Synthesis of Li$_2$PtO$_3$ Thin Film Electrode by an Electrostatic Spray Deposition Technique

Heung Min Oha, Ji-Young Kima, Kyung-Keun Leea, Kyung Yoon Chungb,† and Kwang-Bum Kima,†

aDepartment of Material Science and Engineering, Yonsei University, Seoul 120-749, South Korea
bAdvanced Battery Center, Korea Institute of Science and Technology, Seoul 136-791, Korea

ABSTRACTS:
Li$_2$PtO$_3$ thin film electrodes, which might be possible candidate for the cathode materials for implantable batteries, were synthesized using an electrostatic spray deposition (ESD) technique onto a platinum foil substrate. Single phase Li$_2$PtO$_3$ with a structure similar to layered LiCoO$_2$ structure were synthesized by spraying a precursor solution of CH$_3$CO$_2$Li$_2$H$_2$O in ethanol onto a Pt substrate at temperatures ranging from 200 to 400°C followed by annealing at above 600°C. Lithium carbonate was the only major phase at temperatures up to 500°C. The X-ray diffraction (XRD) peaks of the Pt foil substrate and lithium carbonate disappeared at temperatures > 600°C. The volumetric capacity of the Li$_2$PtO$_3$ thin film synthesized using the ESD technique was approximately 817 mAh/cm3, which exceeded that of LiCoO$_2$ (711 mAh/cm3).

Keywords: Li$_2$PtO$_3$, Electrostatic spray deposition (ESD) technique, Thin-film electrodes, Lithium secondary batteries, Cathode material.

Received September 7, 2010 : Accepted September 24, 2010

1. Introduction

Lithium secondary batteries are expanding its application from portable electronics to various applications. Currently the most promising applications are large-scale applications such as electric vehicles (EV) or energy storage systems (ESS). However, medical applications will be one of the very important applications because the world is moving towards the aging society. The demands for the implantable medical devices such as artificial heart and artificial cochlea will increase dramatically and the lithium secondary batteries as their power sources as well. The lithium secondary batteries used for the implantable medical devices should be safe and inert in the human body. Thus, the materials used in the batteries should be inert. Since the platinum is very inert materials, the cathode material made of platinum, i.e. Li$_2$PtO$_3$ may be one of the possible candidates for the cathode materials for the lithium batteries for implantable medical devices. Previously used cathode materials were made of Co, Ni, Mn, Fe and others, and those materials are potentially harmful to human body since they are not inert and can be absorbed into human body. In this study, we tried to fabricate thin film type cathode materials that can be used for the implantable medical devices that does not consume too much energy but needs rechargeable characteristics. The examples of this application can be artificial cochlea, implantable hearing aids, etc. LiCoO$_2$ and LiMn$_2$O$_4$ thin films have been studied more intensively than other thin film cathodes due to their simple synthesis routes. However, it is important to integrate a larger quantity of the active material into a limited area/volume and maintain inertness for the implantable medical device application. Therefore, materials with high volumetric capacities and inertness are preferred. One cathode material that meets this demand is Li$_2$PtO$_3$.

†Corresponding author. Tel.: +82-2-2123-2839
E-mail address: kbkim@yonsei.ac.kr (K.-B. Kim)
kychung@kist.re.kr (K.Y. Chung)
However the thin film form has not been synthesized.

Previously, K. Asakura et al. reported the synthesis of the powdered form of Li$_3$PtO$_3$ using a solid-state method. It was prepared by firing a 1 : 1 molar ratio mixture of reagent grade lithium carbonate and platinum black at 800°C for 24 hours in air. The volumetric capacity of prepared powder was 764 mAh/cm3, which exceeded that of LiCoO$_2$ (71 mAh/cm3). In addition, they compared its structural and electrochemical characteristics with that of LiCoO$_2$1,2). Li$_3$PtO$_3$ is a Li$_3$MO$_3$ (M = Mo, Ru, Ir, Mn, Pt) type compound, which has a similar structure to a NaFeO$_2$, which is the structure of the rocksalt-type ternary oxide, LiCoO$_2$ and LiNiO$_2$. These compounds can be represented as (Li$^{+}_{1/3}$)(Li$^{+}_{1/3}$M$^{2+}_{2/3}$)$_3$O$_2$.\textsuperscript{3,4) In addition, these compounds can reversibly deintercalate Li from the initial composition. Although it has a lower gravimetric capacity than LiCoO$_2$, it has been reported to have a 7.5% higher volumetric capacity,\textsuperscript{2,3) which makes it a potential candidate for a cathode material in lithium secondary microbatteries.

In our previous studies, various types of thin film electrodes were prepared using an electrostatic spray deposition (ESD) technique, which includes the cathode materials for lithium secondary batteries (LiCoO$_2$,\textsuperscript{5) LiMn$_2$O$_4$,\textsuperscript{6) LiNiO$_2$) and electrode materials for supercapacitors (RuO$_2$,\textsuperscript{7) Li$_3$Ni$_{1-x}$O$_x$,\textsuperscript{8) MnO$_2$). As part of an ongoing study to synthesize cathode materials for lithium secondary microbatteries, this study reports the synthesis of Li$_3$PtO$_3$ thin film electrodes using an ESD technique as well as an evaluation of its structural, morphological, and electrochemical characteristics. The thin film type Li$_3$PtO$_3$ cathode can be used without any additives such as conducting materials and binders unlike power type cathode materials, which feature may give more bio-compatibility to the electrodes.

2. Experimental

The synthesis of the Li$_3$PtO$_3$ thin film electrodes was carried out using an ESD technique. A schematic diagram of the ESD system is reported elsewhere.\textsuperscript{5,9,10) The precursor solution was an ethanolic solution of 0.05 M CH$_3$CO$_2$Li:2H$_2$O. The substrate used was Pt foil with the dimensions of 3 cm(length) × 1 cm(width) × 0.1 mm (thickness), which also worked as a source for the platinum in Li$_3$PtO$_3$. During deposition, the needle to substrate distance was set to 3–5 cm. The applied voltage between the needle and the substrate was 10–15 kV and the surface temperature was set at 300°C. The flow rate of the precursor solution was fixed to 2 ml/h and a total of 2 ml was sprayed over a deposited area of 10 mm × 10 mm. After deposition, the samples were annealed at temperatures ranging from 400 to 800°C for 1 hour with a oxygen stream of not less than 200 ml/min and left to cool in a furnace.

The crystal structure of the Li$_3$PtO$_3$ films annealed at the various temperatures was characterized by X-ray diffraction using Cu Kα radiation in a Rigaku diffractometer, which was equipped with a thin film X-ray diffractometer attachment. The surface morphologies of the films were observed using scanning electron microscopy (SEM, Hitachi S-4200, Japan). The mass of the substrate was measured both before and after deposition using an electronic balance (Sartorius UltraMicrobalance S4, Germany) to determine the mass of the Li$_3$PtO$_3$ thin film deposited on the substrate, which was calculated assuming that the supplied lithium ions all reacted with platinum leaving no residue. The electrochemical performance was evaluated using a beaker cell in a glove box under a dry argon atmosphere. The counter and reference electrodes were lithium metal foil and the electrolyte used was 1M LiClO$_4$/PC. The cells were galvanostatically cycled between the voltage limits of 3.0 and 4.5 V at a 1/20 C-rate using a computer-controlled cycler.

3. Results and Discussion

3.1. Structural characterization

The synthesis of Li$_3$PtO$_3$ films consisted of two steps. These are the deposition of the precursor solution at 200–300°C and the subsequent annealing at 400–800°C. Fig. 1 shows the X-ray diffraction (XRD) patterns of the annealed films at the various temperatures. The deposition temperature was fixed to 300°C. The as-deposited films were annealed at the designated temperatures for 1 hour. At 400 and 500°C, the peaks from the Pt substrate and that of Li$_2$CO$_3$ were mostly observed. At higher temperatures, these peaks disappeared and the peaks for Li$_3$PtO$_3$ could be observed. Due to the preferred orientations of the thin film electrode, the intensities of the peaks other than the (003) directions are much reduced. In addition, as the annealing temperature was increases, the intensities of the (003) peak increased, which indicates that the preferred orientation to the (003) directions becomes more pronounced.\textsuperscript{11) From these results, Li$_2$CO$_3$ was the major phase present on the substrate after depositing the ethanolic precursor solution of Li acetate, and it reacts with the Pt foil to form Li$_3$PtO$_3$ at temperatures above 600°C. The diffraction peaks became sharper as the annealing temperature was increased. This indicates an increase in
crystallinity. From the XRD patterns shown in Fig. 1(e), Li$_2$PtO$_3$ could be indexed to a hexagonal unit cell, P3$_1$. Its lattice parameters were calculated to be $a = 5.18$ Å and $c = 14.42$ Å using a least-squares method, in which the values were very close to those of powdered Li$_2$PtO$_3$ reported previously.1-3 Therefore, the structure of the thin film Li$_2$PtO$_3$ is identical to those of powdered Li$_2$PtO$_3$.

3.2. Surface morphologies of Li$_2$PtO$_3$ thin film electrodes

Fig. 2 shows the surface morphologies of the annealed films. Each film was deposited at 300°C followed by annealing at the various temperatures. Fig. 2(a) shows the surface morphologies of the as-deposited films. In addition, Fig. 2(b), (c), and (d) show the films annealed at 400, 700, and 800°C, respectively. During the annealing process, the morphologies of the films undergo severe change. The morphologies of the thin films deposited by an ESD technique were categorized into four different types, which are (I) a dense layer, (II) a dense layer with incorporated particles, (III) a porous top layer with a dense bottom layer, and (IV) a fractal-like porous layer.9 Fig. 2(a) and (b) can be categorized into type (III), and Fig. 2(c) and (d) can be characterized into type (I) even though some irregularities at the surface could be observed.

![Fig. 1. The XRD patterns of the samples annealed at various temperatures.](image1)

![Fig. 2. Surface morphologies of the Li$_2$PtO$_3$ thin films deposited at (a) 300°C followed by heat treatment at (b) 400°C, (c) 700°C and (d) 800°C.](image2)
Considering the structural characterization in section 3.1, Fig. 2(a) and (b) show the morphologies of Li$_2$CO$_3$ and Fig. 2(c) and (d) show those of Li$_3$PtO$_3$. The film has a porous top layer with a dense bottom layer after deposition at 300°C and became dense when Li$_2$CO$_3$ reacts with platinum to form Li$_3$PtO$_3$ during the annealing process. The SEM images shown in Fig. 2(c) and (d) provided the basis for calculating the volumetric capacities presented in section 3.3. The thickness of dense Li$_3$PtO$_3$ thin film prepared at temperatures > 600°C is calculated to be around 3.5 μm.

3.3. Electrochemical properties of Li$_3$PtO$_3$ thin film electrode

Li$_3$PtO$_3$ has a theoretical capacity of 209 mAh/g with an assumption that it can accommodate two lithium ions per molecule according to the following reactions;

\[
\text{Li}_3\text{PtO}_3 \leftrightarrow \text{Li}_2\text{PtO}_3 + x\text{Li}^+ + xe^- \quad (1)
\]

However, the actual rechargeable capacity of Li$_3$PtO$_3$ has been reported to be approximately 100–120 mAh/g due to structural instability. According to previous reports Li$_3$PtO$_3$ can accommodate up to ca. 1.2 lithium ions per molecule.$^{1-3}$

Fig. 3 shows the charge/discharge curves of Li$_3$PtO$_3$ thin films prepared at various temperatures. The cutoff voltages ranged from 3.0 to 4.5 V. The films were galvanostatically cycled at a C-rate of 1/20. The annealing temperatures of each sample are shown at the upper right corner of the graphs. The open circuit potentials of the films were around 3.5 V. The initial charge capacities of the films were 113, 128, and 132 mAh/g for 600, 700, and 800°C, respectively. According to equation (1), the x value for each sample was 1.09, 1.22, and 1.26, respectively. The initial charge capacities increased as the annealing temperature was increased, and that of the sample annealed at 800°C exceeded that of the previously reported value.$^{1-3}$ The first discharge capacities for each sample were 85, 100, and 107 mAh/g, respectively. These values were 28, 28, and 25 mAh/g smaller than the initial charge capacity of each film, which indicates 75%, 78%, and 81% efficiency (= discharge capacity/charge capacity) in the first cycle, which are the similar to those reported previously.$^{1-3}$ Overall, the electrochemical performances of the films improve as the crystallinity of the films increase.

The gravimetric capacities of the Li$_3$PtO$_3$ thin film electrodes in this study were slightly larger than 100 mAh/g, which are less than that of other layered structured cathode materials, LiMO$_2$ (M = Co, Ni). However, its volumetric capacities were greater than that of the other layered cathode materials. The top of Fig. 3 shows the volumetric capacity scale. The volumetric capacity was calculated from the gravimetric capacity and density of the films, with the assumption that the films were dense. The density of Li$_3$PtO$_3$ is 7.636 g/cm3. The volumetric discharge capacity of the film prepared at 800°C was 823 mAh/cm3. This value is ca. 10% higher than that of LiCoO$_2$ (ca. 750 mAh/cm3), and even exceeds that of powdered Li$_3$PtO$_3$ (784 mAh/cm3).$^{1-3}$ In microbatteries, it is important to integrate a larger quantity of the active materials into a limited area or volume. Therefore, materials with a high volumetric capacity are preferred. Li$_3$PtO$_3$ thin film electrodes meet these demands and are potential candidates for cathode materials in lithium secondary microbatteries that can be implanted into human body.

4. Conclusions

In this study, Li$_3$PtO$_3$ thin film electrode was synthesized. Li$_3$PtO$_3$ is a unique 4 V class cathode material among 5d metal compounds, which shows a very high volumetric capacity. Its structural change during the annealing process, electrochemical performance and surface morphology changes were investigated. Using an ESD technique, a dense thin film of Li$_3$PtO$_3$ was easily prepared by a two-step process involving deposition of the precursor solution onto a heated Pt substrate and the subsequent annealing process in a furnace. After deposition, Li$_2$CO$_3$ was the major phase that existed on the substrate.
During annealing process, at temperatures $>600^\circ$C, \(\text{Li}_2\text{CO}_3 \) reacted with the platinum substrate and formed a dense \(\text{Li}_2\text{PtO}_3 \) thin film. The electrochemical performance of the films annealed at 800$^\circ$C showed volumetric capacity of 817 mAh/cm3, which was approximately 15% larger than that of LiCoO$_2$.

Acknowledgement

The work done at Yonsei University was supported by the IT R&D program of MKE/KEIT [KI002177, Pouch/Radial type Lithium Ion Capacitor for Ubiquitous Electronics]. The work done at KIST was supported by the Growth Engine Technology Development Program funded by the Ministry of Commerce, Industry and Energy (MOCIE) of Korea.

References