Estimation for Two-Parameter Rayleigh Distribution Based on Multiply Type-II Censored Sample

Jun-Tae Han\(^1\) \cdot Suk-Bok Kang\(^2\)

Abstract

For multiply Type-II censored samples from two-parameter Rayleigh distribution, the maximum likelihood method does not admit explicit solutions. In this case, we propose some explicit estimators of the location and scale parameters in the Rayleigh distribution by the approximate maximum likelihood methods. We compare the proposed estimators in the sense of the mean squared error for various censored samples.

Keywords: Approximate maximum likelihood estimator, Multiply Type-II censored sample, Rayleigh distribution

1. Introduction

The random variable \(X\) has the Rayleigh distribution if it has a probability density function (pdf) of the form

\[
 f(x; \theta, \sigma) = \frac{x - \theta}{\sigma^2} \exp\left\{ -\frac{(x - \theta)^2}{2\sigma^2} \right\}, \quad x \geq \theta, \quad \sigma > 0, \quad (1.1)
\]

where \(\theta\) and \(\sigma\) are the location and the scale parameters, respectively.

It has been noted that in most cases, the maximum likelihood method does not provide explicit estimators based on complete and censored samples. Especially, when the sample is multiply censored, the maximum likelihood method does not admit explicit solutions. Hence it is desirable to develop approximations to this

1) Graduate student, Department of Statistics, Yeungnam University, Gyeongsan, 712-749, Korea
2) Corresponding Author : Professor, Department of Statistics, Yeungnam University, Gyeongsan, 712-749, Korea
E-mail : sbkang@yu.ac.kr
maximum likelihood method which would provide us with estimators that are explicit functions of order statistics.

For multiply Type-II censoring, Balasubramanian and Balakrishnan (1992) and Upadhyay et al. (1996) considered some estimations for the exponential distribution under multiply Type-II censoring. Kong and Fei (1996) discussed the limit theorems for the maximum likelihood estimator under general multiply Type-II censoring. Kang (2005) derived the approximate maximum likelihood estimators (AMLEs) of the scale parameter and the location parameter in the extreme value distribution based on multiply Type-II censored samples. Kang and Lee (2005) derived the AMLEs of the scale and location parameters in the two-parameter exponential distribution based on multiply Type-II censored samples. They also obtained the moments of the proposed estimators. Recently, Han and Kang (2006) derived some AMLEs of the scale parameter when the location parameter is known and also derived an AMLE of the location parameter when the scale parameter is known in the Rayleigh distribution under multiply Type-II censoring.

In this paper, we derive the AMLEs of the scale parameter \(\sigma \) and the location parameter \(\theta \) in the two-parameter Rayleigh distribution under multiply Type-II censoring by the approximate maximum likelihood estimation method when two parameters are unknown. We also compare the proposed estimators in the sense of the MSE for various censored samples.

2. Approximate Maximum Likelihood Estimators

We assume that \(n \) items are put on a life test, but only \(a_1, \ldots, a_s \) failures are observed, the rest are unobserved or missing, where \(a_1, \ldots, a_s \) are considered to be fixed. If this censoring arises, the scheme is known as multiply Type-II censoring scheme.

Let
\[
X_{a_1:n} \leq X_{a_2:n} \leq \cdots \leq X_{a_s:n}
\]
be the multiply Type-II censored sample, where \(1 \leq a_1 < a_2 < \cdots < a_s \leq n \) and \(X_{1:n}, \ldots, X_{a_s:n} \) are order statistics of \(X_1, \ldots, X_n \).

Let \(a_0 = 0, \ a_{s+1} = n+1, \ F(x_{a_0:n}) = 0, \ F(x_{a_{s+1}:n}) = 1 \), then the likelihood function based on the multiply Type-II censored sample (2.1) is given by
\[
L = \frac{1}{\sigma^s} \prod_{j=1}^{s} \frac{n!}{(a_j - a_{j-1} - 1)!} [F(Z_{a_{j+1}:n})]^{a_j-a_{j-1}-1} [1 - F(Z_{a_{j+1}:n})]^{a_{j+1}-a_j}
\times \prod_{j=1}^{s} f(Z_{a_j:n}) \left[\prod_{j=2}^{s} [F(Z_{a_{j-1}:n}) - F(Z_{a_j:n})]^{a_j-a_{j-1}-1} \right],
\]
where $Z_{i:n} = (X_{i:n} - \theta)/\sigma$, $f(z) = ze^{-z^2/2}$ and $F(z) = 1 - e^{-z^2/2}$ are the pdf and the cdf of the standard Rayleigh distribution, respectively.

From the equation (2.2), we obtain the likelihood equations as follows:

$$\frac{\partial \ln L}{\partial \sigma} = \frac{-1}{\sigma} \left[2a_i + (a_i - 1) \frac{f(Z_{i:n})}{F(Z_{i:n})} Z_{i:n} - (n - a_i) Z_{a_i:n} - \sum_{j=1}^{a_i} Z_{j:n}^2
ight. \\
+ \left. \sum_{j=a_i}^{a_{i-1}} (a_j - a_{j-1} - 1) \frac{f(Z_{j:n})Z_{j:n} - f(Z_{j+1:n})Z_{j+1:n}}{F(Z_{j:n}) - F(Z_{j+1:n})} \right] = 0 \quad (2.3)$$

and

$$\frac{\partial \ln L}{\partial \theta} = \frac{-1}{\sigma} \left[(a_i - 1) \frac{f(Z_{i:n})}{F(Z_{i:n})} Z_{i:n} - (n - a_i) Z_{a_i:n} + \sum_{j=1}^{a_i} \frac{1}{Z_{j:n}} - \sum_{j=1}^{a_{i-1}} Z_{j:n} \\
+ \sum_{j=a_i}^{a_{i-1}} (a_j - a_{j-1} - 1) \frac{f(Z_{j:n}) - f(Z_{j+1:n})}{F(Z_{j:n}) - F(Z_{j+1:n})} \right] = 0 \quad (2.4)$$

Since these likelihood equations are very complicated, the equations (2.3) and (2.4) do not admit explicit solutions for σ and θ. So we need some approximate likelihood equations which give explicit solutions.

Han and Kang (2006) obtained some approximations by Taylor series expansion as follows:

$$\frac{f(Z_{i:n})}{F(Z_{i:n})} Z_{i:n} = \alpha_1 + \beta_1 Z_{a_i:n} \quad (2.5)$$

$$\frac{f(Z_{i:n})Z_{i:n} - f(Z_{i+1:n})Z_{i+1:n}}{F(Z_{i:n}) - F(Z_{i+1:n})} = \alpha_i \theta + \beta_i Z_{a_i:n} + \gamma_i Z_{a_{i-1}:n} \quad (2.6)$$

$$\frac{f(Z_{i:n})}{F(Z_{i:n})} = \alpha_2 + \beta_2 Z_{a_i:n} \quad (2.7)$$

$$\frac{f(Z_{i:n})}{F(Z_{i:n})} - \frac{f(Z_{i+1:n})}{F(Z_{i+1:n})} = \alpha_2 + \beta_2 Z_{a_i:n} + \gamma_2 Z_{a_{i-1}:n} \quad (2.8)$$

$$\frac{f(Z_{i:n})}{F(Z_{i:n})} - \frac{f(Z_{i-1:n})}{F(Z_{i-1:n})} = \alpha_2 + \beta_2 Z_{a_i:n} + \gamma_2 Z_{a_{i-1}:n} \quad (2.9)$$

$$\frac{1}{Z_{a_i:n}} = \kappa_i + \delta_i Z_{a_i:n} \quad (2.10)$$

where

$$\xi = F^{-1}(p_i) = \left[-2\ln(1-p_i) \right]^{1/2}$$

and

$$\frac{f(Z_{i:n}) - f(Z_{i+1:n})}{F(Z_{i:n}) - F(Z_{i+1:n})} = \alpha_i \theta + \beta_i Z_{a_i:n} + \gamma_i Z_{a_{i-1}:n} \quad (2.11)$$
\[p_i = \frac{i}{n+1}, \quad q_i = 1 - p_i \]
\[\alpha_i = \frac{\xi^2}{p_n} \left[f'(\xi_i) - \frac{f^2(\xi_i)}{p_n} \right] \]
\[\beta_i = \frac{1}{p_n} \left[f(\xi_i) + \xi_i f'(\xi_i) - \frac{f^2(\xi_i)}{p_n} \xi_i \right] \]
\[\alpha_{ij} = K^2 - \frac{\xi^2 f'(\xi_j) - \xi^2 f'(\xi_{j-1})}{p_n - p_{n-1}} \]
\[\beta_{ij} = \frac{1}{p_n - p_{n-1}} \left[(1 - K) f(\xi_j) + \xi_j f'(\xi_j) \right] \]
\[\gamma_{ij} = \frac{1}{p_n - p_{n-1}} \left[(1 - K) f(\xi_{j-1}) + \xi_{j-1} f'(\xi_{j-1}) \right] \]
\[K = \frac{\xi_j f(\xi_j) - \xi_{j-1} f(\xi_{j-1})}{p_n - p_{n-1}} \]
\[\alpha_2 = \frac{1}{p_n} \left[f(\xi_2) - \xi_2 f'(\xi_2) + \frac{f^2(\xi_2)}{p_n} \xi_2 \right] \]
\[\beta_2 = \frac{1}{p_n} \left[f'(\xi_2) - \frac{f^2(\xi_2)}{p_n} \right] \]
\[\alpha_{2j} = \frac{1}{p_n - p_{n-1}} \left[(1 + K) f(\xi_j) - \xi_j f'(\xi_j) \right] \]
\[\beta_{2j} = \frac{1}{p_n - p_{n-1}} \left[f'(\xi_j) - \frac{f^2(\xi_j)}{p_n - p_{n-1}} \right] \]
\[\gamma_{2j} = \frac{1}{(p_n - p_{n-1})^2} \]
\[\alpha_{3j} = \frac{1}{p_n - p_{n-1}} \left[(1 + K) f(\xi_{j-1}) - \xi_{j-1} f'(\xi_{j-1}) \right] \]
\[\beta_{3j} = \frac{f(\xi_j) f(\xi_{j-1})}{(p_n - p_{n-1})^2} = -\gamma_{2j} \]
\[\gamma_{3j} = \frac{1}{p_n - p_{n-1}} \left[f'(\xi_{j-1}) + \frac{f^2(\xi_{j-1})}{p_n - p_{n-1}} \right] \]
\[\kappa_j = \frac{2}{\xi_j}, \quad \delta_j = -1/\xi^2, \quad \alpha_{ij} = \alpha_{2j} - \alpha_{3j} \]
\[\beta_{ij} = \beta_{2j} - \beta_{3j}, \quad \text{and} \quad \gamma_{ij} = \gamma_{2j} - \gamma_{3j}. \]

Now making use of the approximate expressions in (2.5), (2.6), (2.7), (2.10), and (2.11), we may approximate the likelihood equations of (2.3) and (2.4) as follows:
\[\frac{\partial \ln L}{\partial \sigma} = -\frac{1}{\sigma} \left[2s + (a_1 - 1)(\alpha_1 + \beta_1 Z_{a_1:n}) - (n - a_s)Z_{a_s:n}^2 - \sum_{j=1}^{s} Z_{a_j:n}^2 \right] \tag{2.12} \]
\[+ \sum_{j=2}^{s} (a_j - a_{j-1} - 1)(\alpha_{ij} + \beta_{ij} Z_{a_{ij}:n} + \gamma_{ij} Z_{a_{ij-1:n}}) \right] = 0 \]

and
\[\frac{\partial \ln L}{\partial \theta} = -\frac{1}{\sigma} \left[(a_1 - 1)(\alpha_2 + \beta_2 Z_{a_2:n}) - (n - a_s)Z_{a_s:n} + \sum_{j=1}^{s} (\kappa_j + \delta_j Z_{a_j:n}) \right] \tag{2.13} \]
\[- \sum_{j=1}^{s} Z_{a_{ij}:n} + \sum_{j=2}^{s} (a_j - a_{j-1} - 1)(\alpha_{ij} + \beta_{ij} Z_{a_{ij}:n} + \gamma_{ij} Z_{a_{ij-1:n}}) \right] = 0. \]

Upon solving the equations (2.12) and (2.13) for \(\sigma \) and \(\theta \) we derive the AMLEs of \(\sigma \) and \(\theta \) as follows:
\[\hat{\sigma} = \frac{-B_1 + \sqrt{B_1^2 - 4A_1 C_1}}{2A_1} \tag{2.14} \]
and
\[\hat{\theta} = M' \hat{\sigma} + M_0 \tag{2.15} \]

where
\[A = (a_1 - 1)\alpha_2 + \sum_{j=1}^{s} \kappa_j + \sum_{j=2}^{s} (a_j - a_{j-1} - 1)\alpha_{ij} \]
\[B = (a_1 - 1)\beta_2 X_{a_2:n} - (n - a_s)X_{a_s:n} + \sum_{j=1}^{s} \delta_j X_{a_{ij}:n} - \sum_{j=1}^{s} X_{a_{ij}:n} \]
\[+ \sum_{j=2}^{s} (a_j - a_{j-1} - 1)(\beta_{ij} X_{a_{ij}:n} + \gamma_{ij} X_{a_{ij-1:n}}) \]
\[C = (a_1 - 1)\beta_2 - (n - a_s) + \sum_{j=1}^{s} \delta_j - s + \sum_{j=2}^{s} (a_j - a_{j-1} - 1)(\beta_{ij} + \gamma_{ij}) \]
\[M_1 = \frac{A}{C}, \quad M_0 = \frac{B}{C} \]
\[A_1 = 2s + (a_1 - 1)(\alpha_1 - \beta_1 M_1) - (n - a_s - s)M_1^2 \]
\[+ \sum_{j=1}^{s} (a_j - a_{j-1} - 1)(\alpha_{ij} - \beta_{ij} M_1 - \gamma_{ij} M_1) \]
\[B_1 = (a_1 - 1)\beta_1 (X_{a_1:n} - M_2) + 2(a_1 - a_s)M_1(X_{a_1:n} - M_2) + 2M_1 \sum_{j=1}^{s} (X_{a_{ij}:n} - M_2) \]
\[+ \sum_{j=2}^{s} (a_j - a_{j-1} - 1)(\beta_{ij} X_{a_{ij}:n} - M_2 + \gamma_{ij} X_{a_{ij-1:n}} - M_2) \]
\[+ \sum_{j=1}^{s} (X_{a_{ij}:n} - M_2)^2. \]

Second, making use of the approximate expressions in (2.6), (2.7), (2.10), and (2.11), we may approximate the likelihood equation of (2.3) as follows:
\[
\frac{\partial \ln L}{\partial \sigma} = -\frac{1}{\sigma} \left[2s + (a_1 - 1)(\alpha_1 + \beta_1 Z_{i,n}) - (n - a_s) Z_{i,n}^2 - \sum_{j=1}^k Z_{j,n}^2 \right] \\
+ \sum_{j=2}^k (a_j - a_{j-1} - 1)(\alpha_j + \beta_j Z_{i,n} + \gamma_j Z_{i,n-1}) \right] = 0. \tag{2.16}
\]

Upon solving the equations (2.16) and (2.13) for \(\sigma \) and \(\theta \) we derive the AMLEs of \(\sigma \) and \(\theta \) as follows:

\[
\hat{\sigma}_2 = -B_2 + \sqrt{B_2^2 - 4A_2C_2} \quad \tag{2.17}
\]

and

\[
\hat{\theta}_2 = M_1 \hat{\sigma}_2 + M_2. \tag{2.18}
\]

where

\[
A_2 = 2s - (a_1 - 1)M_1(\alpha_1 - \beta_1 M_1) - (n - a_s + s)M_2^2 + \sum_{j=2}^k (a_j - a_{j-1} - 1) \left[\alpha_j - \beta_j M_2 - \gamma_j M_2 \right] \\
B_2 = (a_1 - 1)(\alpha_2 - 2\beta_2 M_1)(X_{i,n} - M_2) + 2(n - a_s)M_1(X_{i,n} - M_2) \\
+ 2M_1 \sum_{j=2}^k (X_{i,n} - M_2) + \sum_{j=2}^k (a_j - a_{j-1} - 1) \left[\beta_j (X_{i,n} - M_2) + \gamma_j (X_{i,n-1} - M_2) \right] \\
C_2 = (a_1 - 1)\beta_2 (X_{i,n} - M_2)^2 - (n - a_s)(X_{i,n} - M_2)^2 - \sum_{j=1}^k (X_{j,n} - M_2)^2.
\]

Third, making use of the approximate expressions in (2.5), (2.7), (2.8), (2.9), (2.10), and (2.11), we may approximate the likelihood equation of (2.3) as follows:

\[
\frac{\partial \ln L}{\partial \sigma} = -\frac{1}{\sigma} \left[2s + (a_1 - 1)(\alpha_1 + \beta_1 Z_{i,n}) - (n - a_s) Z_{i,n}^2 - \sum_{j=1}^k Z_{j,n}^2 \right] \\
+ \sum_{j=2}^k (a_j - a_{j-1} - 1) \left[(\alpha_j + \beta_j Z_{i,n} + \gamma_j Z_{i,n-1}) Z_{i,n} \right] \\
- (\alpha_{a_j} + \beta_{a_j} Z_{i,n} + \gamma_{a_j} Z_{i,n-1}) Z_{i,n} \right] = 0. \tag{2.19}
\]

Upon solving the equations (2.19) and (2.13) for \(\sigma \) and \(\theta \) we derive the AMLEs of \(\sigma \) and \(\theta \) as follows:

\[
\hat{\sigma}_3 = -B_3 + \sqrt{B_3^2 - 4A_3C_3} \quad \tag{2.20}
\]

and

\[
\hat{\theta}_3 = M_3 \hat{\sigma}_3 + M_4. \tag{2.21}
\]

where

\[
A_3 = 2s + (a_1 - 1)(\alpha_1 - \beta_1 M_1) - (n - a_s + s)M_2^2 + \sum_{j=2}^k (a_j - a_{j-1} - 1) \left[(\beta_j + \gamma_j) M_2^2 - \alpha_j M_4 \right]
\]
and (2.11), we may approximate the likelihood equation of (2.3) as follows;

\[B_3 = (a_1 - 1)\beta_1(X_{a_1:n} - M_2) + 2(n - a_1)M_1(X_{a_1:n} - M_2) + 2M_1 \sum_{j=1}^{a} (X_{a_j:n} - M_2) \]

\[+ \sum_{j=2}^{a} (a_j - a_{j-1} - 1) [(a_2 - 2\beta_2 M_1 - \gamma_2 \gamma_1) (X_{a_2:n} - M_2) \]

\[- (a_2 - \beta_2 M_1 + \gamma_2 M_2 - 2\beta_2 M_1) (X_{a_2:n} - M_2)] \]

\[C_3 = - (n - a_1) (X_{a_1:n} - M_2)^2 - \sum_{j=1}^{a} (X_{a_j:n} - M_2)^2 \]

\[+ \sum_{j=2}^{a} (a_j - a_{j-1} - 1) [\beta_2 (X_{a_j:n} - M_2)^2 + (\gamma_2 - \beta_2) (X_{a_j:n} - M_2) (X_{a_{j-1:n}} - M_2) \]

\[- (\gamma_2 (X_{a_{j-1:n}} - M_2)^2] \].

Fourth, making use of the approximate expressions in (2.7), (2.8), (2.9), (2.10),
and (2.11), we may approximate the likelihood equation of (2.3) as follows:

\[\frac{\partial \ln L}{\partial \sigma} = \frac{1}{\sigma} \left[2s + (a_1 - 1)(a_2 + \beta_1 Z_{a_1:n}) Z_{a_1:n} - (n - a_1) Z_{a_1:n} - \sum_{j=1}^{a} Z_{a_j:n}^2 \]

\[+ \sum_{j=2}^{a} (a_j - a_{j-1} - 1) [(a_2 + \beta_2 Z_{a_j:n} + \gamma_2 Z_{a_{j-1:n}}) Z_{a_j:n} \]

\[- (a_2 + \beta_2 Z_{a_j:n} + \gamma_2 Z_{a_{j-1:n}}) Z_{a_{j-1:n}} \right] \]

\[= 0. \]

Upon solving the equations (2.22) and (2.13) for \(\sigma \) and \(\theta \) we derive the AMLEs of \(\sigma \) and \(\theta \) as follows:

\[\hat{\sigma}_4 = \frac{-B_1 + \sqrt{B_1^2 - 4A_4 C_4}}{2A_4} \]

(2.23)

and

\[\hat{\theta}_4 = M_4 \hat{\sigma}_4 + M_5 \]

(2.24)

where

\[A_4 = 2s - (a_1 - 1)M_1 (a_2 - \beta_2 M_1) - (n - a_1 + s) M_1^2 \]

\[+ \sum_{j=2}^{a} (a_j - a_{j-1} - 1) [(\beta_2 + \gamma_2) M_1^2 - a_{j-1} M_1] \]

\[B_4 = (a_1 - 1)(a_2 - 2\beta_2 M_1) (X_{a_1:n} - M_2) + 2(n - a_1) M_1 (X_{a_1:n} - M_2) \]

\[+ 2M_1 \sum_{j=1}^{a} (X_{a_j:n} - M_2) \]

\[+ \sum_{j=2}^{a} (a_j - a_{j-1} - 1) [(a_2 - 2\beta_2 M_1 - \gamma_2 M_2 + \beta_2 M_1) \]

\[\times (X_{a_j:n} - M_2) - (a_2 - \beta_2 M_1 + \gamma_2 M_2 - 2\gamma_2 M_1) (X_{a_{j-1:n}} - M_2) \]
It is difficult to find the moments of all proposed estimators. So, we simulate the MSEs of all proposed estimators through Monte Carlo simulation method. The simulation procedure is repeated 10,000 times for the sample size $n = 20, 40$ and various choices of censoring ($m = n - s$ is the number of unobserved or missing data) under multiply Type-II censored samples. These values are given in Tables 1 and 2.

From Table 1, the estimator σ_4^4 is more efficient than the other estimators of the scale parameter σ in the sense of the MSE, and σ_2^2 is generally more efficient than the estimators σ_1^1 and σ_3^3.

From Table 2, the estimator θ_4^4 that use the estimator σ_4^4 is more efficient than the other estimators of the location parameter θ in the sense of the MSE, and θ_2^2 that use the estimator σ_2^2 is generally more efficient than the estimators θ_1^1 and θ_3^3. So we can recommend the proposed estimators σ_4^4 and θ_4^4 of the scale and location parameters in the two-parameter Rayleigh distribution.

As expected, the MSE of all estimators decreases as sample size n increases. For fixed sample size, the MSE increases generally as m increases.
Table 1: The relative MSEs for the estimators of the scale parameter σ

<table>
<thead>
<tr>
<th>n</th>
<th>m</th>
<th>a_j</th>
<th>$\hat{\sigma}_1$</th>
<th>$\hat{\sigma}_2$</th>
<th>$\hat{\sigma}_3$</th>
<th>$\hat{\sigma}_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>1~20</td>
<td>0.028502</td>
<td>0.028502</td>
<td>0.028502</td>
<td>0.028502</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1~18</td>
<td>0.032998</td>
<td>0.032998</td>
<td>0.032998</td>
<td>0.032998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3~20</td>
<td>0.030774</td>
<td>0.030442</td>
<td>0.030774</td>
<td>0.030442</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2~19</td>
<td>0.030818</td>
<td>0.030302</td>
<td>0.030818</td>
<td>0.030302</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>2~17</td>
<td>0.036191</td>
<td>0.035532</td>
<td>0.036191</td>
<td>0.035532</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4~19</td>
<td>0.036932</td>
<td>0.036638</td>
<td>0.036932</td>
<td>0.036638</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3~18</td>
<td>0.036259</td>
<td>0.035852</td>
<td>0.036259</td>
<td>0.035852</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24 714 16~20</td>
<td>0.028474</td>
<td>0.028018</td>
<td>0.028474</td>
<td>0.028018</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>3~17</td>
<td>0.039857</td>
<td>0.039386</td>
<td>0.039857</td>
<td>0.039386</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4~18</td>
<td>0.040200</td>
<td>0.03975</td>
<td>0.040200</td>
<td>0.03975</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26 1019</td>
<td>0.030863</td>
<td>0.030346</td>
<td>0.030863</td>
<td>0.030346</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>24 714 16~20</td>
<td>0.044489</td>
<td>0.044115</td>
<td>0.044489</td>
<td>0.044115</td>
</tr>
</tbody>
</table>

Table 2: The relative MSEs for the estimators of the location parameter θ

<table>
<thead>
<tr>
<th>n</th>
<th>m</th>
<th>a_j</th>
<th>$\hat{\theta}_1$</th>
<th>$\hat{\theta}_2$</th>
<th>$\hat{\theta}_3$</th>
<th>$\hat{\theta}_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>1~20</td>
<td>0.042813</td>
<td>0.042813</td>
<td>0.042813</td>
<td>0.042813</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1~18</td>
<td>0.044991</td>
<td>0.044991</td>
<td>0.044991</td>
<td>0.044991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3~20</td>
<td>0.048540</td>
<td>0.047970</td>
<td>0.048540</td>
<td>0.047970</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2~19</td>
<td>0.043407</td>
<td>0.042632</td>
<td>0.043407</td>
<td>0.042632</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>2~17</td>
<td>0.046007</td>
<td>0.045115</td>
<td>0.046007</td>
<td>0.045115</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4~19</td>
<td>0.05168</td>
<td>0.050652</td>
<td>0.05168</td>
<td>0.050652</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3~18</td>
<td>0.052017</td>
<td>0.051373</td>
<td>0.052017</td>
<td>0.051373</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24 714 16~20</td>
<td>0.042145</td>
<td>0.041428</td>
<td>0.042145</td>
<td>0.041428</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>3~17</td>
<td>0.053998</td>
<td>0.053301</td>
<td>0.053998</td>
<td>0.053301</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4~18</td>
<td>0.061601</td>
<td>0.061052</td>
<td>0.061601</td>
<td>0.061052</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26 1019</td>
<td>0.043465</td>
<td>0.042694</td>
<td>0.043465</td>
<td>0.042694</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>24 714 16~20</td>
<td>0.064405</td>
<td>0.063810</td>
<td>0.064405</td>
<td>0.063810</td>
</tr>
</tbody>
</table>
<Table 2> (continued)

<table>
<thead>
<tr>
<th>n</th>
<th>m</th>
<th>(a_i)</th>
<th>(\hat{\theta}_1)</th>
<th>(\hat{\theta}_2)</th>
<th>(\hat{\theta}_3)</th>
<th>(\hat{\theta}_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1~40</td>
<td>0.017474</td>
<td>0.017474</td>
<td>0.017474</td>
<td>0.017474</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1~38</td>
<td>0.017915</td>
<td>0.017915</td>
<td>0.017915</td>
<td>0.017915</td>
<td>0.017915</td>
</tr>
<tr>
<td></td>
<td>3~40</td>
<td>0.018181</td>
<td>0.018018</td>
<td>0.018181</td>
<td>0.018018</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2~39</td>
<td>0.016897</td>
<td>0.016682</td>
<td>0.016897</td>
<td>0.016682</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>2~37</td>
<td>0.017281</td>
<td>0.017055</td>
<td>0.017281</td>
<td>0.017055</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4~39</td>
<td>0.020317</td>
<td>0.020183</td>
<td>0.020317</td>
<td>0.020183</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3~38</td>
<td>0.018716</td>
<td>0.018546</td>
<td>0.018716</td>
<td>0.018546</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2~4</td>
<td>7~14</td>
<td>16~40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3~37</td>
<td>0.018917</td>
<td>0.018744</td>
<td>0.018917</td>
<td>0.018744</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4~38</td>
<td>0.020668</td>
<td>0.020531</td>
<td>0.020668</td>
<td>0.020531</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2~6</td>
<td>10~19</td>
<td>21~40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4~37</td>
<td>0.020917</td>
<td>0.020778</td>
<td>0.020917</td>
<td>0.020778</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1~2</td>
<td>6~9</td>
<td>12~15</td>
<td>17~40</td>
<td></td>
<td>0.015025</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.015025</td>
</tr>
</tbody>
</table>

References

[received date : Aug. 2006, accepted date : Nov. 2006]