed. Each set of data represents representative results from one grain boundary. For the sample sintered in O$_2$, the O/K ratio increases considerably at the grain boundary, whereas for the sample sintered in H$_2$, the O/K ratio decreases slightly at the grain boundary. The O/K ratios in the sample sintered in H$_2$ are lower than those of the sample sintered in O$_2$, both in the bulk of the grain and at the grain boundary.

XRD traces of the samples sintered for 10 h are shown in Fig. 5 (a). The patterns can all be indexed with JCPDS card no. 77-0038 for monoclinic (K$_{0.5}$Na$_{0.5}$)NbO$_3$. No secondary

Fig. 4. TEM micrographs of (K$_{0.5}$Na$_{0.5}$)NbO$_3$ ceramics sintered at 1040°C in (a) O$_2$ and (b) H$_2$ for 2 h. White arrows show microfaceting. (c) TEM-EELS measurements of O/K ratio across the grain boundaries of (K$_{0.5}$Na$_{0.5}$)NbO$_3$ samples sintered in O$_2$ and H$_2$ at 1040°C for 2 h.

Fig. 5. (a) XRD traces, (b) unit cell parameters and (c) unit cell volume of (K$_{0.5}$Na$_{0.5}$)NbO$_3$ ceramics sintered at 1040°C for 10 h in O$_2$, 75 N$_2$-25 H$_2$ (mol%) and H$_2$.

The critical driving force \(\Delta G_c \) is given by:\(^{20}\)

\[
\Delta G_c = \frac{\Omega \varepsilon^2}{3hRT}
\]

(1)

where \(\Omega \) is molar volume, \(\varepsilon \) is step free energy of the nucleus, \(h \) is step height of the nucleus, \(R \) is the gas constant and \(T \) is temperature. \(\varepsilon \) is the excess energy associated with the edge of the 2D nucleus. The value of \(\Delta G_c \) is very dependent on the step free energy \(\varepsilon \). \(\varepsilon \) in turn is affected by sintering temperature and atmosphere.\(^{17,31,32}\)

Sintering \((K_{0.5}Na_{0.5})NbO_3\) in reducing atmospheres is expected to cause an increase in oxygen vacancy concentration.\(^{21,22}\) From the TEM-EELS results [Fig. 4 (c)], it can be seen that the O/K ratio is lower in the \((K_{0.5}Na_{0.5})NbO_3\) sample sintered in \(H_2\) than in the sample sintered in \(O_2\). This indicates that the sample sintered in \(H_2\) has an increased oxygen vacancy concentration. The dip in the O/K ratio at the grain boundary also indicates that the grain boundary core contains more oxygen vacancies than the grain interior. This is expected if oxygen is migrating from the grain interior to the boundary and then from the boundary to the external atmosphere. The changes in unit cell parameters and volume [Fig. 5 (b) and (c)] are also consistent with an increase in vacancy concentration, as explained in our previous works.\(^{15,24}\)

The grain growth behaviour of the \((K_{0.5}Na_{0.5})NbO_3\) samples can be explained by considering the effect of the sintering atmosphere on the oxygen vacancy concentration. An increase in oxygen vacancy concentration lowers the configurational entropy\(^{20}\) which in turn lowers \(\varepsilon \).\(^{25-28}\) When the samples are sintered in \(O_2\), the oxygen vacancies are relatively low and \(\varepsilon \) is relatively high. This causes the value of \(\Delta G_c \) to be high. Most of the grains have \(\Delta G < \Delta G_c \) and can only grow very slowly. A small number of grains have \(\Delta G \geq \Delta G_c \). These grains grow rapidly to form abnormal grains [Fig. 2(a) and Fig. 3 (a)]. As the sintering time increases, the abnormal grains continue to grow. In addition, some of the slowly growing matrix grains grow large enough to have \(\Delta G \geq \Delta G_c \). These grains then grow rapidly to form abnormal grains. Therefore both the size and number of abnormal grains increase with sintering time [Fig. 3 (a)].

When the sintering atmosphere changes to 75 \(N_2\)-25 \(H_2\) (mol\%), the concentration of oxygen vacancies increases, as seen in the TEM-EELS and XRD results. This causes a decrease in \(\varepsilon \) and \(\Delta G_c \). The number of grains which have \(\Delta G > \Delta G_c \) and which can grow rapidly increases. All of the matrix grains are consumed by the rapidly growing abnormal grains and even after 0.5 h of sintering, the microstructure consists of coarse grains [Fig. 3 (b)]. With increased sintering time, the abnormal grains grow further; however their growth rate is limited because of their impingement upon each other. For the samples sintered in \(H_2\), the oxygen vacancy concentration increases further, causing a further decrease in \(\varepsilon \) and \(\Delta G_c \). This causes a further increase in the number of grains which have \(\Delta G > \Delta G_c \). Because the number of rapidly growing grains increases, impingement occurs earlier than in the case of the samples sintered in 75 \(N_2\)-25 \(H_2\) (mol\%) and this results in a reduction of average grain size after impingement of the abnormal grains [Fig. 2 (d) and Fig. 3 (c)].

Therefore, by sintering at 1040°C and controlling the sintering atmosphere, the microstructure of \((K_{0.5}Na_{0.5})NbO_3\) can be varied from a bimodal microstructure to a coarse grain microstructure. As grain size is known to affect piezoelectrical properties,\(^{40}\) this provides a way of controlling the piezoelectric properties of \((K_{0.5}Na_{0.5})NbO_3\). In addition, the present work shows that samples can be sintered to
high density in reducing atmospheres even at low temperatures.

5. Conclusions

(K$_{0.5}$Na$_{0.5}$)NbO$_3$ ceramics have been sintered in atmospheres of O$_2$:75 N$_2$:25 H$_2$ (mol%) and H$_2$ at 1040°C and their grain growth behaviour characterised. (K$_{0.5}$Na$_{0.5}$)NbO$_3$ displayed abnormal grain growth and as the sintering atmosphere became more reducing, the number of abnormal grains tended to increase. The change in grain growth behaviour with decreasing oxygen partial pressure is caused by an increase in vacancy concentration in the samples. This lowers the step free energy ε and critical driving force ΔG_c necessary for rapid grain growth, increasing the number of grains which can grow rapidly to form abnormal grains. By controlling the sintering atmosphere at low sintering temperature, the microstructure can thus be varied from bimodal to coarse-grained. In addition, samples could be sintered to high density in reducing atmospheres even at low sintering temperature.

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF Grant Nos. 2009-0094039 and 2010-0000739) funded by the Ministry of Education, Science and Technology, Korea. The authors would like to thank Seon-Young Lee for operating the SEM, Mi-Ja Woo for operating the XRD, Su-Min Shin for operating the JEOL 3010 TEM and Jenny Tellier (Jožef Stefan Institute, Slovenia) for carrying out the Rietveld refinement.

REFERENCES