Economic Feasibility Study for Molten Carbonate Fuel Cells Fed with Biogas

Shin Ae Song, Jonghee Han†, Sung Pil Yoon, Suk Woo Nam, In-Hwan Oh and Dae Ki Choi
Fuel Cell Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791, Republic of Korea

ABSTRACT
Molten carbonate fuel cell (MCFC) power plants are one of most attractive electricity generation systems for the use of biogas to generate high-efficiency ultra-clean power. However, MCFCs are considerably more expensive than comparable conventional electricity generation systems. The commercialization of MCFCs has been delayed more than expected. After being effective in the Kyoto protocol and considerably increasing the fossil price, the attention focused on CO$_2$ regression and renewable energy sources has increased dramatically. In particular, the commercialization and application of MCFC systems fed with biogas have been revived because of the characteristics of CO$_2$ collection and fuel variety of MCFCs. Better economic results of MCFC systems fed with biogas are expected because biogas is a relatively inexpensive fuel compared to liquefied natural gas (LNG). However, the pretreatment cost is added when using anaerobic digester gas (ADG), one of the biogases, as a fuel of MCFC systems because it contains high H$_2$S and other contaminants, which are harmful sources to the MCFC stack in ADG. Thus, an accurate economic analysis and comparison between MCFC systems fed with biogas and LNG are very necessary before the installation of an MCFC system fed with biogas in a plant. In this paper, the economic analysis of an MCFC fed with ADG was carried out for various conditions of electricity and fuel price and compared with the case of an MCFC fed with LNG.

Keywords : Molten carbonate fuel cell, Economic feasibility, Biogas, Anaerobic digester gas

Received December 14, 2010 : Accepted December 23, 2010

1. Introduction

Fuel cells are considered a possible candidate for efficiently converting the chemical energy stored in hydrogen or fossil fuels (oil, natural gas, etc.) into electric energy with low pollutant and greenhouse gas emissions. In fuel cells, molten carbonate fuel cells (MCFCs) have received much attention due to their high energy efficiency, usefulness for electrical power and heat energy, low emissions and variety of useful fuels. For these reasons, MCFCs are very close to commercialization. MCFCs have received much more attention for CO$_2$ reduction after the Kyoto protocol went into effect in February 2005 because of the probability of the condensation and collection of CO$_2$. The transportation of CO$_2$ across the electrolyte, from the cathode side to the anode side of the MCFC, is possible because CO$_2$ acts as a charge carrier in MCFCs. In a gas composition composed of unreacted H$_2$, steam and concentrated CO$_2$ from the cathode side at the anode exit, steam can be easily condensed, H$_2$ can be separated, and the residual CO$_2$ can be thereby be collected in a relatively pure stream for removal.

With the growing concern about global warming, the potential of biogas has become a popular topic for the reduction of greenhouse gas (GHG) emissions.
Biogas is a more versatile renewable energy source due to declining fossil fuels, decreasing greenhouse effects, and ease of storage.6,10 It is obtained after specific treatments from animal waste, human sewage or crop residues.11 The waste disposal problem is currently a major issue in many cities.9 If the use of biogas made from waste is possible, it could save fossil fuels. There are many different types of biogas,11,12 including anaerobic digester gas (ADG), landfill gas (LFG), syngas from an entrained bed steam gasifier (EBG), and syngas from a dual interconnected fluidized bed steam gasifier (DBG). In biogases, ADG is produced at wastewater treatment plants during the process of treating sewage anaerobi-
cally to reduce solids.11 ADG is composed of CH\textsubscript{4} (57-
66% volume), CO\textsubscript{2} (33-39% volume), N\textsubscript{2} (1-4% volume), and a small amount of O\textsubscript{2} (<0.5% volume).11 LFG one of the other biogases, is produced by chemical reactions and
microbes acting upon the waste as the putrescible materials begin to break down in the landfill.13 LFG is composed of CH\textsubscript{4} (40-60%), CO\textsubscript{2} (35-50%) and small amounts of O\textsubscript{2} (0-3%) and N\textsubscript{2}.13 It has a composition similar to that of ADG. At present, almost all ADG or LFG produced in South Korea is burned, and only small amounts are used for the production of electricity. If it is possible to utilize dumped ADG or LFG for fuel in MCFCs, the supply of fuel can become smoother, and electricity production can be economical.

However, it is not easy to utilize ADG and LFG without a purification process because ADG and LFG contain relatively high amounts of hydrogen sulfide (H\textsubscript{2}S) and various volatile organic compounds (VOC), including organic-sulfur compounds (e.g., carbonyl sulfide, mercaptans), silicon-containing compounds (e.g., siloxanes), halogenatedcompounds, aromatics and aliphatic hydrocarbons.11-13 To use ADG or LFG for fuel in MCFCs, a purification process is certainly necessary. Now many research results about the effects of contaminants have been published to understand the maximum allowable concentration of each contaminant.12,14-16 Due to the lower tolerance to impurities, the usage of biogas in MCFCs with no purification process would result in poisoning the reformer catalyst in only a few hours of operation.12 For this reason, the harmful contaminants have to be removed by a suitable purification process before biogas is fed into MCFCs. Among the several poisons studied, H\textsubscript{2}S is one of the most harmful to MCFC stacks.6,9,12 The H\textsubscript{2}S concentration in biogas can vary from 0.1% to 2% in feedstock to higher than 3% from manure and protein-rich organic wastes.12 The H\textsubscript{2}S content in biogas is greatly above the tolerance of the MCFC. (It is known that MCFC can be accepted below 5 ppm of H\textsubscript{2}S without cell damage6). Thus, the design of a biogas pretreatment system for use in a MCFC focuses on the removal of H\textsubscript{2}S. Other contaminant materials in biogas can be removed through treatment processes such as cooling, adsorption or absorption with inorganic and organic solvents.

Many researchers working on the use of biogas for MCFCs have carried out system analyses, economic analyses and tests on small-scale fuel cells to validate the potentiality of biogas.11-13,17-21 In 1999, Spiegel et al. developed and published a conceptual design of a 1.2 MW commercial MCFC power plant operating with ADG.17 It was an initial investigation of the economic feasibility of an MCFC operation using ADG. In the results of the economic feasibility study, the fuel cell is economical, where plant electricity costs are 5 cent/kWh or higher, based on entry level fuel cell costs of 3,000 USD/kWh at that time. To support a larger 1.2 MW fuel cell power module, a wastewater treatment facility would need to provide approximately twelve million liters of ADG per day at 65% by volume and a heating value of 5,785 kcal/m3. Kivisaari et al. carried out the system analysis of a biomass powered IGCC (integrated gasification combined cycle)-MCFC (60 MW class) using the Aspen Plus program.19 According to the results, the biomass could be converted into electricity via an IGCC-MCFC process with an efficiency of 30-43% depending on whether internal reforming is deployed. Donolo et al. carried out the steady state simulation of biomass gasification and its utilization in MCFCs.20

The efficiency obtained by coupling the biomass gasifier and the MCFC was approximately 36-40%, depending upon the biomass used. CRIEPI (Central Research Institute of Electric Power Industry) in Japan studied the effect of various impurities and the fuel gas composition on the performance or efficiency of MCFCs for the application of various fuels in MCFCs.9 Krumbeck et al. reported the first installation of an MCFC fed with ADG in the city of Ahlen in Europe.21 The wastewater treatment plant in Ahlen produced about 1,500-2,000 m3 of ADG per day. Based on an average CH\textsubscript{4} content of about 60%, it contains enough energy to operate an MCFC unit of the 250 kW class near full load. In the operation results, the fuel cell fed with ADG showed good performance.
Bove et al. carried out the experimental comparison of MCFC performance using three different biogas types (ADG, EBG, and DBG) and CH\textsubscript{4} at the lab scale.11 The performances of all of the biogases were very similar to those of reformed natural gas. These results showed the possibility of biogas using as MCFC fuel.

In South Korea, the work on MCFCs fed with biogas has also increased. A 250 kW class MCFC fed with ADG was successfully operated at the Tanchon wastewater treatment plant in South Korea for two years from 2006. In the beginning of installation, the rate of total operation was 41.4%. It was very low, but the rate of total operation reached to over 90% after supplementation of the pretreatment technology with ADG. A 2.8 MW class MCFC system is planned to be launched in South Korea soon. A review of the economics and the technology of an MCFC fed with biogas are thus urgently necessary. In this study, the economic feasibility of MCFC system fed with natural gas and ADG was studied and compared to determine whether the MCFC system fed with ADG rather than LNG is an attractive economic choice.

2. The calculation for a 1.4 MW class MCFC

A 1.4 MW class MCFC system was considered for the economic analysis in this study. Most of the data required for the calculations, such as the installation cost, equipment span, amount of fuel consumption, LTSA (long-term service agreement) fee, amount of water consumption, water price, rate of performance drop, electrical efficiency, and heat efficiency, were received from a company prepared for the commercialization of MCFCs in Korea in 2009. The total installation cost of the MCFC system was 5,267.78 USD/kWh, including the stack and BOP installation costs. For the equipment, it was assumed that the stack span was 5 years, and the spans of the BOP and rest equipment were 20 years. For the operation and management costs, it was assumed that operation and management costs contained the water cost, fuel cost, labor fee, and LTSA fee. Here, the LTSA fee represents the contracted annual management cost in which the company selling the MCFC system makes a promise to the customer buying the MCFC system. This LTSA fee contains the operation costs and the cost of stack replacement every 5 years.

The assumed data for the performance of the MCFC system are as follows. The rate of performance drop was 1.1%/6 month, and the operation rate of the MCFC system was 90%. The electrical efficiency and heat efficiency were 47% and 27%, respectively. The income during the operation of the MCFC system was found through the sale of the electricity and heat produced. Thus, the income is very sensitive to the electricity price and heat price. In this study, it was assumed that the electricity price would change from 0.60 to 0.30 USD/kWh, and the heat price was fixed at 0.05 USD/kWh in the first year. It was assumed that the inflation rate and interest rate were 3% and 5%, respectively. The conditions for the MCFC system

<table>
<thead>
<tr>
<th>Table 1. The basic conditions for the economic analysis of an MCFC system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment Cost</td>
</tr>
<tr>
<td>Total installation cost of MCFC</td>
</tr>
<tr>
<td>Stack cost</td>
</tr>
<tr>
<td>Installation cost</td>
</tr>
<tr>
<td>Equipment span</td>
</tr>
<tr>
<td>Stack span</td>
</tr>
<tr>
<td>BOP and attachment equipment</td>
</tr>
<tr>
<td>Operation Cost</td>
</tr>
<tr>
<td>Amount of fuel consumption(LNG)</td>
</tr>
<tr>
<td>Fuel Price (LNG)</td>
</tr>
<tr>
<td>CH\textsubscript{4} LHV</td>
</tr>
<tr>
<td>LTSA (long-term service agreement) Fee</td>
</tr>
<tr>
<td>Amount of water consumption</td>
</tr>
<tr>
<td>Water price</td>
</tr>
<tr>
<td>One Labor</td>
</tr>
<tr>
<td>Performance</td>
</tr>
<tr>
<td>Performance</td>
</tr>
<tr>
<td>Rate of performance drop</td>
</tr>
<tr>
<td>Operation rate</td>
</tr>
<tr>
<td>Electrical efficiency</td>
</tr>
<tr>
<td>Heat efficiency</td>
</tr>
<tr>
<td>Income</td>
</tr>
<tr>
<td>Electricity price</td>
</tr>
<tr>
<td>Heat price</td>
</tr>
<tr>
<td>Inflation rate</td>
</tr>
<tr>
<td>Interest rate</td>
</tr>
</tbody>
</table>

1 dollar = 1,132 KRW (Korea Republic Won, 2010. 09. 30)
for economic analysis are summarized in Table 1.

Table 2 shows the composition of ADG from Tan-chon in Korea before operating the MCFC system. In this paper, the methane in the ADG from Tan-chon was used for the calculation of the economic analysis of the MCFC system fed with biogas. The H$_2$S content in the ADG from Tan-chon, 1525 ppm, is high compared to those of other references. In this work, the economic study considered two cases of low (300 ppm) and high (1500 ppm) H$_2$S composition of the ADG. Although there are many contaminants in ADG before the purification process, as shown in Table 2, only the purification process for H$_2$S removal was considered in this study because it is known that H$_2$S is the most harmful contaminant to the performance and span of an MCFC stack and that the H$_2$S removal process is expensive.

For use of ADG as fuel, the purification process has to be considered. Fig. 1 shows the strategy for the purification process of H$_2$S in ADG at two H$_2$S concentrations (300 ppm and 1500 ppm). It was assumed that the ADG flow only passed through a dry process for H$_2$S removal when the H$_2$S concentration in ADG was 300 ppm, and ADG flow passed through two steps, composed of a wet process and a dry process, for H$_2$S purification for a H$_2$S concentration of 1500 ppm. These two cases for purification were the results of the project “The Study of Pretreatment of fuel and operation technology for 250 kW class MCFC system” (UCM1886-8280-6) supported by the government of South Korea. The purification process was designed for H$_2$S concentrations up to 5 ppm after only a dry process for the purification of H$_2$S at a concentration of 300 ppm. It was assumed that the concentration of H$_2$S would decrease to 300 ppm via the wet process, and then the concentration of H$_2$S was finally reduced to 5 ppm via the dry process at high concentration (300–1500 ppm). The final concentration of H$_2$S in ADG after the purification process in the two cases was determined to be 5 ppm, which is the concentration of H$_2$S that is known not to damage the performance and span of MCFC stacks.

Table 3 shows the conditions for the economic analysis of an MCFC system fed with ADG as fuel. The specific installation costs for the H$_2$S wet purification

Table 2. The composition of ADG from Tan-chon in South Korea (2005, 9)

<table>
<thead>
<tr>
<th>Group</th>
<th>Component</th>
<th>Unit</th>
<th>Content (Before purification)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkane & Olefins</td>
<td>CH$_4$</td>
<td>%</td>
<td>68.2</td>
</tr>
<tr>
<td></td>
<td>i-C5H${12}$</td>
<td>ppm</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>n-C6H${14}$ (hexane)</td>
<td>ppm</td>
<td>0.79</td>
</tr>
<tr>
<td>Siloxanes</td>
<td>Decamethylcyclopentasiloxane</td>
<td>ppm</td>
<td>14.64</td>
</tr>
<tr>
<td>Sulfur</td>
<td>COS (carbonyl sulfide)</td>
<td>ppm</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>H$_2$S</td>
<td>ppm</td>
<td>1525</td>
</tr>
<tr>
<td></td>
<td>CS$_2$ (carbon disulfide)</td>
<td>ppm</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>C$_3$H$_7$SH (ethyl mercaptan)</td>
<td>ppm</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>n-propyl mercaptan</td>
<td>ppm</td>
<td>3.3</td>
</tr>
<tr>
<td>Others</td>
<td>CO$_2$</td>
<td>%</td>
<td>28.6</td>
</tr>
<tr>
<td></td>
<td>N$_2$</td>
<td>%</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>H$_2$</td>
<td>%</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>O$_2$</td>
<td>%</td>
<td>0.2</td>
</tr>
<tr>
<td>BTX</td>
<td>Toluene</td>
<td>ppm</td>
<td>4.98</td>
</tr>
<tr>
<td>Heavy Hydrocarbon</td>
<td>Nonane</td>
<td>ppm</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>Decane</td>
<td>ppm</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>Undecane</td>
<td>ppm</td>
<td>0.52</td>
</tr>
</tbody>
</table>

![Fig. 1. The strategy for the purification process of H$_2$S in ADG.](image-url)
process and dry purification process were 41,855.25 USD/(Nm3/hr)\(^{0.5}\) and 29,298.68 USD/(Nm3/hr)\(^{0.5}\), respectively. The specific operation cost for the H$_2$S wet purification process and dry purification process were 1.33 USD/g of H$_2$S/yr and 3.38 USD/g of H$_2$S/yr, respectively. These cost values were calculated in the project “The Study of Pretreatment of fuel and operation technology for 250 kW class MCFC system” (UCM1886-8280-6) supported by the government of South Korea. It was assumed that the installation cost of the H$_2$S purification process was proportional to square root of the flow rate of the pretreatment fuel, and the operation cost of the H$_2$S purification process was proportional to the product of the flow rate of the pretreatment fuel and the H$_2$S concentration (amount of H$_2$S removed) when the pretreatment cost was calculated. The calculation process for economic analysis is given in the Appendix.

3. Results and Discussion

To understand the present economic situation of MCFCs, the economic analysis of an MCFC fed with LNG was carried out using the average electricity price and LNG price in various countries. The electricity prices and natural gas prices in various countries were examined before the economic calculation for MCFCs in various countries. In this study, CDCF\(_{20}\) (cumulated discounted cash flow at 20\(^{th}\) year) was used as a representative value for economic analysis. Table 4 shows the average electricity prices for industry and households in various countries. In Italy and Ireland, electricity prices are relatively high, whereas the electricity prices are relatively low in Taiwan, Korea and the United States. The difference between the electricity prices in different countries is very large. Even the
The difference between inexpensive and expensive electricity prices is over a factor of three. Table 5 shows the average prices of natural gas used as fuel for the production of electricity in various countries. In addition, there are the price differences of natural gas among various countries (about a factor of two). In particular, the price of natural gas is relatively high in Taiwan and Korea because of the importation of all of the natural gas and fossil fuels used for the production of electricity. In Taiwan and Korea, however, the price of natural gas is not reflected in the electricity price, which is part of the production cost, because those countries make a profit by the exportation of industrial products. Thus, it was expected that the economic feasibility of MCFCs was not good in these countries.

Fig. 2 shows the CDCF at 20th year calculated with the prices of electricity and natural gas in various countries in Tables 4 and 5 if a 1.4 MW class MCFC fed with natural gas is operated for 20 years. In the countries where the electrical price is relatively low and the price of natural gas is relatively high, such as South Korea and Taiwan, the deficit created by the operation of the 1.4 MWh class MCFC system for 20 years is very large for both cases in the application of electricity prices for industry and households, as expected. In South Korea and Taiwan, the main income of the country is earned through the export of industrial products using imported raw materials because there are no natural resources. These countries have to carry out the policy to supply electricity at low cost for price competitiveness of their own products. Thus, it is very difficult to make a profit through the operation of an MCFC system fed with LNG in these countries. There are countries such as Portugal and Finland that earn money through the operation of a 1.4 MWh class MCFC system fed with LNG due to the relatively high electricity price. However, it is not easy to make a profit through the operation of an MCFC system in many countries due to high natural gas prices and investment costs.

Fig. 3 shows the CDCF at 20th year with changing electricity prices and LNG prices using LNG as fuel for MCFCs.

Table 5. The prices of natural gas in various countries

<table>
<thead>
<tr>
<th>Country</th>
<th>Prices of natural gas (USD/Nm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taiwan</td>
<td>0.40</td>
</tr>
<tr>
<td>Finland</td>
<td>0.24</td>
</tr>
<tr>
<td>Hungary</td>
<td>0.49</td>
</tr>
<tr>
<td>Korea, South</td>
<td>0.49</td>
</tr>
<tr>
<td>Portugal</td>
<td>0.37</td>
</tr>
<tr>
<td>United States</td>
<td>0.28</td>
</tr>
</tbody>
</table>

All data of natural gas prices of various countries were obtained from the website of the U.S. Energy Information Administration (2008).
has to be over 0.1 USD/kWh with an LNG price of 0.2 USD/Nm3. At an LNG price of 0.5 USD/Nm3 (LNG price, South Korea, 2009), the electricity price has to be over 0.18 USD/kWh to reach a surplus in the operation of an MCFC system fed with LNG. However, the average electricity price is below 0.1 USD/kWh in South Korea. There is a very large gap between the real electricity price and electricity price for the surplus. Practically, because the installation cost of the MCFC system including the MCFC stack cost is too high, it is not easy to make a profit through the operation of an MCFC system. To earn a profit through the operation of an MCFC system, the initial investment cost and the operation cost contained in the fuel price have to lower, or the electricity price has to increase. A sudden decrease of investment costs and an increase in the electricity price are impossible in reality. To find a more inexpensive fuel source is a better choice than reducing the investment cost for MCFCs due to the variety of fuel choices. Thus, the attention to the application of renewable fuel sources such as ADG LFG EDG for MCFC is increasing because of more inexpensive prices. At present, the ADG price is 0.07~0.08 USD/Nm3 in South Korea (2009). Although ADG is more inexpensive than LNG ADG contains a high concentration of H$_2$S, which damages the MCFC stack. Thus, when using ADG as the fuel for an MCFC system, the purification process for H$_2$S removal is certainly necessary. Therefore, an economic analysis and comparison of the two cases of LNG and ADG purified through H$_2$S removal for MCFCs are needed before the application of ADG as a fuel in MCFCs.

The economic analysis for ADG used as fuel for MCFC system was conducted, and it was compared with the results of the use of LNG in MCFCs. The H$_2$S concentration in ADG was assumed to have two possible levels: 300 and 1500 ppm. The results of the economic analysis using ADG as fuel are shown in Figs. 4 and 5. When using an H$_2$S concentration of 300 ppm in the ADG, if the ADG price is below 0.13 USD/Nm3, a surplus operation of the MCFC is possible. It is a realistic result because the ADG price is presently about 0.07–0.08 USD/Nm3 in South Korea. Compared with the usage of LNG for fuel (Fig. 3), it is a surprising result. In the case of 1500 ppm of H$_2$S concentration, the result is not good compared with LNG as the fuel. At an ADG price of 0.07 USD/Nm3, the electricity price has to be over 0.23 USD/kWh to create a surplus. Although the ADG price is inexpensive, if the H$_2$S concentration is high, earning a profit is not easy because of the large purification costs for H$_2$S removal.

The adoptable limited H$_2$S concentration in ADG at each electricity price and the ADG price are better than the economic situation when using LNG for fuel. Fig. 5 shows the results of CDCF$_{20}$ with the change of H$_2$S concentration and ADG price. When the electricity price is 0.1 USD/kWh, for the surplus operation of an MCFC fed with ADG, the H$_2$S concentration has to be very low, and the ADG has to be very inexpensive. In South Korea, the operation of an MCFC system fed with LNG or purified ADG cannot make a profit due to the policy concerning
low electricity price. When the ADG price is under 0.05 USD/Nm³, the operation of an MCFC system fed with purified ADG can recover the investment money for an H₂S concentration of 150 ppm. Table 6 shows the more profitable limited H₂S concentrations for ADG than LNG for different LNG prices at an ADG price of 0.07 USD/Nm³ of ADG and an electricity price of 0.1 USD/kWh. The more profitable limited H₂S concentrations with ADG than with LNG are 240, 300, 550, 1,000 ppm when LNG prices are 0.3, 0.4, 0.5 and 0.6 USD/Nm³, respectively. The limited H₂S concentration in ADG also increases as the LNG price increases. The limited H₂S concentration in ADG increases because an increase of the LNG price is predicted in the future.

In South Korea, the policy of “Feed-In Tariffs of Electricity Generating from New-Renewable Energy Sources” has been in effect since 2002 to increase the usage of new-renewable energy sources. According to this policy, the South Korean government buys the generated electricity from new-renewable energy sources such as solar cells, wind energy, and fuel cells at a high electricity price (0.2 USD/kWh using biogas as fuel, 2009) because it is not easy to sell the electricity produced from renewable energy sources at real electricity prices and make a profit due to the inexpensive electricity in South Korea. Thus, the research on electricity generation from renewable energy sources concerns many companies and research institutes. They earn money on the sale of electricity produced from renewable energy sources in reality. However, this policy is scheduled to gradually begin disappearing in 2015. An economic feasibility study and the securing strategy of price competitiveness of MCFC systems are needed for the propagation and application of MCFC systems for electricity production in the next generation. In this view, the economic feasibility study of MCFC fed with ADG is very important.

4. Conclusion

MCFCs have gained much attention as prospective candidates for the next generation systems for electricity production due to their low emission and high

Table 6. The limited H₂S concentration in ADG showed a better profit compared with the use of LNG in the MCFC (ADG price: 0.07 USD/Nm³, electricity price: 0.1 USD/Nm³)

<table>
<thead>
<tr>
<th>LNG price (USD/Nm³)</th>
<th>0.30</th>
<th>0.40</th>
<th>0.50</th>
<th>0.60</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂S concentration (ppm)</td>
<td>240</td>
<td>300</td>
<td>550</td>
<td>1,000</td>
</tr>
</tbody>
</table>
efficiency over a long period. The technology is very close to commercialization, although some problems have to be solved. A 250-kW class MCFC fed with ADG was installed and operated in the city of Ahlen in Europe at 2005. A 250-kW class MCFC fed with ADG was successfully operated at the Tanchon water waste treatment plant in South Korea for two years from 2006. The launch of a 2.8 MW class MCFC system is in preparation in South Korea. At this time, there is an urgent need for the serious concerns about the application of MCFCs fed with biogas for electricity production systems in terms of economics.

In this study, an economic study of an MCFC system fed with ADG was carried out. According to the results of the economic calculation, the MCFC system fed with ADG had the possibility of making a profit at some zone of H2S concentration and fuel price. However, the investment and operation cost of the MCFC fed with ADG was still higher than those of other conventional electricity generation systems. The results of this study indicate that future research on MCFCs fed with ADG should focus on the improvement of pretreatment technologies for biogas and the reduction of the investment cost and operation cost of MCFC systems and the purification process of biogas. In addition, the level control of the H2S concentration in untreated ADG is expected to help to reduce the pretreatment cost of biogas.

Acknowledgements

This work was supported as the project “The feasibility study for the application of fuel cells for district heating system” by the Korea District Heating Corporation.

APPENDIX

The data needed for the economic analysis of MCFCs were divided into 3 blocks: investment costs, operation costs, and income. The overall cost was calculated as the sum of the investment costs and operation costs taking into account the operation rate, performance decreasing rate, and span of MCFC. The overall income may be produced from the sale of the total produced electricity and heat. It was assumed that the MCFC plant was operated for 20 years. The “cumulated discounted cash flow at the 20th year” (CDCF20) was used as a representative value of the economic results. Combining the yearly overall cost with the overall income, the yearly cash flow of the MCFC was determined, and the economic feasibility of the fuel cell was predicted.

Investment

\[I_1 = (I_{i} + I_{in}) \times P_p \] (for LNG) \((1) \)
\[I_1 = (I_{i} + I_{in}) \times P_p + I_{pre} \times \frac{Q_{fuel,in}}{LHV} \] (for ADG) \((2) \)

where

\[I_1 = \text{Total investment cost in the first year (USD)} \]
\[I_{i} = \text{Specific cost of a stack for the MCFC (USD/kW)} \]
\[I_{in} = \text{Specific investment cost of the installation for the MCFC (USD/kW)} \]
\[P_p = \text{Plant power (kW)} \]
\[I_{pre} = \text{Specific investment cost of the installation for the purification process of H2S removal (USD/(Nm}^3/hr)) \]
\[Q_{fuel,in} = \text{Flow rate of ADG (Nm}^3/hr) \]

Operation costs

\[C_{fuel,1} = \frac{E_{ppy}}{Eff_{el} \times LHV} \times G_{pr,1} \times 1000 \] \((3) \)
\[C_{OP&Mott,1} = C_{fuel,1} + C_{water,1} + C_{labor,1} + C_{LTSA,1} \]
\[\text{(for LNG)} \] \((4) \)
\[C_{pre,1} = C_{sp} \times Q_{fuel,in} \times C_{H2S} \] \((5) \)
\[C_{OP&Mott,1} = C_{fuel,1} + C_{water,1} + C_{labor,1} + C_{LTSA,1} + C_{pre,1} \]
\[\text{(for ADG)} \] \((6) \)
\[C_{OP&Mott,n} = C_{op&Mott,1} \times (1 + \frac{I_{fuel}}{100})^n \] \((7) \)

where

\[C_{fuel,1} = \text{Fuel cost in the first year (USD)} \]
\[E_{ppy} = \text{Electric energy produced per year (kWh/year)} \]
\[Eff_{el} = \text{Electric efficiency} \]
\[LHV = \text{Low heating value (kWh/m}^3) \]
\[G_{pr,1} = \text{Gas price in the first year (USD/m}^3) \]
\[C_{OP&Mott,1} = \text{Total operation and management cost for the MCFC system in the first year (USD/year)} \]
\[C_{water,1} = \text{Water price in the first year (USD/year)} \]
\[C_{LTSA,1} = \text{Long-term service agreement (USD/year)} \]
\[C_{labor,1} = \text{Labor fee in the first year (USD/year)} \]
\[C_{pre,1} = \text{Total operation and management cost for the purification process of H2S removal (USD/year)} \]
\[C_{sp} = \text{Specific operation cost for the purification process of H2S removal (USD/g H2S, year)} \]
\[Q_{fuel,in} = \text{Flow rate of ADG (Nm}^3/hr) \]
\(\text{C}_{\text{H2S}} = \text{H}_2\text{S concentration in ADG (ppm)} \)
\(n = \text{Year} \)
\(I_{\text{inf}} = \text{Inflation rate} \ (%/\text{year}) \)

Income

\[
\begin{align*}
\text{IN}_{\text{ele},1} &= E_{\text{py}} \times V_{\text{ele},1} \quad (8) \\
\text{IN}_{\text{th},1} &= E_{\text{th}} \times V_{\text{th},1} \quad (9) \\
\text{IN}_{\text{tot},1} &= \text{IN}_{\text{ele},1} + \text{IN}_{\text{th},1} \quad (10) \\
\text{IN}_{\text{tot},n} &= \text{IN}_{\text{tot},1} \times (1 + I_{\text{inf}})^n \quad (11)
\end{align*}
\]

where

\(\text{IN}_{\text{ele},1} = \text{Income from electric energy in the first year (USD)} \)
\(E_{\text{py}} = \text{Electric energy produced per year (kWh/year)} \)
\(V_{\text{ele}} = \text{Value of electric energy (USD/kWh)} \)
\(E_{\text{th}} = \text{Heat produced per year (kWh/year)} \)
\(V_{\text{th}} = \text{Value of heat (USD/kWh)} \)
\(P_p = \text{Plant total power (kW)} \)
\(\text{IN}_{\text{tot},1} = \text{Income in the first year (USD)} \)
\(\text{IN}_{\text{tot},n} = \text{Income in the nth year (USD)} \)
\(I_{\text{inf}} = \text{Inflation rate} \ (%/\text{year}) \)

Net income

\[
\begin{align*}
\text{NI}_{1} &= \text{IN}_{\text{tot},1} - C_{\text{OP&Mtot},1} \quad (12) \\
\text{NI}_{n} &= \text{IN}_{\text{tot},n} - C_{\text{OP&Mtot},n} \quad (13)
\end{align*}
\]

where

\(\text{NI}_{1} = \text{Net income in the first year (USD)} \)
\(\text{NI}_{n} = \text{Net income in the nth year (USD)} \)

Cash flow

\[
\begin{align*}
\text{CF},1 &= \text{NI}_{1} - I_{1,1} \quad (14) \\
\text{CF},n &= \text{NI}_{n} - I_{n,1} \quad (15)
\end{align*}
\]

where

\(\text{CF},1 = \text{Cash flow in the first year (USD)} \)
\(I_{n,1} = \text{Investment in the nth year (USD)} \)

Discounted Cash Flow

\[
\text{DCF}_{n} = \frac{\text{CF}_{n,1}}{(1 + I_{\text{int}})^n} \quad (16)
\]

where

\(\text{DCF}_{n} = \text{Discounted cash flow in the nth year (USD)} \)
\(I_{\text{int}} = \text{Interest rate} \ (%/\text{year}) \)

Cumulated Discounted Cash Flow

\[
\text{CDCF}_{n} = \sum \frac{\text{CF}_{n,1}}{(1 + I_{\text{int}})^n} \quad (17)
\]

where

\(\text{CDCF}_{n} = \text{Cumulated discounted cash flow in the nth year (USD)} \)

References