NRD 도파관에 내장된 구조를 갖는 구형 도파관-NRD 도파관 트랜지션

Rectangular Waveguide-NRD Waveguide Transition having the NRD Waveguide Built-in Structure

유영근·최재하
Young-Geun Yoo · Jae-Ha Choi

요 약

본 논문에서는 NRD 도파관 내에 표준 도파관에 대한 트랜지션 기능이 내장된 새로운 형태의 구형 도파관-NRD 도파관 트랜지션을 제안하였다. 새로운 제안된 구형 도파관-NRD 도파관 트랜지션은 NRD 도파관 입출력 측의 기구를 벽 두께와 개구부의 폭을 이용하여 구현한다. 벽 두께의 경우, NRD 도파관 내에 파장의 절반(\(1/2\))과 거의 동일하며, 개구부의 폭은 NRD 도파관과 체결되는 표준 도파관의 넓은 범위의 길이와 거의 일치한다. 이러한 원리는 주파수 대역과 무관하게 적용 가능하며, 본 논문에서는 38 GHz 대역에서 구형 도파관-NRD 도파관 트랜지션을 제작하여 탐색성을 확인하였다. 38 GHz에서 제작된 구형 도파관-NRD 도파관 트랜지션은 back-toback 구조에서 0.4 dB 이하의 삼입 손실과 20 dB 이하의 반사 손실을 갖는다.

Abstract

In this paper, we proposed the new rectangular waveguide-NRD waveguide transition in which the transition function about the standard waveguide is built in within the NRD waveguide itself. The newly proposed rectangular waveguide-NRD waveguide transition was realized use of NRD waveguide input/output side wall thickness and hole width. In the case of the wall thickness, it was nearly identical with the half of the NRD waveguide guide wavelength and the width of an hole was nearly coincide with the length of the long side of the standard waveguide connected with the NRD waveguide. This kind of the principles is applicable to be unrelated with the frequency band. In this paper, it made in 38 GHz band with the rectangular waveguide-NRD waveguide transition and the feasibility was confirmed. In the back-to-back structure, the rectangular waveguide-NRD waveguide transition manufactured in 38 GHz band has the insertion loss less than 0.4 dB and also has the return loss less than 20 dB.

Key words : Rectangular Waveguide-NRD Waveguide Transition, 38 GHz Band Transition

I. 서 론

NRD 도파관이 1981년 Yoneyama와 Nishida[1]에 의해 처음 제안된 이래로 NRD 도파관 구조를 적용한 각종 통신 부품들이 꾸준히 개발되어 오고 있다. NRD 도파관이 주목받고 있는 이유는 NRD 도파관을 밀리미터파 대의 저 손실 전송 선로로 활용할 수 있을 뿐만 아니라 도파관 내부에 포함된 유전체 선로를 거쳐대로 하여 반도체 소자 등을 장착하여 밸러, 변조기, 발전기 등과 같은 밀리미터파 대의 통신
부품들을 비교적 손쉽게 제작할 수 있다는 점 때문이었다.

일반적으로 밀리미터파 대의 측정 시스템들은 입출력 포트가 구형 도파관으로 이루어져 있기 때문에 NRD 도파관 구조로 제작된 통신 부품들의 성능 검증을 위해서, 그러고 NRD 도파관 구조로 제작된 통신 부품들과 기존의 다른 통신 부품들과의 연결을 위해서 구형 도파관-NRD 도파관 트랜지션(이하 트랜지션)이 반드시 필요하다.

지금까지 문헌이나 논문을 통해 발표되었던 트랜지션은 그림 1에서와 같이 일반적으로 테이퍼(taper) 구조의 기구물에 유전체 로드 안테나(rod antenna)가 결합된 구조인데[3]-[9], 이러한 트랜지션의 특징은 로드 안테나의 끝에 빛축함수록 우수한 특성을 갖는다는 점이다.

그럼에도 불구하고 소출력 제한이 무엇인가 때문에 로드 안테나의 끝을 빛축하게 가공하기가 어렵고, 또 한 테이퍼 구조의 기구물 제작을 위해 와이어 커프링 (wire cutting)이라는 다소 간단한 공정이 필요하게 되므로 단가를 높추는데 어려움이 있었다. 무엇보다도 NRD 도파관 구조로 제작된 통신 부품 입출력 측에 이러한 구조의 트랜지션의 임직한 연결되어야 하므로 소형화의 결림들이 되어 왔다.

이러한 문제들을 극복하기 위해 NRD 도파관 입출력 측에 구형 도파관과의 전이 기능을 포함한 새로운 구조의 트랜지션을 제안하게 되었다.

II. 새로운 트랜지션 구조의 제안

![그림 1. 통상적인 구조의 트랜지션](image)

Fig. 1. The transition of general structure.

![그림 2. 새롭게 제안된 트랜지션의 구조](image)

Fig. 2. The structure of newly suggested transition.

본 논문에서는 그림 2에서와 같이 도파관과 체결되는 부분의 NRD 도파관의 기구물 벽면을 이용하여 NRD 도파관 내부에 트랜지션 기능을 내장시킨 특성을 갖는 새로운 트랜지션을 제안하였다.

트랜지션을 형성하는 개구부의 폭과 빛 두께를 구하는 과정은 쉽지 않았는데, 설계에서부터 제작, 측정에 이르는 과정을 수차례 반복한 결과, 개구부의 폭은 외부로 체결되는 도파관 긴 변의 길이와 거의 일치하고, 빛 두께는 NRD 도파관 관내 파장과 근사적으로 같다는 것을 밝혀내었다. 이를 정리하면 식 (1)과 같다.

\[W \approx \frac{\text{표준 구형 도파관 긴 변의 길이}}{2} \]
\[T \approx \frac{\lambda}{2} \text{ (NRD 도파관의 관내 파장) } \]

(1)

트랜지션의 최종 지수는 식 (1)로부터 얻어지는 기본적인 값에서 성능과 가공성을 고려하여 약간의 미세 조정 후 정해진다.

본 논문에서 제안한 트랜지션을 국내 BWLL 용도인 38~40 GHz 대역에서 사용할 수 있도록 제작하였으며, 측정을 통하여 유 효성을 입증하였다.

III. 38 GHz 대역 트랜지션

3-1 38 GHz 대역 NRD 도파관 구조

NRD 도파관 제작 시 사용한 도체판은 알루미늄이며, 유전체 선로는 \(\varepsilon_r = 2.05 \) 인 PTFE이다. NRD 도파관의 규격은 Yoneyama 교수의 제시한 차수 범위[1]에서 수급 가능한 PTFE 판판의 종류와 가공성 등을 종합적으로 고려하여 높이 3.5 mm, 폭 4 mm로 정하였다.
그림 3. 38 GHz 대역 NRD 도파관의 구조
Fig. 3. The structure of 38 GHz band NRD waveguide.

였다. 그림 3에 NRD 도파관의 구조를 나타내었다.

3-2 초기 설계

38 GHz 대역에서 일반적으로 사용되고 있는 표준 구형 도파관은 WR-28인데, 이 구형 도파관 단면의 가로×세로 길이는 7.11×3.56 mm이다. 그리고 c/(\sqrt{\varepsilon_r})의 관계식으로부터 설계 대역의 중심 주파수인 39 GHz에서 NRD 도파관의 판내 파장을 약 5.37 mm가 된다.

따라서, 식 (1)로부터 트랜지션을 구성하는 개구부의 폭은 7.1 mm, 빅 두께는 2.7 mm로 결정하였으며, 이것을 초기값으로 하여 트랜지션 설계를 진행하였다. 설계는 Ansoft HFSS\(^6\)로 수행하였으며, 그림 4에 시뮬레이션을 위한 back-to-back 모델링 구조를, 그리고 그림 5에 설계 결과를 각각 나타내었다.

3-3 튜닝(Tuning)

식 (1)로부터 구한 최초 설계 결과는 반사 손실 25 dB 이상으로 상태가 만족할 만한 수준이었다. 식 (1)로부터 구한 최초 값이 어느 정도 정확한지를 파악하여 오차 범위를 확인하고, 궁금치

그림 4. 시뮬레이션 모델링
Fig. 4. The simulation modeling.
그림 7. 개구부의 폭에 따른 트랜지션의 특성
Fig. 7. The Transition performance according to the hole width.

그림 8. 트랜지션의 최종 설계 결과
Fig. 8. The final simulation result of the transition.

그림 9. 트랜지션의 field 분포
Fig. 9. Field distribution of the transition.

그림 10. 트랜지션의 최종 구조
Fig. 10. The final structure of the transition.

도파관의 구조를 위한 구입이 가능한 PTFE로 선정하여 (4 mm) 한 쪽 단면의 가공이 생각되도록 하였 다. 3.5 mm 길이로의 절단은 미시램셔터로 이루어졌는데, 치수의 정확성과 일관성 확보를 위해 보조 치 공구를 제작하여 가공에 활용하였다. 알루미늄 재질 의 기구들은 구조가 매우 단순하고 비교적 치수에
NRD 도파관 내장된 구조물 갖는 구형 도파관-NRD 도파관 트랜지션

군감하므로 가공에 따른 특별한 어려움은 없었다.

트랜지션이 포함된 NRD 도파관은 순간접착제를 이용하여 알루미늄 재질의 기구물에 유전체 씽로를 부착한 후 투경이 달아주면 제작이 완료된다. 그림 11에 제작된 트랜지션의 실물 사진을 나타내었다.

측정은 Anritsu A의 37397A 네트워크 아날리저를 이용하여 수행하였다. 그 결과, 그림 12에서와 같이 설계 대역에서 삼입 손실은 0.4 dB 이하, 반사 손실은 20 dB 이하로 측정되었다. 설계치가 삼입 손실 이 0.1 dB 이하이고, 반사 손실이 35 dB 이하인 것에 비하면 성능이 많이 저하된 편인데, 이는 대부분 제작상에서 발생한 것으로 판단된다.

제작상에서 발생할 수 있는 문제는 대부분 유전체 씽로의 절단과 부착에 관련된 것인데, 유전체 씽로를 수직면으로 매끈하게 절단하기가 쉽지 않았고, 또 경 중앙에 위치시키는 것도 어려웠는데, 이러한 요인들이 성능에 영향을 미친 것으로 추측된다.

제작상의 문제로 인해 성능이 다소 저하되었다고 느끼지만 back-to-back 측정 결과로서 0.4 dB 이하

의 삼입 손실과 20 dB 이하의 반사 손실을 보임으로서 개발된 트랜지션의 실용성은 충분히 확보되었다고 생각한다.

한편, 절단 및 조립 등에 필요한 치공구의 사용 등 양산기술을 향상시키기 위한 다양한 연구가 진행되고 있으므로, 위에서 언급된 제작상의 문제들도 곧 해결될 전망이다.

IV. 결 론

본 논문에서는 마리미터파 대의 전송 씽로로 활용이 가능하고, 통신 부품 제작에 적합한 구조를 갖는 NRD 도파관에 있어서, 성능 검증 및 다른 통신 씽로재료의 연결을 위해서 반드시 요구되며 표준 도파관과의 트랜지션을 별도로 제작하지 않고, NRD 도파관 내부에 내장하는 새로운 구조의 트랜지션을 제안하고, 구성 원리에 대해 소개하였다.

이러한 원리를 적용하여 38 GHz 대역에서 트랜지션을 직접 제작하여 탐색성을 확인하였는데, 본 논문에서 제시된 수식으로부터 구한 농수에서 4 % 이내에 최종 목표값이 존재하며, 거의 오차 범위 내에서 일치함을 확인하였다.

NRD 도파관 구조의 통신 씽로에 연결되는 통상적인 구조의 트랜지션은 부피가 통신 씽로보다 오히려 큰 경우도 있어 소형화의 필요성이 되어 높았으며, 또한 가공하기가 쉽지 않아 일반화 특성을 기대하기가 어려웠다. 본 논문에서 제안한 트랜지션을 사용할 경우, 이러한 문제들이 손쉽게 해결될 것으로 기대한다.

참고 문헌

449, 1983.

