Thermal Shock Tests and Thermal Shock Parameters for Ceramics

Hideo Awaji and Seong Min Choi*

King Mongkut’s University of Technology Thonburi, Department Tool and Materials Engineering, Bangmod, Thongkru, Bangkok 10140, Thailand
*Fuji Electric Corporation of America, Edison, NJ 08837, USA

(Received May 31, 2012; Revised July 5, 2012; Accepted July 10, 2012)

ABSTRACT

Thermal shock test methods and thermal shock parameters for ceramics were reviewed from the following viewpoints: (1) The test methods should be based on the precise estimation of both temperature and thermal stress distributions in a specimen taking into account the temperature-dependent thermo-mechanical properties; (2) The thermal shock parameters must be defined as a physical property of the materials and described as a function of temperature at the fracture point of the specimen; (3) The relation between the strength and fracture toughness of brittle ceramics under a thermal shock load must be the same as the relation under a mechanical load. In addition, appropriate thermal shock parameters should be defined by the thermal shock strength and thermal shock fracture toughness based on stress and energy criteria, respectively. A constant heat flux method is introduced as a testing technique suitable for estimating these thermal shock parameters directly from the electric power charged.

Key words: Thermal shock test, Thermal shock parameters, Brittle ceramics, Strength, Fracture toughness

1. Introduction

Due to their excellent heat resistance, structural ceramics are widely used in industrial fields that require the use of high temperature components. Ceramic crystals, however, have covalent and/or ionic bonds and tend to be brittle because dislocation movement is difficult. Therefore, ceramics are sensitive to the thermal stress associated with steep temperature gradients, i.e., thermal shocks. Thus, a precise evaluation of the thermal shock properties in ceramics is essential for them to be used reliably in high temperature structures.

Thermal shock fracture occurs with transient temperature variation over a short time range and the phenomenon of thermal shock fracture is normally rather complicated. In addition, thermo-mechanical properties of ceramics usually have strong temperature dependencies, which makes analysis of the temperature and stress distributions difficult, as mentioned by many researchers. Therefore, it is essential to calculate the precise temperature and thermal stress distributions in a specimen and to measure the time-to-failure at the fracture point of the specimen during thermal shock testing. The thermal shock parameters should be estimated as a physical property of materials, measured directly from the thermal loading, and described as a function of temperature at the fracture point of the specimen. Several thermal shock parameters were proposed by Kingery according to thermal environments and specimen configurations. Hasselman developed the concept of thermal shock parameters and proposed a new thermal shock parameter called the thermal shock damage resistance. Davidge and Tappin, Awaji, Lu and Fleck, and Collin and Rowcliffe suggested that thermal shock parameters should be based on two distinct failure criteria for brittle ceramics: a stress criterion where fracture occurs at the maximum tensile stress, and an energy criterion where a crack propagates when the stress intensity factor reaches the fracture toughness.

In this review, thermal shock test methods and thermal shock parameters for ceramics were surveyed by focusing on the following viewpoints: (1) The test method should be based on the precise estimation of both temperature and thermal stress distributions in a specimen, taking into account the temperature-dependent thermo-mechanical properties; (2) The thermal shock parameters must be defined as a physical property of the material and described as a function of temperature at the fracture point of the specimen; and (3) The relation between the strength and fracture toughness of brittle materials under a thermal shock load must be the same as the relation under a mechanical load when mild thermal shock tests are considered.

A standardized testing method for determining substantial thermal shock parameters can only be developed by selecting fundamental and relevant thermal shock parameters from the many that have been proposed to date. These parameters should represent the physical properties of the materials and be described as a function of temperature. Each material should be characterized by two parameters at the onset of
fracture. One parameter must be the thermal shock strength, which represents the resistance of the material to fracture; the other parameter must be the thermal shock fracture toughness, which stands for the resistance of the materials to the onset of crack propagation.13,16

The discussion in this work is restricted to the uncoupled thermally induced stress problems; coupled and dynamic effects are not considered. Takeuchi and Furukawa17 mentioned that these effects on the temperature and stress distributions in the materials are small when the Biot modulus is less than 10, where the Biot modulus is defined as $\beta = h/d/\kappa$, (h: the heat transfer coefficient, d: the half-thickness of the plate, and κ: the thermal conductivity). In addition we will omit R-curve and fatigue failure behaviors under thermal shock loading in this review.

2. Thermal Shock Testing Methods

2.1. Cooling methods

Water quenching is widely used in the industry because of its simplicity. ASTM C1525-04 prescribes the determination of resistance to thermal shock in advanced ceramics by water quenching. This method is based on the idea of the Hasselman plot,18 in which heated flexure specimens are quenched by a cold water bath. Subsequent flexure tests on the quenched specimens give the relation between strength degradation and temperature differential. The critical temperature differential is established from the temperature differential that produces a 30% reduction in flexural strength.

JIS R 1615 provides a procedure for quenching ceramics in water. It prescribes that the specimen configuration should be a pencil-shaped circular cylinder to avoid drag from atmospheric air in water, based on the research of Sakuma et al.19 and that a statistical approach to crack appearance on the specimen surfaces when the heated specimens are quenched by a cold water bath. Subsequent flexure tests on the quenched specimens give the relation between strength degradation and temperature differential. However, the critical problem in the water quenching is that water exhibits complicated boiling behavior on the specimen surfaces when the heated specimen is quenched in cold water. Becher et al.1 mentioned the absence of quantitative agreement between thermal shock parameters and observations and explained that specimen geometry and size could be a factor in the thermal shock resistance because the Biot modulus is a function of the characteristic heat transfer length. The Biot modulus is also affected by specimen density,20 drop height of the specimen,20 and the bath and the specimen temperatures.20 Furthermore, the critical temperature differential is not a physical property of materials13 and not a reliable indicator of the onset of thermal shock fracture, as mentioned by Faber et al.2 and Rogers and Emery.24 Several alternative cooling media, including liquid metals,25-27 salt,28 air-jet,2,5,29-32 oil,33-36 helium gas,37 a fluidized bed,38 and water-jet39 were used to minimize the effect of boiling on the heat transfer coefficient of the specimen and assure mild heat transfer conditions. Other cooling media included liquid nitrogen for superconducting materials, used by Osterstock et al.,40 and a cooled brass rod that pressed on a specimen surface, as proposed by Rogers and Emery.24

Thermo-mechanical properties of ceramics normally have strong temperature dependencies, and the phenomenon of thermal shock fracture occurs with transient temperature variation over a short time range. Therefore, it is necessary to calculate precise temperature and thermal stress variations and estimate the temperature-at-failure and the time-to-failure. The time-to-failure in thermal shock experiments is detected by acoustic emission (AE) equipment. AE signals are very sensitive to crack propagation and the growth of micro- and macro-cracks.5,24,41

To resolve the problems inherent in water quenching, Tanaka42 proposed a novel technique called the water-flow cooling (WFC) technique, as shown in Fig. 1. The technique utilized a constant water-flow as a cooling medium to control the heat transfer coefficients on the cooling surface of the specimen. The WFC specimen covered with an insulator was constantly heated in an electric furnace while touching the cold water-flow, which cooled the specimen’s surface. Accordingly, the heat transfer coefficient showed less fluctuation than conventional water quench tests. In this case, the Biot modulus was a small value at approximately 1. Furthermore, the complicated boiling phenomenon on the specimen surface was not present, and the relation between the heat transfer coefficients and the temperature of the specimen surface became almost constant. This observation was crucial because the thermal stress resistance is strongly influenced by the heat transfer coefficient observed in traditional water quench tests, as described by Becker.43 In this technique, no edge or corner effects were observed on the specimen.44 In addition, the fact that β is almost 1 is favorable for the thermal shock strength, R_{1C}, which will be explained in 3.1.

Fig. 2 compares the average heat transfer coefficients (a) in a conventional water quench test45 and (b) in the WFC test.46 The heat transfer coefficients are indicated by the open circles in (a), by the solid circles at a water velocity of 0.2 ms$^{-1}$ in (b), and by the open triangles at a water velocity

![Fig. 1. Schematic diagram of the water-flow cooling test.](Image)
of 0.8 ms\(^{-1}\) in (b). In the water quench test, the average heat transfer coefficient varied from 5 to 23 [kW m\(^{-2}\) K\(^{-1}\)]. In the WFC test, the coefficients became almost constant when the velocity of the water was 0.8 ms\(^{-1}\). The WFC technique was applied successfully for porous ceramics by Tanaka et al.\(^46\) when the water-infiltrated in the pores of the material was taken into account.

2.2. Indentation method

After thermal shock testing, the retained strength for many specimens needed to be measured to estimate the critical temperature differential, \(\Delta T_c\). To reduce the number of specimens that needed to be measured, an indentation method was developed as an alternative approach.\(^2,15,33,47-54\) A pre-crack with known geometry and position was used to remove many of the uncertainties in the specimen. Knoop indentation\(^2,47\) and Vickers indentation\(^15,48-54\) were used in water baths\(^15,47-52,54\) or glycerin baths.\(^53\)

However, Quinn and Bradt\(^55\) described how the Vickers indentation test was not reliable in testing the fracture toughness of ceramics. One of the experimental problems for the Vickers indentation test was shown by Nawa et al.\(^56\) in their study on TZP/Mo nanocomposites, where nanocomposites with more than 30 vol% Mo showed an abnormal increase in fracture toughness as measured by the IF (indentation fracture) method. Therefore, when using the Vickers indentation test, it is recommended to confirm the linear relation between \(P^{2/3}\) and \(c\) in the behavior of the median-radial crack system in advance,\(^40\) where \(P\) represents the indented load and \(c\) is the length of the radial crack.

2.3. Heating methods

Various heat sources could be used to evaluate the thermal shock resistance of brittle materials, such as arc-discharge or Joule heating,\(^57,58\) moving electric beam,\(^59\) laser beam,\(^60-63\) hot gas-jet,\(^64\) plasma jet,\(^65\) electrical resistance heating,\(^4\) and infrared radiation heating (IRH).\(^13,66,67\) In the electrical resistance heating method, a ruthenium film was pasted on the peripheral surface of a circular disk specimen, and the assembly was heated by electrical resistance. The estimated effective heat flux was \((5-10) \times 10^5 [W \cdot m^{-2}]\) with laser beam heating, \(4 \times 10^7 [W \cdot m^{-2}]\) with arc-discharge heating, and \(1.5 \times 10^5 [W \cdot m^{-2}]\) with IRH.\(^68\)

Benz et al.\(^60\) proposed the parameter \(\square \cdot t^{1/2}\) as a new measure to evaluate the thermal shock strength, where \(\square\) and \(t\) represented the impinging energy flux of the laser and the pulse length, respectively. Akiyama et al.\(^61\) and Amada et al.\(^62\) used the critical power density of a laser as a measure of the thermal shock strength. Wei and Walsh\(^64\) used the relation between the critical temperature differential and the probability of thermal shock failure to rank materials. Awaji and Sato\(^46\) and Sato et al.\(^58\) analyzed the stress intensity factor of a specimen shaped as a circular disk with an edge crack numerically and proposed the concept of thermal shock fracture toughness as a new thermal shock parameter, which will be explained in 3.2.

The arc-discharge heating method was developed by Sato et al.\(^57\) to estimate the thermal shock strength of graphite, which has a high thermal shock resistance, using a specimen shaped as a circular disk. However, this technique was only applicable for electrically conductive materials. The IRH equipment was developed by Endo of Thermo-Riko Co. Ltd. in 1982,\(^69,70\) which was used by Awaji to develop the IRH thermal shock test method for ceramics that was supported by Grants-in-Aid for Scientific Research from the Ministry of ESC Japan (1982 and 1984). The first paper on the IRH thermal shock test was published in 1995 by Awaji and Endo.\(^57\)

Fig. 3 shows the schematics of the IRH equipment, where an IRH (halogen) lamp was placed at one focus of the ellipsoi-
dal gold-coated reflector and the surface of the quartz rod was placed at the other focus. Two IRH sets were used to heat both sides of a circular specimen. The IRH technique was based on the concept of the arc-discharge heating method and is applicable for materials that are not electrically conductive. The temperature and stress distributions were analyzed numerically taking into account the temperature-dependent thermo-mechanical properties using an implicit finite difference scheme based on the Crank-Nicolson method.

The thermal shock resistances to fracture and crack propagation were estimated in both the ambient and elevated temperature environments. Some experimental results are introduced in 3.3.

3. Thermal Shock Parameters

3.1. Problems of thermal shock parameters

To establish the thermal shock parameters as a physical property of the materials, the parameters should only be defined by fundamental and relevant parameters already proposed. Each material under thermal shock loading should be characterized by two parameters at the onset of brittle fracture: thermal shock strength and thermal shock fracture toughness. A rapidly cooled hot plate was used to illustrate a typical thermal shock environment and the associated problem of thermal stress: the environment was also used to introduce suitable thermal shock parameters. The relation between the temperature differential and the maximum thermal stress due to the cooling plate is expressed by the following well-known approximations:

For a small Biot modulus,

$$\Delta T = \frac{\lambda \sigma_{max} 3.25(1-\nu)}{E\alpha h l}$$

and for a large Biot modulus

$$\Delta T = \frac{\sigma_{max} (1-\nu)}{E\alpha}$$

where ΔT represents the temperature differential, σ_{max} is the maximum thermal stress, E is Young’s modulus, α is the thermal expansion coefficient, and ν is Poisson’s ratio. Using the Biot modulus β and the normalized maximum stress defined as

$$\sigma^*_{max} = \frac{\sigma_{max} (1-\nu)}{E\alpha \Delta T}$$

Eqs. (1) and (2) could be rewritten as

$$\frac{1}{\sigma^*_{max}} = \frac{3.25}{\beta}$$

and

$$\sigma^*_{max} = 1$$

Fig. 4 shows the exact relation between the normalized maximum thermal stress and the Biot modulus indicated by the bold curve; the approximations by Eqs. (1)' and (2)' are indicated by the two thin solid lines. As seen from Fig. 4, Eq. (1)' gave a better approximation in the range of $\beta \leq 1$, and Eq. (2)' was only applicable in the range of $\beta > 100$.

Eliminating the numerical constant and the factors related to the thermal and experimental environment from the right-hand side of Eq. (1), i.e., $3.25, h$ (cooling condition), l (specimen configuration), and $(1-\nu)$ (biaxial stress state), the critical value of the combination of the material properties is expressed for a mild thermal shock test as:

$$R_{1C} = \frac{\lambda \sigma_B}{E\alpha}$$

where R_{1C} represents the thermal shock strength under the critical temperature differential ΔT_c, and σ_B is the strength of the material. The thermal shock strength characterizes the resistance of a material to the onset of fracture and is, therefore, one of the physical properties of the material.

The classical thermal stress resistance parameters are expressed as:

$$R = \frac{\lambda \sigma_B (1-\nu)}{E\alpha}$$

for a small Biot modulus,
As mentioned previously, the term \((1 - \nu)\) in these equations should be eliminated. Many researchers referenced Eqs. (5) and (6), but Mai and Atkins,\(^{20}\) Lewis,\(^{74}\) Anzai and Hashimoto,\(^{20}\) and Rogers and Emery\(^{38}\) stated that no agreement existed between the thermal shock resistance parameter and the critical temperature differential, \(\Delta T_c\). Furthermore \(\Delta T_c\) is not a reliable indicator of the onset of thermal shock fracture, as Table 1 illustrates.

For a plate with a crack under mode I loading, the stress intensity factor is given in the following general form as

\[
R = \frac{\sigma_w(1-\nu)}{E\alpha}, \tag{6}
\]

where \(B\) represents the shape factor, \(\sigma_w\) is the normal stress, and \(c\) is the half-crack length. By substituting Eq. (7) into Eq. (1), the following equation is derived:

\[
\Delta T = \frac{K_2D^2(1-\nu)}{h\lambda B/\pi c^2}. \tag{8}
\]

Eliminating the factors related to the thermal and experimental environments from the right-hand side of Eq. (8), the critical value of the combination of the material properties is expressed for a mild thermal shock test as\(^{15,66}\)

\[
R_{sc} = \frac{K_{sc}}{E\alpha}, \tag{9}
\]

where \(R_{sc}\) represents the thermal shock fracture toughness,\(^{56}\) and \(K_{sc}\) represents the intrinsic fracture toughness of the materials. The thermal shock fracture toughness represents the resistance of a material to the onset of crack propagation under thermal shock loading and is one of the physical properties of the materials.

Table 1 illustrates the analogy between the static fracture by a three-point flexure test and the thermal shock fracture in a cooled plate. In this table, \(P\) represents the flexure load, \(P_c\) is the critical load, \(D = 2BH^2/3S\), \(B\) and \(H\) is the width and height of the flexure specimen, respectively, \(S\) is the span length, \(Y\) is the shape factor, \(n = c/H\), and \(c\) is the length of the edge crack. The temperature differential \(\Delta T\) under thermal shock corresponds to the load \(P\) under a static load. Furthermore, the critical values \(\Delta T_c\) and \(P_c\) are not material constants\(^{24}\) because they contain factors related to thermal and experimental environments. Only the strength factors \((\sigma_c\) and \(R_{sc})\) and the fracture toughness factors \((K_{sc}\) and \(R_{sc}\)) could be treated as material constants.

3.2. A constant heat flux method

The usefulness of the thermal shock parameters \(R_{sc}\) and \(R_{sc}\), mentioned above could be limited if they could not be evaluated directly from thermal loading like the conventional parameters. However, the constant heat flux method made it possible to evaluate these parameters directly from the electric power charged. The heat flux \(q\) into the circular disk specimen is calculated from the electric power for the arc-discharge heating method and the IRH method as

\[
q = \frac{nW}{\pi a^2}, \tag{10}
\]

where \(n\) represents the efficiency of the heat flux, \(W\) is the electric power, and \(a\) is the radius of the heating area.

The transient thermal stress in a circular disk was analyzed based on the temperature distribution using Timoshenko and Goodier’s well-known quasi-static analytical method\(^{56}\). The maximum value of the circumferential stress increased with an increase in the normalized heating time, \(\tau\), defined as

\[
\tau = \frac{\kappa t}{R^2}, \tag{11}
\]

where \(\kappa\) represents the thermal diffusivity, \(t\) is the actual heating time, and \(R\) is the radius of the disk. The normalized maximum stress \(S_{max}\) is defined as

\[
S_{max} = \frac{\sigma_{max}}{E\alpha Q}, \tag{12}
\]

where \(\sigma_{max}\) represents the maximum circumferential stress, \(Q = qR^2/H\), and \(H\) is the thickness of the disk. Therefore, the thermal shock strength could be expressed in terms of the electric power charged, \(W\), and the maximum thermal stress at the fracture point, \(S_c\), using Eqs. (4), (10), (12), and \(Q\) as

\[
R_{sc} = \frac{nW}{\pi H(\alpha/R)^2}. \tag{13}
\]

The thermal shock strength could then be estimated directly from \(W\) and \(S_c\) at the fracture point.

In the same manner, the thermal shock fracture toughness could be estimated using a circular disk with an edge crack. The normalized stress intensity factor \(N_i\) is

Table 1. Comparison between the Static Fracture of a 3-point Flexure Specimen and the Thermal Shock Fracture in a Cooled Plate

<table>
<thead>
<tr>
<th>Load</th>
<th>Static Fracture</th>
<th>Thermal Shock Fracture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stress</td>
<td>(\sigma_{max} = P/D \propto P)</td>
<td>(R_i = \lambda\sigma_{max}E\alpha\propto\Delta T)</td>
</tr>
<tr>
<td>Strength</td>
<td>(\sigma = P/D \propto P_c)</td>
<td>(R_i = \lambda\sigma_{max}E\alpha\propto\Delta T)</td>
</tr>
<tr>
<td>Fracture Intensity Factor</td>
<td>(K_f = P/DY(n)H^{1/2} \propto P_c)</td>
<td>(R_i = \lambda K_{sc}E\alpha\propto\Delta T)</td>
</tr>
<tr>
<td>Fracture Toughness</td>
<td>(K_f = P/DY(n)H^{1/2} \propto P_c)</td>
<td>(R_i = \lambda K_{sc}E\alpha\propto\Delta T)</td>
</tr>
</tbody>
</table>

\(P = \) flexure load; \(D = 2BH^2/3S\); \(B\), width; \(H\), height; \(S\), span length; \(n = c/H\); \(c\), edge crack depth; \(Y\), shape factor.
defined as

\[K_1 = N_{1C} \sqrt{\pi} c E \alpha Q. \] (14)

where \(c \) indicates the depth of the edge crack. Then, the thermal shock fracture toughness is expressed as

\[R_{2e} = N_{1C} \sqrt{\pi c} \frac{N W}{\pi H(a/R)^2}. \] (15)

The thermal shock fracture toughness could be determined by the electric power, \(W \), and the normalized critical stress intensity factor, \(N_{1C} \), as the crack begins to propagate. The thermal shock test with a constant heat flux thus provided a direct ‘en bloc’ measurement of both the thermal shock strength and the thermal shock fracture toughness from the electric power charged.

3.3. Experimental results

Some experimental results of the WFC and IRH tests were introduced briefly in. Only the thermal shock strength was considered in this study. The stress distribution and size effects on the fracture strength between the flexure specimen and the circular disk specimen used for the thermal shock study were modified using Weibull statistics. Commercially available alumina was used for the tests. In Fig. 5, the vertical axis indicates the experimentally obtained \(R_{1C} \) (exp.\(R_{1C} \)) and calculated \(R_{1C} \) (cal.\(R_{1C} \)). The infrared radiation heating results are shown by open symbol marks, and the water-flow cooling results are shown by solid triangles.

![Fig. 5. Relation between the experimentally obtained \(R_{1C} \) (exp.\(R_{1C} \)) and calculated \(R_{1C} \) (cal.\(R_{1C} \)). The infrared radiation heating results are shown by open symbol marks, and the water-flow cooling results are shown by solid triangles.](Image)

results of the WFC test. A relatively good correlation was observed between the exp.\(R_{1C} \) and the cal.\(R_{1C} \) and the \(R_{1C} \) in the IRH test decreased as the initial temperatures \(T_i \) for the preheated specimens increased from 30 to 600°C. At around room temperature, the \(R_{1C} \) had the highest value among the data. As a consequence, the \(R_{1C} \) is recognized as the temperature-dependent material property.

4. Related Topics

4.1. Measurement of heat transfer coefficients

Whereas the temperature and thermal stress distributions are strongly influenced by the heat transfer coefficient \(h \), the \(h \) value depends on factors such as \(A_T \), the turbulence of the medium, the incidence of boiling, and the shape of the body. The \(h \) value in a water quench test varies significantly during a short time range, and experimentally obtained results are limited. Singh et al. inferred the \(h \) value versus film temperature from the experimental \(A_T \) values during a water quench test. Rogers et al. calibrated the \(h \) value based on the probability of failure. Sakuma et al. estimated the \(h \) values for water, silicone oil, and liquid sodium baths using a pencil-shaped silver \((h = 429 \text{ Wm}^{-1}\text{K}^{-1})\) specimen. Lee et al. measured the \(h \) value of ceramic specimens using a thin-foil of a “cement-on” K-type thermocouple. Nishikawa et al. measured the transient temperature to estimate the \(h \) value using a thermocouple and a double-thermocouple technique in a zirconia specimen that has a small temperature-dependent thermal conductivity. Tomura and Cavalieri estimated the \(h \) value by fitting calculated temperature profiles with measured temperatures during the air jet cooling test. Honda et al. used a pencil-shaped nickel \((h = 90.9 \text{ Wm}^{-1}\text{K}^{-1})\) specimen for a water quench test, shown in Fig. 2(a). Tanaka et al. used a silver plate specimen for the WFC tests, shown in Fig. 2(b).

4.2. Temperature/stress analyses and damage detection

To estimate thermal shock parameters, the temperature and stress distributions in a thermal-shocked specimen need to be precisely calculated taking into account the temperature-dependent thermo-mechanical properties. Even though Mizutani et al. used an imperfect one-dimensional heat conduction equation, they applied a variable transformation technique to the finite difference method to analyze the non-linear heat conduction equation with temperature-dependent thermal properties. Tanaka et al. and Awaji et al. analyzed one-dimensional and axisymmetric non-linear heat conduction equations using an implicit finite difference method based on the Crank-Nicolson scheme, where the thermo-mechanical properties were approximated by polynomial equations of temperature, and applied the variable transformation technique. Mignard et al. analyzed a two-dimensional heat conduction equation with temperature-dependent thermal properties while using finite differences and finite elements to solve the non-linear heat conduction equations. Several researchers used finite element methods
to analyze temperature and stress distributions taking into account the temperature-dependent thermo-mechanical properties. In a water quench test, some crack on a specimen could be extended by stress corrosion cracking (SCC). Badaliance et al. showed the significance of SCC on the thermal stress resistance of a material. Rogers et al. mentioned that two distinct flaw populations were present in a water quenched specimen: the initial flaws and the extended cracks due to thermal shock. Awaji et al. measured the retained strength of water quenched alumina and observed three statistical distributions: the initial inert strength, the retained strength of the thermally shocked specimen without thermal shock cracking, and the retained strength with thermal shock cracking. The thermally shocked specimens contained more or less SCC behavior. The critical temperature differential was statistically estimated using the original distributions of the retained strength without thermal shock cracks.

Nondestructive techniques were proposed by several researchers to estimate the relation between thermal shock temperature and damage. Oguma and Motomiya proposed the BET (Brunauer-Emmett-Teller) method to detect surface crack areas. This method could detect the critical temperature differential, but it could not detect interior cracks. Hefetz and Rokhlin, Vedula et al., and Boccaccini et al. used an ultrasonic technique to estimate damage. Lee et al. employed non-destructive measures to determine the elastic modulus and internal friction. Mignard et al. used an AE technique to obtain the direct relation between AE and thermal shock degradation.

4.3. Thermal shock tests for special materials

Vandeperre et al. studied the influence of crack-deflection at the interlayer of the layered material on the thermal shock behavior of the material. Sherman constructed an alumina/metal laminate by alternating alumina plates and nickel/copper foils and conducted a water quench test. The design of functionally graded materials (FGMs) is now focused on optimizing the material structure to yield appropriate residual stresses and minimizing the thermal stresses under thermal shock loading. Kokini et al. tested functionally graded thermal barrier coating. Kawasaki and Watanabe evaluated the thermal fracture behavior of metal/ceramic FGMs by heating them with a burner. Wang et al. introduced a finite element/finite difference method to analyze the time-dependent temperature distributions in a material by taking into account the temperature-dependent material properties. Jin et al. fabricated mullite/Mo FGM plates using a powder metallurgy process and estimated the thermal shock properties by combining the IRH and WFC techniques.

5. Strength and Fracture Toughness

5.1. Strength of ceramics

Microstructural-level residual stresses occur in polycrystal-line ceramics during the cooling process after sintering due to anisotropic thermal expansion and crystallographic mis-orientation across the grain boundaries. Gupta reported that the internal residual stresses caused by the thermal expansion anisotropy were observed in polycrystalline alumina and showed that the material with larger grain size had lower strength. The magnitude of these stresses was sufficiently high according to the grain size. Evans analyzed residual stresses caused by thermal expansion anisotropy in polycrystalline ceramics and clarified that stress was intensified the most at the triple point of the grain boundary. Vedula and Zimmermann et al. simulated the residual stress in polycrystalline alumina using a finite element code.

It should be noted that sintered polycrystalline ceramics typically have large amount of residual stresses in the grains, and the residual stresses are in a self-equilibrium state in the specimen. If a certain grain has a tensile residual stress, the neighboring grains would have compressive stresses. Thus, it is conceivable that the strength of the specimen would significantly decrease if tensile residual stresses were present around the weakest defect. Nanocomposites proposed by Niihara had special strengthening mechanisms explained by the residual stress release mechanism. An example is shown in Fig. 7 and Table 2, which will be explained later. The fracture toughness of ceramics, however, is rarely affected by the residual stresses as long as the fracture toughness is measured with large pre-cracks. In addition, the strength of brittle materials depends strongly on the size of the weakest defect inherent in the material, and the experimentally obtained strength of ceramics depends on the specimen volume under tensile and shear stresses and the stress state. Hence the strength of brittle materials needs to be treated statistically and not as a physical property, whereas fracture toughness is a more well-defined physical property. To discuss the relation between the material strength and fracture toughness, a new concept of intrinsic strength with no size effect needs to be defined.

5.2. Intrinsic strength

The intrinsic strength of ceramics is estimated as follows. Consider a crack in an infinite plate of brittle ceramics under mode I loading. The exact normal stress σ on the r-axis, as shown in Fig. 6, is analyzed by Okamura as

$$\sigma = \frac{\sigma(a + r)}{\sqrt{2a(r + r^2)}},$$ \hspace{1cm} (16)

where σ represents the remote stress on the plate, a is the half-crack length, and r is the distance from the crack tip. Although the J-integral based on non-linear elastic fracture analysis is applicable widely, a fracture criterion for brittle ceramics is usually expressed by the linear elastic fracture mechanics (LEFM). Assuming that the crack length in the specimen is sufficiently long compared with the frontal process zone (FPZ) size, the Griffith-Irwin criterion for the crack extension based on the LEFM can be
pared with the FPZ size state. In this case, the crack length is sufficiently long com-

mation for the case of a long crack under a critical stress.

The relation between the exact stress distribution on the plate, and the relation between the critical local stress ahead of a crack tip in an infinite plate with a long crack.

\[\sigma_y = \frac{K_c}{\sqrt{2\pi r}} \]

(18)

and the relation between the critical local stress \(\sigma_c \) at \(r_0 \) is expressed as

\[\sigma_c = \frac{K_{IC}}{\sqrt{2\pi r}} \]

(19)

Equation (19) implies that \(K_{IC}, r_c \), and \(\sigma_c \) are mutually dependent material constants and the \(\sigma_c \) value can be calculated from the values of \(K_{IC} \) and \(r_c \). In addition, the global approach of the Griffith-Irwin criterion and the local approach of the local fracture criterion become identical at \(r_0 \) in the case of a long crack.

On the other hand, the LEFM is not normally applicable to the inherent flaws in ceramic materials.\(^{102,104}\) For such a short crack problem, Eq. (16) must be used to calculate the critical local stress. In this case, the stress at \(r_0 \) under a critical stress state is expressed as

\[\sigma_c = \frac{\pi}{2r_0} \left[\frac{K_{IC}}{\sqrt{2\pi r_0}} \right]^2 \]

(20)

The strength \(\sigma_f \) of the infinite plate with the half-crack length \(a_c \) is hence given by

\[\sigma_f = \frac{\pi}{2r_0} \left[\frac{K_{IC}}{\sqrt{2\pi r_0}} \right]^2 \]

(21)

Taking the limit \(a_c \rightarrow 0 \) in Eq. (21), the following relation is derived:

\[\lim_{a_c \rightarrow 0} \sigma_c \rightarrow \sigma_c \]

(22)

Equation (22) indicates that \(\sigma_c \) has two significant meanings: the critical local stress ahead of a crack tip and the strength of an infinite plate with no crack. Therefore, \(\sigma_c \) is the inherent strength with no size effect and should be one of the fundamental properties of the material. The experimentally obtained relation between the flexure strength and the intrinsic strength was expressed in ref. 102.

5.3. Relation between strength and toughness

The critical FPZ size can be derived using a statistical treatment. Because the technique for estimating the critical FPZ size was expressed in ref. 102, only a summary is presented here. Equation (19) and the following formula were used to estimate the critical local stress,

\[\frac{\sigma_c}{\sigma_B} = \left(\frac{V_B}{V_{FPZ}} \right)^{1/m} \]

(23)

where \(V_B \) and \(V_{FPZ} \) represent the effective volumes of the specimen and the critical FPZ of ceramics, respectively, and \(m \) is a shape parameter of Weibull distribution. From Eqs. (19) and (23), the following relation between the strength and fracture toughness is derived under the small scale yielding condition:

\[K_{IC} = \sigma_c \sqrt{2\pi r_0} \times \sigma_c \times r_0^{1/2} \propto \sigma_B \times r_0^{1/2} \]

(24)

The equation describes the relation between the fracture toughness, the intrinsic strength, the critical FPZ size, and the flexure strength of brittle materials. The fracture strength is essentially proportional to the fracture toughness of brittle materials.
The sizes of the 3-point flexure specimen are based on the FPZ expansion mechanism as in the case of Niihara’s nanocomposites, and annealed nanocomposites. The details were described in refs. 102 and 104. It is commonly known that materials with a larger critical FPZ size have higher fracture toughness, but there is no factor to express the thermal shock characters in Eq. (25). Hence the parameter is not an appropriate measure of the thermal shock resistance to crack propagation.

Fig. 7 shows the relation between and in monolithic alumina, as-sintered alumina-nickel nanocomposites, and annealed nanocomposites in an alumina-nickel (3 vol%) system. A nearly linear relation was observed between and . The Weibull shape factor is .

Hasselman’s thermal shock damage resistance parameter is modified under the plane strain condition as

\[
R''' = \frac{(K_{IC})^2}{\sigma_B} (1 + \nu).
\]

(25)

After inserting Eq. (24) into Eq. (25), the parameter was seen to be proportional to . Mai and Atkins used the ratio to explain the retained strength of thermally shocked specimens and showed that the retained strength of materials with a larger critical FPZ size have higher fracture toughness, but there is no factor to express the thermal shock characters in Eq. (25). The water-flow cooling method improved upon the conventional water quench cooling technique. Constant heat flux methods, such as the arc-discharge heating test, the Joule heating test, and the infrared radiation heating test, estimated the thermal shock strength and thermal shock fracture toughness directly from the electric power charged. The thermal shock strength and thermal shock fracture toughness were defined as the physical properties of thermal shock resistance based on a stress criterion and an energy criterion. These thermal shock parameters were described as a function of temperature at the fracture point of the specimen. The relation between the thermal shock strength and the thermal shock fracture toughness was derived by comparing the strength and the fracture toughness under static mechanical loading.

6. Conclusions

Methods to test thermal shock were reviewed based on the following viewpoints: the precise estimation of temperature and stress distributions, appropriate thermal shock parameters, and the relation between the strength and fracture toughness. The water-flow cooling method improved upon the conventional water quench cooling technique. Constant heat flux methods, such as the arc-discharge heating test, the Joule heating test, and the infrared radiation heating test, estimated the thermal shock strength and thermal shock fracture toughness directly from the electric power charged.

\[
R_{SC} \propto R_{IC} \propto \rho_0^{1/2}.
\]

(26)

This equation gives the proper relation between the thermal shock strength and thermal shock fracture toughness.

REFERENCES

713-714 (1980).