고체 수소이온 전도체를 이용한 중온형 연료전지 개발

서동호 · 김홍록 · P. Shakhthivel · 설용건*

언내대학교 화학공학과

(2007년 11월 7일 접수 : 2007년 12월 28일 채택)

Development of Intermediate Temperature Fuel Cell Using a Solid Proton Conductor

Dong-Ho Seo, Hong-Rok Kim, P. Shakhthivel, and Yong-Gun Shul*

Department of Chemical Engineering, Yonsei University, 134 Sinchon-dong, Seodaemun-gu, Seoul 120-749, Korea

(Received November 7, 2007 : Accepted December 28, 2007)

초 록

정화에너지의 중요성이 부각됨에 따라 수소연료를 활용한 고효율, 무공해 전력 공급원인 연료전지에 대한 관심이 증가하고 있다. 연료전지는 전기화학 반응에 의한 화학에너지로부터 직접 전기에너지를 제공하는 장치로 자동차, 우주항공, 산업 및 가정용 발전 등에 활용할 수 있는 잠재력이 있다. 최근 재료 및 에너지 변화공정 차원에서 바람직한 200-500°C의 운도범위에서 작동하는 중온형 연료전지에 대한 새로운 인식과 이 운도범위에서 사용 가능한 수소이나 전도성 물질의 개발 필요성이 요구되고 있다. 본 논문은 고체 수소이온 전도체의 특성과 기술 현황을 소개하고, perovskite형 고체 무기 산화물 등 이용한 중온형 연료전지 용융에 관한 연구에 대해 고찰하였다.

Abstract : Because of an emerging importance of clean energy, fuel cells are attract more attention due to their ability to produce high efficient power without any harmful emission. Fuel cells are energy conversion device with directly convert chemical energy into electrical energy by the chemical reactions, which have potential applications in automobile, spacecraft, stationary, industrial and home appliances. Recently there are gaining demand to develop an intermediate temperature fuel cell and available proton conductors at 200-500°C, which promising operating temperatures range for both material science and energy conversion processes. In this paper, we have reviewed electrochemical properties and current technology of solid state proton conductors. In addition, development of intermediate temperature fuel cell using the perovskite-type solid protonic conductor is also discussed.

Keywords : Solid state proton conductors, Intermediate temperature fuel cell, Perovskites

1. 서 론

연료전지는 전기화학 반응을 통해 화학에너지로 연속적으로 전기 에너지를 직접 변화시키는 고효율 시스템으로 일반적으로 전해질의 종류에 따라 고분자 전해질 연료전지(PEMFC), 알카리 연료전지(ACFC), 인산형 연료전지(PAFC), 용융산소일연료전지(MCFC) 및 고체산화물 연료전지(SOFC) 등으로 분류된다.1-4) Table 1에서 연료전지 종류에 따른 작동온도, 연료, 전해질 및 이온이온에 대해 요약하였다.

고분자 전해질 연료전지의 기술적 도약은 1960년대 NASA의 Gemini 우주선의 동력원으로 사용되었던 polystyrene sulfonic acid 전해질막과 1970년대 들여와 Du Pont사가 개발한 perfluoro-sulfonic acid 맥(Nafion®)으로 대표할 것이라 할 수 있다. Table 2에서 정리했듯이 Nafion의 개발로 연료전자의 성능을 높이고 장시간 운전이 가능하게 되어 연료전자의 실용성을 상당 부분 해결해 주었다.5-7) Table 3을 보면 미국 에너지부(Department of Energy)는 2010년까지 PEMFC 전해질막의 정도도가 120°C에서 0.1 S/ cm 이상 나타내는 물질을 개발하는 것을 목표로 하고 있다. PEMFC의 작동온도를 120°C 이상으로 높일 경우 선화극과 환한극의 반응속도를 증가시키고, 백금 촉매의 일산화탄소 독독을 줄일 수 있어 계획 기술을 직접 사용할 수 있는 장점이 있기 때문에, 전해질 맥으로부터 물을 증발시켜 이온 전도도가 감소하게 된다. 결과적으로 고온에서도 수분을 보유할 수 있는 전해질 재료 또는 낮은 수분 함량에서도 높은 이온 전도도를 갖는 물질을 개발하는 방향으로 연구가 진행되고 있다.6-7) 대부분의 수소이온 전도체는 상대적으로 좋은 염색의 운도범위에서 이온 전도 특성 (10^{-1}-10^{-2} S/cm)을 가지고 있다. Fig. 1에서 200-500°C 운도에서 만족할 만한 수소이온 전도체가 없 는 영역이 있음을 알 수 있다. 이 운도 영역은 연료전지의 재료적인 측면과 에너지 변환 공정 차원에서 중요하고 바람직한 운전범위며, 이 영역 범위(gap)를 줄일 수 있는 수소이온 전
Table 1. Summary of major the fuel cell types.\(^1\)

<table>
<thead>
<tr>
<th>Type</th>
<th>Temperature (°C)</th>
<th>Fuel</th>
<th>Electrolyte</th>
<th>Mobile ion</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEMFC: polymer electrolyte membrane Fuel cell</td>
<td>20-90</td>
<td>(H_2), (CH_3OH)</td>
<td>Sulfonated polymers</td>
<td>((H_2O)_x)(^{+})</td>
</tr>
<tr>
<td>AFC: alkaline fuel cell</td>
<td>100-250</td>
<td>(H_2)</td>
<td>Aqueous KOH</td>
<td>OH(^-)</td>
</tr>
<tr>
<td>PAFC: phosphoric acid fuel cell</td>
<td>150-250</td>
<td>(H_2)</td>
<td>(H_3PO_4)</td>
<td>H(^+)</td>
</tr>
<tr>
<td>MCFC: molten carbonate fuel cell</td>
<td>500-700</td>
<td>Hydrocarbon, CO</td>
<td>(Na, K)(_2)CO(_3)</td>
<td>CO(_2)(^-)</td>
</tr>
<tr>
<td>SOFC: solid oxide fuel cell</td>
<td>700-1000</td>
<td>Hydrocarbon, CO</td>
<td>(Zr, Y)(_2)O(_3)</td>
<td>O(^2-)</td>
</tr>
</tbody>
</table>

\(^{a}\) Also known as proton exchange membrane.

Table 2. Quantum jumps in the development of proton conducting membranes.\(^5\)

<table>
<thead>
<tr>
<th>Time</th>
<th>Membrane</th>
<th>Power density (kW/m(^2))</th>
<th>Life time (thousand of hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1959-1961</td>
<td>Phenol sulfonic</td>
<td>0.05 - 0.1</td>
<td>0.3-1</td>
</tr>
<tr>
<td>1962-1965</td>
<td>Polystyrene sulfonic</td>
<td>0.4 - 0.6</td>
<td>0.3-2</td>
</tr>
<tr>
<td>1966-1967</td>
<td>Polytetrafluoroethylene sulfonic</td>
<td>0.75 - 0.8</td>
<td>1-10</td>
</tr>
<tr>
<td>1968-1970</td>
<td>Nafion experimental</td>
<td>0.8 - 1</td>
<td>1-100</td>
</tr>
<tr>
<td>1971-1980</td>
<td>Nafion production</td>
<td>6 - 8</td>
<td>10-100</td>
</tr>
</tbody>
</table>

Table 3. DOE technical targets for membranes.\(^4\)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Units</th>
<th>2005 status</th>
<th>2010 target</th>
<th>2015 target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature</td>
<td>°C</td>
<td>≤ 80</td>
<td>≤ 120</td>
<td>≤ 120</td>
</tr>
<tr>
<td>Inlet water vapor partial pressure</td>
<td>kPa</td>
<td>50</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Membrane conductivity at inlet water vapor partial pressure</td>
<td>S cm(^{-1})</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Room temperature</td>
<td>S cm(^{-1})</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>Operating temperature ≤ 20°C</td>
<td>S cm(^{-1})</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Oxygen crossover</td>
<td>mA cm(^{-2})</td>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Hydrogen crossover</td>
<td>mA cm(^{-2})</td>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Area specific resistance</td>
<td>Ω cm(^2)</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Cost</td>
<td>$ m(^{-2})</td>
<td>25</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Durability with cycling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At operating temperature 80°C</td>
<td>h</td>
<td>~2000</td>
<td>5000</td>
<td>5000</td>
</tr>
<tr>
<td>At operating temperature > 80°C</td>
<td>h</td>
<td>Not available</td>
<td>2000</td>
<td>5000</td>
</tr>
<tr>
<td>Unassisted start from</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating temperature</td>
<td>°C</td>
<td>~20</td>
<td>~40</td>
<td>~40</td>
</tr>
<tr>
<td>Thermal cyclability in presence of condensed water</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Fig. 1. Proton conductivity as a function of inverse temperature.\(^9\)

도체를 개발하는 것이 중온형 연료전지 실용화를 앞당기는 데 중요하다 할 수 있다.\(^{5-20}\)

ABO\(_3\) perovskite 수소이온 전도체는 A-site와 B-site를 구성하는 이온의 종류가 다양하고 관련 결정구조가 많아 새로운 전

해결과서 개발 가능성이 매우 크다. 그러나 아직 연구되지 않은 도체도 많이 존재하고 수소이온 전도체에 관한 기본 테마를

이해가 미비하여 수소이온 전도체의 전차전의 개발과 함께 이

론에 대한 재반 연구도 함께 수행되어야 한다.\(^{25-30}\)

본 논문은 고체 수소이온 전도체를 유기 및 무기물 중심으로 구분하여 개

발 현황과 전기화학적 특성을 설명하고, BaZr(Ti)O\(_3\) 박막을 이

용한 중온형 연료전지 개발 가능에 대해 고찰 하고자 한다.

2. 고체 수소이온 전도체

2.1 고분자 중심의 고체 수소이온 전도체

2.1.1 불소수지계 고분자막

고분자 중심의 수소이온 전도체는 일반적으로 고분자 물질에

음이온 기가 불소 수지성 구조로 장비하게 반면 수소이온 전도

체를 가지고 있다. 고분자 전해막 막은 다소 단단하며 물의 흡

수가 없을 경우 전도도가 낮으나 물 함량이 증가함에 따라 급

격하게 전도도가 증가하는 특성을 가지고 있다.\(^{31}\)
Fig. 2. Chemical structures of perfluorinated polymer electrolyte membranes. (a) Chemical structure; (b) nanoscale phase separated microstructure.\(^{1,2}\)

Fig. 3. Synthesis process for Nafton membrane comonomer PSEPVE.\(^{6}\)

Fig. 4. Effect of different proton conducting membranes on PEMFC performance. \(\text{H}_2/\text{O}_2\) reactants (E-TEK electrodes 20% Pt/C, 0.4 mg Pt/cm²), 95°C, P = 5 atm.\(^{9}\)

Table 4. Physical and electrochemical properties of perfluorinated polymer electrolyte membranes.\(^{29}\)

<table>
<thead>
<tr>
<th>Membrane</th>
<th>Equiv. weight (g/mol)</th>
<th>Thickness in dry state ((\mu)m)</th>
<th>Water content (%)</th>
<th>Conductivity (S/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nafton(^{117})</td>
<td>1100</td>
<td>100</td>
<td>34</td>
<td>0.059</td>
</tr>
<tr>
<td>Aciplex(^{6})</td>
<td>1000</td>
<td>120</td>
<td>43</td>
<td>0.108</td>
</tr>
<tr>
<td>Dow</td>
<td>800</td>
<td>125</td>
<td>54</td>
<td>0.114</td>
</tr>
</tbody>
</table>

볼소수지계 전해질막의 화학적 구조는 Fig. 3 (a)에 보듯이 Teflon 형태인 polytetrafluoroethylene 소수성 물질에 황산기(-SO\(_3\)H)를 포함한 참수성 중합체가 결합된 구조이다. 소수성 부 분은 막의 기계적 강도를 제공하고 물을 포함한 참수성 부분은 수소이온 전도성을 높게 된다. 볼소수지계 고분자막의 미세구조 는 Fig. 3(b)에서 보듯이 적정 4 nm의 클러스터와 적정 1 nm의 원주형 경로가 연결되어 있다. 고분자막에 물이 스마트니가한 클러스터와 경로가 평행하게 되고 수소이온이 이 사이를 이동하게 된다. 실용화가 많이 되면 전도도를 향상 시킬 수 있으나 막이 물에 용해 되기 때문에 기계적 강도가 약해진다. 고분자 막내 수화도 즉, \(\text{H}_2\text{O}:\text{SO}_3\)가 15:1일 때 약 \(10^{-1}\) S/cm의 최고 전도도를 나타낸다.\(^{1}\) 대표적인 볼소수지 계고분자전해질막들의 물리적 전기화학적 특성을 Table 4에 정리하였다.\(^{2}\)

Fig. 4에서 볼소수지계 고분자막의 주 물질(polytetrafluoroethylene)에 가려 흔들인 perfluorsulfinic acid 단량체의 혼합 용액을 도시하였다. 먼저 삼산화황\(\text{SO}_3\)과 TFE(tetrafluoroethylene)를 반응시켜 고리 sultone을 만들고, 고리 sultone은 재결합을 통해 Rearranged sultone(RSU)를 만든다. 이것을 2계 hexafluoropropylene oxide(HFPO)와 반응하여 sulfonyl fluoride adducts를 생성하고 탄산나트륨을 첨가하여 압착하면 층층 단량체인 perfluoro sulfonylfluoride ethyl propyl vinyl ether(PSEPVE)가 만들어진다.\(^{9}\)

Dow Chemical 사와 Asahi Chemical 사는 Nafton막에 비해 익은 층층 흔들림도를 높이 폐막을 제조하여 막의 전도도를 개선하였고, 결과적으로 Fig. 4에서 보듯이 연료전지 성능을 상당 부분 향상시킬 수 있었다.\(^{9}\)

그러나 Nafton막과 같은 볼소수지계 전해질막은 90°C가 넘어 가면 급격히 이온 전도도가 감소하여 고온 적용의 한계점으로 중고온에 사용하는 것에 제한된다.

2.1.2 단화수소계 고분자막

최근 연료전지의 상용화를 위해 가격이 저렴한 단화수소계 고
분자 막을 사용하고자 하는 노력이 진행되고 있다. 탄화수소계 고분자막은 100℃ 이상에서도 내열성, 내화성 및 기계적 강도가 우수한 고분자에 황산기, 인산기를 도입하거나 아미노 또는 아미노 용매성 그룹을 가진 고분자에 강산 화합물로 도입하여 제조한다. 이들 물질은 물소자 원자를 포함하고 있지 않은 고분자 결합으로 인해 메탄올이나 산소와의 반응성이 낮고 열용량의 용해성이 감소된 것으로 예상된다. Fig. 5에서 대표적인 탄화수소계 고분자막의 구조를 정리하여 나타내었고, Fig 6은 Polybenzimidazole의 제조방법을 나타내었다.31,32

Fig. 7은 탄화수소 고분자 물질에 황산 또는 인산을 결합함으로 물소가 없는 수소이온 전도성 고분자막을 형성하는 영역이다. 황산이나 인산 결합된 탄화수소 고분자는 물소수지게 물질들보다 다소 낮은 전도도를 나타내는 경향이 있으나, 다양한 기기용 또는 산업용 산소를 고분자 물질에 직접 변환시킬 수 있다.33

Fig. 8는 PBI의 열적 안정성을 끔찍한 결과로 200℃까지 상당히 안정성을 갖고 있음을 알 수 있다.34 Hoechst Celanese는 PBI라는 고분자 막을 사용하여 120-200℃에서 운전이 가능한 열처리실을 보고하였다.41 이 막은 고온에서 높은 온도를 둘러싸고 백금계 충돌방장으로써 PEFF의 용용 범위를 확대시켰다. Fig. 9는 인산이 결합된 PBI 전해막막의 사용한 연료전지의 성능을 나타낸 것으로 200℃까지 작용 가능성을 보여주고 있다.34

PBI 막을 포함한 탄화수소계 전해질막은 도핑된 인산의 수분 존재하에 첨합의 문제가 해결되지 않아 중고운 운전의 경우 제한이 있다. 따라서 저가스화 또는 전조상태에서의 이온 전도성에 기르는 막의 개발이 바람직하다.

2.1.3 주·무기 복합막
고체 전해질막 내 고체로 분포한 비세한 무기입자들의 존재

Fig. 5. Chemical structure of sulfonated hydrocarbon membranes.20

Fig. 6. Synthesis route to PBI membrane.20

Fig. 7. Synthesis of a) Poly (styrene sulfonic acid) [PSSA]; b) Sulfonated polyether ketone [S-PEEK]; c) alkylsulfonated PBI; d) phosphonated PBI.20
2.2 무기물 중심의 고체 수소이온 전도체
무기물 중심의 수소이온 전도체는 대부분 perovskite 구조의 산화물이 연구되고 있다. 1981년 Iwahara 등이 BaCeO$_3$계와 SrCeO$_3$계 산화물이 고온에서 높은 수소이온 전도성을 나타내는 것을 보고하면서 A$^{2+}$B$^{4+}$O$_5$의 perovskite 구조 산화물을 연구가 본격적으로 시작되었다. 고온 수소이온 전도체인 ABO$_3$ perovskite 구조 산화물은 푸른색, 오크색, 블루색, 블랙색 등 다양한 색상의 물질로 고온에서 주된 연구가 진행되고 있다. Fig. 10에서 수소이온 전도체인 BaZrO$_3$의 perovskite 구조를 보여주고 있다. 34) 현대적으로 A-site 양이온에는 Ca$^{2+}$, Sr$^{2+}$, Ba$^{2+}$ 등이 B-site 양이온에는 Ce$^{3+}$, Zr$^{4+}$, Ti$^{4+}$ 등 다양한 조성 성분과 함향에 따른 산화물을 수소이온 전도 특성에 대한 연구가 이루어지고 있다. 24, 28) Fig. 11은 전용적인 무기계 성수소이온 전도체들의 수소 분산기에 서 전도도를 보여주고 있다. 이 산화물들은 대부분 800°C 이상 고온에서 산소이온 전도성이 우수하나 800°C 이하에서 수소이온 전도성이 우수한 성질을 나타내는 것으로 보고 되고 있다. 29) 그러나 전도도의 증가에서 가장 우수한 B-site 양이온이 Ce$^{3+}$인 cerate 산화물, 특히 BaCeO$_3$는 높은 수소이온 전도도에도 불구하고 CO$_2$ 분산기에에서 불화유산화물의 탄화물 성분으로 분해되는 등 화학적 안정성에 문제를 나타내어 유용에 제한이 되고 있다. 39)

$$\text{ABO}_3 + 2\text{CO}_2 = \text{ACO}_3 + \text{BO}_2$$ \hspace{1cm} (1)

Bariumperovskite인 BaCeO$_3$, BaTiO$_3$, BaPrO$_3$ 등의 산화물

Table 5. Fuel Cell performance of modified Perfluorinated sulfonic acid membranes.

<table>
<thead>
<tr>
<th>Membranes</th>
<th>Fuel Cell conditions (T_{max}/ T_{cell}/ $T_{cathode}$/pressure)</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nafion 115-SiO$_2$(6%)</td>
<td>130/130/130 °C/3 bar, H$_2$, O$_2$</td>
<td>0.4V, 1000 mA/cm2</td>
</tr>
<tr>
<td>Nafion-SiO$_2$-PWA</td>
<td>100/100/100 °C/1.4 bar, H$_2$, O$_2$</td>
<td>0.4V, 540 mA/cm2</td>
</tr>
<tr>
<td>Nafion-TiO$_2$</td>
<td>0.4V, 185 mA/cm2</td>
<td></td>
</tr>
<tr>
<td>Nafion115-ZrP</td>
<td>130/130/130 °C/3 bar, H$_2$, O$_2$</td>
<td>0.45V, 1000 mA/cm2</td>
</tr>
<tr>
<td>Nafion-Mordenite</td>
<td>90/90/90 °C/1 atm, H$_2$, O$_2$</td>
<td>0.6V, 80 mA/cm2</td>
</tr>
<tr>
<td>Nafion-Teflon-Zr(1HPO$_4$)</td>
<td>87/120/91 °C/ H$_2$, Air</td>
<td>0.6V, 200 mA/cm2</td>
</tr>
<tr>
<td>Nafion-SO$_2$-ZrO$_2$(15%)</td>
<td>110/120/110 °C/3 bar, H$_2$, O$_2$</td>
<td>0.6V, 1500 mA/cm2</td>
</tr>
</tbody>
</table>
Table 6. Summary of inorganic-organic composite membranes.\(^{11}\)

<table>
<thead>
<tr>
<th>Organic component</th>
<th>Inorganic component</th>
<th>comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPEK, SPEEK</td>
<td>ZrP(^{+})(SiO(_2), TiO(_2), ZrO(_2))</td>
<td>Reduced methanol crossover</td>
</tr>
<tr>
<td>SPEEK</td>
<td>SiO(_2), ZrP, Zr-SPP</td>
<td>0.09 S/cm at 100°C</td>
</tr>
<tr>
<td>SPEEK</td>
<td>IPA</td>
<td>10(^{-1}) S/cm above 100°C</td>
</tr>
<tr>
<td>SPEEK</td>
<td>BPO</td>
<td>5 \times 10(^{-1}) S/cm at 160°C</td>
</tr>
<tr>
<td>SPEEK</td>
<td>SiO(_2)</td>
<td>3-4 \times 10(^{-1}) S/cm at 100°C</td>
</tr>
<tr>
<td>SPEEK</td>
<td>PWA</td>
<td>0.15 S/cm at 130°C</td>
</tr>
<tr>
<td>SPSF</td>
<td>PAA</td>
<td>0.135 S/cm at 50°C</td>
</tr>
<tr>
<td>PBI</td>
<td>ZrP-H(_2)PO(_4)</td>
<td>9 \times 10(^{-2}) S/cm at 200°C</td>
</tr>
<tr>
<td>PBI</td>
<td>PWA/SiW-H(_2)PO(_4)</td>
<td>3-4 \times 10(^{-2}) S/cm at 200°C</td>
</tr>
<tr>
<td>PBI</td>
<td>SiWA+SiO(_2)</td>
<td>2.2 \times 10(^{-2}) S/cm at 160°C</td>
</tr>
<tr>
<td>PBI</td>
<td>PWA+SiO(_2)+H(_2)PO(_4)</td>
<td>1.5 \times 10(^{-3}) S/cm at 150°C</td>
</tr>
<tr>
<td>PVDF</td>
<td>SiO(_2), TiO(_2), Al(_2)O(_3), doping acids</td>
<td>> 0.2 S/cm at 25°C</td>
</tr>
<tr>
<td>PVDF</td>
<td>CsH(_2)O(_4)</td>
<td>10(^{-2}) S/cm at 150°C</td>
</tr>
<tr>
<td>PPO, PO, PTMO</td>
<td>PWA</td>
<td>10(^{-2}) S/cm at 140°C</td>
</tr>
<tr>
<td>PTFE</td>
<td>Zeolite</td>
<td>DMFC test</td>
</tr>
<tr>
<td>PTFE</td>
<td>ZrP</td>
<td>4 \times 10(^{-2}) S/cm</td>
</tr>
</tbody>
</table>

Fig. 10. Perovskite structure of proton conducting BaZr(V)O\(_5\).\(^{11}\)

물결은 이산화탄소와의 분해 반응을 일으키는 것으로 보고되고 있다.

Perovskite 구조 산화물은 고온에서 증기나 수소가 없는 분위기에서 p-type (hole) 전기 점도 특성을 보이며, 고온에서 수증기 또는 수소가 공급되면 전기 점도는 감소하고 10\(^{-2}-10\(^{-3}\) S/cm의 수소이온 전도도가 나타난다.\(^{22}\) Perovskite 산화물은 수소이온 전도에는 2가지 메커니즘이 존재한다. 하나는 Grothues-mechanism\(^{23}\) 라 부르는 것으로 수소이온이 인접 산소이온으로 옮겨간으로 전달되는 것이고, 다른 하나는 vehicle-mechanism\(^{24}\)라 하여 수산화이온이 운동하는 방법이다.\(^{25}\)

이들 산화물 내의 수소이온 전도는 수소이온의 결합(protonic defects)\(^{26}\) 형성에 따라 기매촉하게 된다.\(^{27}\)

\[
\text{H}_2\text{O (gas)} + \text{V}_{\text{O}}^{-} + \text{O}_{\text{O}}^{2-} \rightleftharpoons 2\text{OH}_n. \quad (2)
\]

반응식 (2)를 Kroger-Vink 표기로 부르는데, 이 방식에 의해 도입된 수소이온은 일반적으로 다른 특별한 산소이온과 결합되어 있지 않고, 이온 사이를 자유롭게 이동하게 된다. 각자 내에 수소이온이 생성하는 것은 반응식 (2) 이후에 다음 반응식 (3)과 같은 수산화이온의 반응에 의해서도 가능하며 이러한 반응에 의해 생성된 수산화이온에 의한 전도 현상도 나타난다.

\[
\text{H}_2 + 2\text{H}^+ \rightleftharpoons 2\text{H}_2. \quad (3)
\]

주로 수산화이온 전도체에 있어서의 수산화이온 결합 생성은 주로 Kroger-Vink 반응식에 의한 것으로 관찰되고 있다.\(^{28}\)

결합장화된 고온에 의하면 전도도를 위한 산소반자리 생성과 상안정성의 문제 해결을 위한 B\(^{4+}\)-site에 +3가의 dopant를 추가하는 연구가 최근까지도 진행되고 있으며 대표적인 dopant이온으로 Yb\(^{3+}\), Y\(^{3+}\), Gd\(^{3+}\), Nd\(^{3+}\), La\(^{3+}\) 등이 고려되고 있다. 이 중에 La\(^{3+}\)의 경우에는 이온반경이 비교적 커서 B\(^{4+}\)-site에 일부만 침환되는 문제를 나타내고 있고 상대적으로 이온반경이 작
온 Y3+ 또는 Yb3+ 물질을 참가한 구조에서 전도도가 높은 것으로 나타났다.18,23,39 Fig. 12는 perovskite 구조 산화물 내에서 수소이온의 운동 염전파를 도식적으로 표시한 것이다.23 이것은 높은 수소이온 전도도와 함께 안정한 산화물의 개발하는데 중요한 정보를 제공한다.

일반적으로 수소이온 전도도는 염전파 분석을 통해 주파수에 따른 복잡한 과정으로부터 물질의 전해질의 저항값을 결정한다. Fig. 13는 낮은 온도에서 대비되는 무기 전해질 물질에 대한 Cole-Cole 도식을 나타낸 것으로 전해질 저항은 높은 주파수 영역에서 발생한다.23 임계(/boundary) 염전파가 존재하는 전해질 박력 경우 낮은 주파수에서 크게 받기 때문이며 bulk 영역의 arc는 간결되기 쉽다.

Fig. 14는 BaCe(Y)O\textsubscript{3} perovskite 구조 산화물을 사용하여 400°C, 600°C에서 염전화 전세율을 측정한 그래프이다. 이 그래프에서 볼 수 있듯이 무기 산화물 수소이온 전도체에 염전화의 성능이 일반적인 PEMFC 성능 보다 높고, SOFC와 견판한 결절을 얻을 수 있을음을 볼 수 있다.

BaZrO\textsubscript{3}는 매우 큰 격자 상수를 나타내는 일방정 perovskite 구조 산화물 중 하나이다. 높은 대칭성과 큰 격자 상수는 수소이온 결합 상수에 유리하며 수소의 bulk 전도도를 나타내고, 전도에 대한 활성성함수를 낮추는 효과를 동시에 나타낼 수 있을 것으로 예상된다.24 더욱이 Y3+ doped BaZrO\textsubscript{3} 구조 산화물은 Cesium계 산화물(BaCeO\textsubscript{3}, SrCeO\textsubscript{3})과 달리 높은 전도도 동에 이상화면소에 대한 활성성 인장성이 뛰어나고 300°C 이상의 온도에서도 공기 중에 포함된 CO\textsubscript{2}에 의해 분해되지 않고 안정하게 존재할 수 있다. 그러나 이들 활성화를 입자간 높은 경계 저항에 의한 반발당 때문에 치밀한 전해질 박력 만을 만드는 것은 쉽지 않다.11

Perovskite 구조의 무기 산화물 수소이온 전도체는 높은 bulk 전도도와 수소와의 활성화 이온 인장성을 가지고 있어 고온수소 수소이온 전도성 전해질 재료로 응용이 가능한 물질로 평가되고 있다.

3. 증음형 염전화용

최근 염전화 저차가의 경향은 고분자 전해질 염전화재와 수소저항성을 탑재한 시스템이다. 그러나 염전화 시스템과 개발 기기술을 사용할 경우 장기운전과 전체적인 효율을 높일 수 있게 해 주는 매우 메력적인 조건이다. 개발기술이 염전화재에 장착하여 사용하기 위해서 두가지 조건이 만족되어야 한다. 즉 높은 출발률을 얻을 수 있고 개발기술 운전에 사용하는 중온에서 안정할 수 있어야 한다. Bernard와 그 동료들은 PEMFC와 SOFC가 충분한 출발률도 가지고 있어 염전화 저차재에 적용될 수 있다고 추천하였다.37 PEMFC는 수소저항성을 탑재할 경우 수소의 염전화재가 개발되기 쉽게 쓰기에는 적합하지 않다. PEMFC와 개발기술이 서로 다른 운전 온도를 가지고 있기 때문이다. SOFC는 운전온도가 너무 높고 염전화재를 탑재하기에 적합하지 않다.38

증음형 염전화재 개발을 위해서 중점이 되는 두가지 연구가 이루어지고 있다. 하나는 접근이 높은 전도도를 갖는 새로운 전해질 재료를 개발할 것이고, 다른 접근은 다공성 전계 저지체에 의해 전해질막을 얻는 코팅하여 양면 전해질막을 형성할 것이다. 박막을 만드는 방법에는 sputtering, pulsed laser deposition, metalloorganic chemical vapor deposition, 그리고 chemical solution deposition(CSD) 등 다양한 기법이 있다. 그리고
중 CSD법은 쉬운 조성 변화, 적절한 제조비, 쉬운 대면적막의 제조 가능성 등과 같은 이점이 있고 저온에서도 제작이 가능하다. 중온에서 사용 가능한 수소이온 전도체 개발은 연료전지 자동차 뿐만 아니라 발전용 등 그 응용 가능성에 대한 많은 관심을 끌 것으로 생각된다. 본 실험은 중온형 연료전지 개발을 위해 다공성 금속 위에 BaZr(Y)O₃ perovskite 수소이온 전도체를 박막화하는 연구를 하였다.

Fig. 15에서 BaZr₆(Y₂O₃)₆O₁₉ perovskite 박막을 다공성 니켈 지지체 위에 만드는 순서를 도식화하였다. BaZr(Y)O₃ 용액은 zirconium propoxide (70% in propanol, Fluka), barium acetate (99%, Junsei), yttrium nitrate (99%, Aldrich) 시약을 각각 2-methoxyethanol, acetic acid, 2-methoxyethanol 용매로 녹인 후 혼합하여 만든다. 이 용액을 화학적 진전법으로 다공성 니켈 지지체 위에 코팅 후 열처리(650°C/2hr) 과정을 반복하여 임정 두께의 perovskite 박막을 제조하였다. 제조한 BaZr(Y)O₃ 용액은 6개월 이상 접촉한상 없이 두명하고 안정한 용해성태를 유지하였다. Fig. 16은 다공성 니켈 지지체와 최종 열처리 후 형성된 perovskite 박막 사진이다.

제조한 BaZr(Y)O₃ 막의 구조적 특성은 SEM과 XRD(Rigaku Denki D/max-C instrument)로 분석하였다. Fig. 17은 막의 단면과 표면을 SEM으로 관찰한 것이다. 매우 침밀한 구조의 박막 두께: 20 µm이 지지체 위에 마케균열이나 편절 현상 없이 형성되었음을 확인할 수 있었다. Fig. 18은 XRD 분석 결과로 진정한 perovskite 결정구조를 가지 있는 것을 볼 수 있었다.

제조한 perovskite 전해질 막의 수소이온 전도 특성을 평가하기 위해 Gamry 사 EIS300 전기화학분석 장치를 사용하여 임피던스 분석을 하였다. Fig. 19는 측정 주파수를 0.1~300,000 Hz 범위로 하여 동일한 기술조건한 다양한 온도에서 막의 임피던스를 측정한 결과이다. 2-probe법으로 임피던스를 분석한 결과 막의 수소이온 전도도는 100, 150, 250, 300°C에서 각각 1.43 x 10⁻⁵, 5.71 x 10⁻⁵, 1.14 x 10⁻⁵, 1.14 x 10⁻⁵ S/cm로 나타났다.

Fig. 20은 연료전지 성능을 측정하기 위해 전극배열인 Pt/C slurry를 니켈 스폰지(두께: 0.2 mm) 위에 뿌린 후 80°C로 24시간 진조하여 막 양쪽에 위치시키며 전극(MEA) 구성도이다. 구성한 MEA를 타이타늄으로 가공한 벌에 장착한 후 기체간 작립
4. 결론

중온 또는 저기압 환경에서 사용 가능한 수소이온 전도체 개발을 위한 다양한 연구가 진행되고 있다. 물소수지게 고분자막에 무기물을 첨가하여 유무기 복합막을 만들거나 열적 안정성이 우수한 탄화수소개 고분자를 활용하여 연료전지의 작동온도를 낮추기 위한 기술이 보고되고 있다. 본 논문에서는 치밀한 박막을 쉽게 제조할 수 있는 화학적 침전법을 사용하여 다공성 나필지지막의 이온 전도도와 단위전지 성능을 측정하였다. BaZr(T)O₃은 수소이온 전도성 무기 산화물 중 이온 전도도가 높고 화학적 안정성이 우수하다. 수소이온 전도도는 300°C에서 1.14×10⁻⁵ S/cm을 나타내었고, 연료
전지 성능은 280°C에서 OCV는 0.3 V, 전류밀도는 0.3~0.1 mA/cm² 범위로 나타났다.

중온형 연료전지 기술은 제료적인 투명과 시스템 적응에 있어 많은 장점을 갖고 있음에도 불구하고 상대적으로 개발 초기 단계이고 많은 연구와 개발을 필요로 한다. 유무기 복합체의 이 용과 고온용을 경비한 고체 산화물 구조 세라믹 수소이온 전도체의 개발은 새로운 중온형 연료전지 영역을 개척할 것으로 예상한다.

감사의 글

본 연구는 산업자원부와 교육인적자원부 BK21 과제(2007-8-0019) 지원으로 수행되었으며, 이에 감사드립니다.

참고문헌

34. Jianlu Zhang, Yanghua Tang, Chaojie Song, Jiujian Zhang, ‘poly-

