마이크로스트립 사각 개방 루프 공진기와 가변 부성 저항을 이용한 저위상 잡음 Push-Push 전압 제어 발진기

Low Phase Noise Push-Push VCO Using Microstrip Square Open Loop Resonator and Tunable Negative Resistance

최재원, 서철현

Jaewon Choi, Chulhun Seo

요 약

본 논문에서는 마이크로스트립 사각 개방 루프 공진기와 가변 부성 저항을 이용한 항상된 push-push 전압 제어 발진기를 제시하였다. 마이크로스트립 사각 개방 루프 공진기는 큰 결합 계수 값으로, 이는 Q값을 크게 만들고, 전압 제어 발진기의 위상 잡음을 줄인다. 1.8 V의 공급 전압을 사용한 전압 제어 발진기는 5.744 ~ 5.859 GHz의 주파수 조절 범위에서 -124.67 ~ -122.67 dBc/Hz @ 100 kHz의 위상 잡음을 특성을 갖는다. 이 전압 제어 발진기의 FOM은 같은 주파수 조절 범위에서 -202.83 ~ -201 dBc/Hz @ 100 kHz의 값을 갖는다. 마이크로스트립 사각 개방 루프 공진기를 이용한 단일 중단 전압 제어 발진기와 마이크로스트립 공진기를 이용한 push-push 발진기를 비교했을 때 개선된 위상 잡음 특성은 각각 -8.51 dB와 -33.67 dB이다.

Abstract

In this paper, a novel push-push voltage-controlled oscillator (VCO) using microstrip square open loop resonator and tunable negative resistance is presented. The microstrip square open loop resonator has the large coupling coefficient value, which makes a high Q value, and has reduced phase noise of VCO. The VCO with 1.8 V power supply has phase noise of -124.67 ~ -122.67 dBc/Hz @ 100 kHz in the tuning range, 5.744 ~ 5.859 GHz. The FOM of this VCO is -202.83 ~ -201 dBc/Hz @ 100 kHz in the same tuning range. When it has been compared with single-ended VCO using microstrip square open loop resonator, and push-push oscillator using microstrip line resonator, the reduced phase noise has been -8.51 dB, and -33.67 dB, respectively.

Key words : Push-Push VCO, Microstrip Square Open Loop Resonator, Tunable Negative Resistance, Phase Noise

I. 서 론

최근 무선 통신의 기하급수적인 성장은 이동 통신 응용 분야에서 이용할 수 있는 더 많은 채널들에 대한 요구를 증가하게 만들었다. 이에 따라, 이러한 요구는 전압 제어 발진기의 위상 잡음 특성에 대해 더욱 더 엄격한 요구 조건을 부여하게 만들었다[2].

다른 전압 제어 발진기들과 마찬가지로, push-push 전압 제어 발진기의 가장 중요한 성능 지표 중 하나는 위상 잡음 특성이다. Push-push 전압 제어 발진기는 균형을 맞추어 동작하는 두 개의 전압 제어 발진기를 이용하고 출력 단에서 오직 2차 고조파 성분만이 결합된다. Push-push 전압 제어 발진기에서 공진기의 설계는 동작 주파수의 절반의 주파수로 이

「이 연구는 2007학년도 숭실대학교 대학 연구비의 지원으로 연구되었음」

 숭실대학교 정보통신전자공학부(School of Information and Telecommunication Engineering, Soongsil University)
논 문 번 호 : 20070518-01S
수 정 완료 일 자 : 2007년 8월 14일
루어지고, 이로 인해 공전기의 **Q**는 더 높은 값을 얻을 수 있다. 또한, 동יש 주파수의 절반의 주파수에서 설계하는 것을 통하여 고주파 전압 제어 발전기에서 증가된 소자 이득을 얻을 수 있다. 이러한 장점을 때문에, push-push 원리를 이용한 설계 접근 방법은 저위성 잠재 전압 제어 발전기 설계에 있어서 매우 유용한 방법으로 사용되고 있다.

저주파 **I/I** 잔해는 전압 제어 발전기에서 캐리어 주파수에 근접한 위상 잠재 특성을 결정하는 결정적인 역할을 한다. **I/I** 잔해는 캐리어 주파수로 상향 변환되며, 이로 인해 캐리어 주파수에 근접한 **I/I** 영역에 나타나는 것으로 잘 알려져 있다. 캐리어 주파수에 근접한 **I/I** 영역에서 전압 제어 발전기의 위상 잠재 특성을 공전기의 **Q**값에 영향을 받는다. 하지만 마이크로스터립 공전기는 작은 **Q**값 때문에 위상 잠재를 줄여하는데 제한이 있다. 마이크로스터립 사각 캐비 루프 공전기는 큰 격렬 계수 값을 갖고, 이로 인해 큰 **Q**값을 갖기 때문에, 이 공전기를 이용한 공전기의 주요 장점들은 충분 대역 대역 여파 특성, 손실은 제작, 낮은 발산 손실, 그리고 예의된 직덱이다. 이 공전기는 우선 통신 시스템에서 사용되며는 전압 제어 발전기의 위상 잠재를 줄이는 매우 유용한 방법이다.

본 논문에서는 매우 낮은 위상 잠재 특성을 얻기 위하여 마이크로스테립 사각 캐비 루프 공전기가 가변 부등 제어를 이용한 향상된 push-push 전압 제어 발전기를 제시하였다.

II. 설계 원리

Push-push 전압 제어 발전기는 서로 위상이 반대로 동작하는 대칭 두 개의 전압 제어 발전기와 공전기, 그리고 출력 결합 회로로 구성된 주파수 체배 전압 제어 발전기이다. 그림 1은 마이크로스터립 사각 캐비 루프 공전기를 이용하여 제한한 push-push 전압 제어 발전기의 설계 원리를 보여준다. 각각의 전압 제어 발전기는 하나의 공통 공전기를 이용하여 동속 주파수의 절반 주파수에서 발전하도록 설계되어진다. 180°의 위상차를 얻기 위하여 본 신호(\(f_0\))와 모든 출력 고조파 신호(\(f_0, 5f_0, 7f_0, \ldots\))는 제거되고, 모든 학수 고조파 신호(\(2f_0, 4f_0, 6f_0, \ldots\))는 출력 회로에서 합쳐지고, 2차 고조파 신호는 출력 단으로 전달된다. 각각의 전압 제어 발전기의 두 신호는 \(\pi\)의 위상차를 갖는 아래의 식들에 의하여 나타내어진다.

\[
s_1(t) = a_0 + \sum_{n=1}^{\infty} a_n \cdot \sin(\omega_n t + \Phi_n) \tag{1}
\]

\[
s_2(t) = a_0 + \sum_{n=1}^{\infty} a_n \cdot \sin(\omega_n t + \Phi_n + n \cdot \pi) \tag{2}
\]

모든 주파수 신호들은 같은 크기를 갖고 오직 \(n \cdot \pi\) 만큼의 위상차를 다르다. \(n\)은 고조파 수를 나타낸다. 두 신호들의 합은 push-push 전압 제어 발전기의 출력 신호 \(s(t)\)이 된다.

\[
s(t) = 2a_0 + \sum_{n=2}^{\infty} 2a_n \cdot \sin(\omega_n t + \Phi_n) \tag{3}
\]

본 신호와 출력 고조파 신호들의 위상차 때문에, 이 주파수 신호들은 제거되며, 반면에 학수 고조파 신호들은 동위성으로 합쳐진다. Push-push 전압 제어 발전기의 공전기는 동속 주파수의 절반의 주파수로 설계되기 때문에 큰 **Q**값을 얻을 수 있고, 이로 인하여 위상 잠재가 줄어진다. 두 개의 전압 제어 발전기가 결정된 형태로 이루어진 push-push 전압 제어 발전기의 커뮤니 효과 때문에 위상 잠재가 3-dB 개선되는 효과를 얻을 수 있는
또 다른 장점이 있다[4].
본 논문에서 제안한 마이크로스트림 사각 개방 무프 공진기의 혼합 결합은 그림 2의 결합 구조에서 보듯이, 두 개의 공진기가 결합된 공통 부분에서 전체와 자신 분산은 상대적이고, 이 때문에 전체 결합과 자신 결합 중 어느 것도 무시할 수 없다. 따라서, 이와 같은 경우의 결합을 혼합 결합이라고 한다. 그림 2는 혼합 결합의 일반적인 형태와 이와 관련된 등가 회로를 나타낸다.

식 (4)와 (5)는 혼합 결합에서 두 개의 공진 주파수 \(f_c\)와 \(f_m\)을 보여준다.

\[
f_c = \frac{1}{2\pi\sqrt{(L - L_m')(C - C_m')}}
\]

\[
f_m = \frac{1}{2\pi\sqrt{(L + L_m')(C + C_m')}}
\]

여기서 \(C, L, C_m, L_m'\)은 각각 자기 캐패시터, 자기 인덕터스, 상호 캐패시터, 상호 인덕터스이다.

식 (4)와 (5)로부터 혼합 결합 계수\(k_a\)는 아래와 같이 얻을 수 있다.

\[
k_a = \frac{C L_m' + L C_m}{L C + L_m'C_m'}
\]

\[
L_m'C_m' << LC\text{라고 가정하면, 식 (6)은 아래와 같다.}
\]

\[
k_a \approx \frac{L_m'}{L} + \frac{C_m'}{C} = k_m' + k_c'
\]

여기서 혼합 결합이 자체 결합과 전체 결합의 중점으로부터 만들어진다는 것을 명확히 나타내고 있다[8].

비파터 다이오드를 이용한 가변 부정 장향의 설계는 그림 3에 나와 있다. \(L_1\)은 부정 장향 부분과 별개로 연결된 인덕터이다. 이때 그림 3에서, 만약 가변 부정 장향의 비파터 다이오드\((C_v)\), 인덕터\((L_1, L_2)\), 캐패시터\((C_2)\)가 연결되어지지 않는다면, 입력 임피던스\((Z_{in})\)은 두 개의 무프 식으로부터 계산되어질 수 있다. 입력 임피던스와 공진기의 리액턴스를 이용

\[\text{(a) 전압 제어 발진기의 등가회로}
\]

\[\text{(b) 회로 분석}
\]

\[\text{(c) Circuit analysis}
\]

그림 3. 가변 부정 장향을 이용한 전압 제어 발진기의 회로 분석

Fig. 2. Mixed coupling structure, and an associated
equivalent circuit.

Fig. 3. Circuit analysis of VCO using tunable negative
resistance.
하여 콜린 주파수를 얻을 수 있다.
\[
\left[\left(\frac{j\omega L_2}{j\omega C_3} \right) + \frac{1}{j\omega C_2} \right] \left[j\omega L_1 \right] - \frac{1}{j\omega C_1} = 0
\]
(8)

식 (8)을 계산하면, 다음과 같은 콜린 주파수를 얻을 수 있다.
\[
f_o = \frac{1}{2\pi} \sqrt{\frac{L_2(2C_2 + C_3) + L_1(2C_2 - C_3)}{L_1L_2(2C_2 + C_3 - C_1)}}
\]
(9)

식 (9)에서, 콜린 주파수는 가변 부성 저장 부분에 연결된 버텍터 다이오드에 인가되는 바이어스 전압이 증가함에 따라 조절되어진다[7,8].

III. 제안된 전압 제어 발전기 설계

제안된 push-push 전압 제어 발전기의 외로 구성 형태는 그림 1에 나와 있다. NEC의 NE661M04 BJT 소자와 M/A-COM의 MA46H202 버텍터 다이오드를 전압 제어 발전기 설계를 위하여 사용하였다. 두 개의 전압 제어 발전기의 동작 주파수(5.8 GHz)의 절반의 주파수에서 발전하도록 설계되었고, 하나의 전동 공진기를 이용하여 에너터에서 대칭적인 파형을 갖도록 하였다.

결합 회로는 180°의 위상차를 갖는 마이크로스트립 사각 개방 투프 공진기를 통하여 설계되었다. 결합 계수는 전압 제어 발전기의 마이크로스트립 사각 개방 투프 사이의 결합 공간이 줄어들수록 증가된다는 증가된 결합 계수는 저주파잡음 음성을 얻을 수 있게 하기 위해서, 주파수 조절 범위가 줄어지는 문제점이 있다. IEEE 802.11a의 위상 잡음과 주파수 조절 범위 규격을 만족하기 위하여, 전압 제어 발전기의 마이크로스트립 사각 개방 투프 사이의 결합 공간을 적절히 조절하였다.

버텍터 다이오드는 전압 제어 발전기의 발전 주파수를 조절하기 위하여 제안된 push-push 전압 제어 발전기의 가변 부성 저장 부분에 연결하였다. 이는 버텍터 다이오드를 공진기에 연결하여 주파수를 조절하는 방법을 사용할 경우 마이크로스트립 사각 개방 투프 공진기의 높은 Q값 때문에 주파수 조절 범위가 제한된다. 이러한 문제를 해결하기 위하여 버텍터 다이오드를 부성 저장에 연결하여 캐패시턴스 값을 변화시켜서 부성 저장을 조절하고, 이를 통한 대용 Q값을 갖는 공진기를 이용할 경우 발생되는 전압 제어 발전기의 제한적인 발전 주파수 조절 범위 문제를 해결하였다. 제안된 push-push 전압 제어 발전기의 가변 부성 저장 부분은 대역 통과 정합 외로 두 개의 인덕터리를 이용하여 설계되었다. 조절 전압이 버텍터 다이오드에 인가될 때 DC 성분이 트랜지스터로 옮겨 들어가는 것을 막기 위하여 가변 부성 저장 부분에 작은 값의 캐패시터를 연결하였다.

Wilkinson 결합기의 두 개 입력은 두 개의 전압 제어 발전기로부터 나온 2차 고조파 신호를 결합하기 위하여 두 개의 트랜지스터의 에너터 단에 연결되었다.

IV. 실험 결과

마이크로스트립 사각 개방 투프 공진기와 가변 부성 저장을 이용하여 제안한 push-push 전압 제어 발전기는 2.2의 유전율과 31 mils의 두께를 갖는 Rogers 기판을 사용하여 제작되었다. 그림 4는 제안한 push-push 전압 제어 발전기의 제작된 기판이다. 전압 제어 발전기의 주파수 조절 범위는 5.744 ~ 5.859 GHz이고 위상 잡음 특성은 이 주파수 조절 범위에서 -124.67 ~ -122.67 dBc/Hz @ 100 kHz이다. 출력 전력과 고조파 특성은 각각 8.67 dBm과 -15 dBm이다.

그림 4. 제안된 push-push 전압 제어 발전기의 제작

![Fig. 4. Fabrication of the proposed push-push VCO.](image-url)
마이크로스트립 사각 개방 툴프 공정기와 가변 부성 저항을 이용한 저주파 채널 잡음 Push-Push 전압 제어 발진기

그림 5. 제안된 push-push 전압 제어 발진기의 동작 특성. (a) 출력 전력, (b) 위상 잡음(5.744 GHz)

Fig. 5. (a) Output power, (b) Phase noise(5.744 GHz) of the proposed push-push VCO.

dBc이다. 빌리터 전압과 전류는 각각 1.8 V와 28 mA이며, 이때 전력 소모는 50.4 mW이다. 그림 5는 제안된 push-push 전압 제어 발진기의 동작 특성을 보여준다. 이 그림에서 보면 기본 주파수는 2.9 GHz이며, 그에 상응하는 올수 고조파 신호가 확실히 억제된 것을 알 수 있다. Push-push 구조에 의해 발생되어지는 주요 문제점인 기본 주파수와 올수 고조파 신호의 발생을 마이크로스트립 사각 개방 툴프 공정기를 이용하여 확실히 제거할 수 있다.

위상 잡음 개선 효과를 증명하기 위하여, 제안된 push-push 전압 제어 발진기의 동작 특성을 마이크로스트립 공정기를 이용한 push-push 발진기와 마이크로스트립 사각 개방 툴프 공정기와 가변 부성 저항을 이용한 단일 종단 전압 제어 발진기의 동작 특성을 비교하였다. 단일 종단 전압 제어 발진기는 3.2의 유전율과 31 mils 두께를 갖는 taconic 기판을 이용하여 제작하였다. 오프셋 주파수가 100 kHz일 때, 마이크로스트립 공정기를 이용한 push-push 발진기, 마이크로스트립 사각 개방 툴프 공정기와 가변 부성 저항을 이용한 단일 종단 전압 제어 발진기와 제안
| 표 1. 다른 발진기, 전압 제어 발진기와의 특성 비교 |
| Table 1. VCO performance comparison. |
| --- | --- | --- | --- |
| 단위 | [4] | [8] | This work |
| 발진 주파수 (GHz) | 5.62 | 5.735 | 5.744 |
| 출력 전력 (dBm) | 2.9 | 4.83 | 8.67 |
| 고조파 특성 (dBc) | -20 | -28.83 | -15 |
| 위상 잡음 (dBc/Hz @ 100 kHz) | -91 | -116.16 | -124.67 |
| 주파수 조절 범위 (GHz) | NA | 5.735 ~ 5.845 | 5.744 |
| 전력 소모 (mW) | 20.4 (1.7 V x 12 mA) | 50.4 (1.8 V x 28 mA) |
| FOM (dBc/Hz @ 100 kHz) | -198.33 | -202.83 |

V. 결 론

본 논문에서는 위상 잡음을 특성을 개선시키기 위하여 마이크로스트립 사각 개방 투프 공진기와 가변 부성 제한을 이용한 합성 push-push 전압 제어 발진기를 설계 제작하였다. 마이크로스트립 사각 개방 투프 공진기를 이용한 push-push 전압 제어 발진기의 발진 주파수를 조절하기 위하여 버터터 디오드를 전압 제어 발진기의 부성 제한 부분에 연결하였다. 발진 주파수, 고조파 특성, 출력 전력은 각각 5.744 GHz, -15 dBc, 8.67 dBm이다. 제안된 push-push 전압 제어 발진기는 가변 부성 제한에 의하여 5.744 ~ 5.859 GHz의 주파수 조절 범위를 갖는다. 이 주파수 조절 범위에서 마이크로스트립 사각 개방 두 프 공진기와 push-push 구조에 의하여 -124.67 ~ -122.67 dBc/Hz @ 100 kHz의 위상 잡음을 특성을 갖는다.

참고 문헌

사례 현

2006년 2월: 충남대학교 정보통신전자공학부 (공학사)
2006년 3월~현재: 충남대학교 정보통신공학과 석사과정
[주 관심분야] 초고주파 회로 설계,
RF Power Amplifier, VCO, RFIC, RFID 등

서 철 현

한국전자파학회논문지, 17(12) 참조