LTCC 적층 필터를 위한 기생 성분 해석 및 필터 설계

Parasitic Elements Analysis and Filter Design for LTCC Multi-Layer Filter

이혜선 · 김유선 · 표현성 · 안재민 · 임영석

Hyesun Lee · Yuseon Kim · Hyunseong Pyo · Jaemin An · Yeongseog Lim

요 약

본 논문에서는 선행 연구된 LTCC(Low Temperature Co-fired Ceramic) 적층형 대역 통과 필터 구조에 대해 기생 성분을 고려한 동가화로를 제시하고 SOC(Short-Open Calibration) 기법을 적용하여 소자값을 추출하는 과정을 보인다. 추출된 소자 값을 제시한 동가화로에 적용함으로써 웨이 DMB에 적용 가능한 2차 LTCC 필터를 설계 제작하였다. 비유전율 7.8의 Dupont951을 사용하여 제작된 필터의 크기는 2.4×3.8×0.378 mm³이다. 측정 결과 1.4 dB의 삽입 손실과 32.3 dB의 반사 손실을 보였으며 설계 사양과 대체로 일치함을 보인다.

Abstract

In this paper, we present an equivalent circuit considered parasitic elements about LTCC multi-layer BPF structure that was studied previously and a process of extraction of the element value using SOC technique. By applying extracted element values to equivalent circuit, 2th LTCC filter was designed and fabricated that was applied to satellite DMB. The filter was fabricated of Dupont951 substrate with relative permittivity of 7.8, the dimension of the fabricated filter is 2.4×3.8×0.378 mm³. The measurement results indicate 1.4 dB of insertion loss and 32.3 dB of return loss, which are in good agreement with simulated ones.

Key words : LTCC, Short-Open Calibration, Satellite DMB

I. 서 론

가까운 무선 통신 시스템은 다중 대역의 사용과 멀티미디어 기능의 요구가 증대되면서 RF 부품의 수요가 증가하고 있다. 이에 따라 관련 부품들의 소형화 및 집적화의 필요성이 점점 부각되고 있으며, 이러한 요구를 충족시키기 위한 기술로 LTCC 적층 공법이 갖추고 받고 있다. LTCC 기술은 세라믹 기판 내에 수동 소자들을 3차원적으로 집적화하여 부품의 크기를 감소시킬 수 있을 뿐만 아니라 다양한 결합 메커니즘을 구현할 수 있다.[1~16].

기존의 LTCC 적층 필터는 구조의 전자기적 현상을 나타내는 공식을 바탕으로 설계를 하였고[1], 이는 기생 성분의 영향이 적은 간단한 구조의 필터 설계에 적합하다.

하지만 더욱 집적화되고 복잡한 구조의 필터는 기생 성분의 해석 및 반응을 다수의 시험을 통해 최적화 과정에 의존해야 하기 때문에 최초 설계하고자 하는 필터와 제작된 필터의 주파수 응답 간에 다소간의 차이가 발생하게 된다. 이는 결국 통과 대역의 삽입, 반사 손실과 같은 필터의 특성에 영향을 미치게 된다.[17].

이러한 문제점을 개선하기 위해 비아를 이용한 인덕터, MIM(Metal-Insulator-Metal), VIC(Vertically Interdigitated Capacitor)와 같은 구조의 LTCC 소자 라이브러리의 구축이 이루어졌으며[18,19]. 특히 VIC 구조는 동일한 카페타르스를 갖는 MIM에 비해 75%의 면적 감소 효과를 얻을 수 있어, 수동소자의 소형화에 적
합하다[9].

본 논문에서는 측정 구조의 영향을 제거하고 앞서 제시된 문제점들의 효과적인 해결을 위해 선행 연구
된 단락 개방 보정 방법(SOC)을 이용하였고[7]~[9]. 그러다 자주 사용되는 MIM, VIC, 인덕터 구조 내부의 기생 성분 추출 및 기존 구조의 분석를 통해 필터 용
용의 우수성을 입증한다.

선행 연구된 통과 대역 하측에 전송 영점을 갖는 대역 통과 필터의 동가회로와 구조 및 구조변수 값을 그림 1과 표 1에 나타내었다[11]. 그림 1(a)와 같이 도체 판들을 적층하여 구조를 설계하면 인접한 도체
들 간의 예측을 저하시켜 구조를 설계하면 인접한 도체
들 간의 예측이 어려운 기생 성분이 발생하게 되어 설계하고자 했던 그림 1(b)의 동가회로의 다른 주파 수 응답을 갖게 된다. 구조와 동가회로를 살펴보면 주요 전자기적 효과에 의한 특성 변화는 예측이 가
능하지만, 그 밖의 기생 요소들은 예측하기 어렵다.

따라서 본 논문에서는 그림 1(a)에 보인 기존의 LTCC 적층 구조에 대해 기생 성분이 추가로 고려된

![LTCC 적층 필터를 위한 기생 성분 해석 및 필터 설계](image)

표 1. LTCC 2차 BPF의 물리적 변수

<table>
<thead>
<tr>
<th>Physical parameters</th>
<th>Values</th>
<th>Physical parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>l</td>
<td>0.006 mm</td>
<td>h</td>
<td>0.09144 mm</td>
</tr>
<tr>
<td>w1</td>
<td>1.524 mm</td>
<td>l1</td>
<td>1.2192 mm</td>
</tr>
<tr>
<td>w2</td>
<td>1.4732 mm</td>
<td>l2</td>
<td>0.8128 mm</td>
</tr>
<tr>
<td>w3</td>
<td>0.2032 mm</td>
<td>l3 (l3')</td>
<td>1.016 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1.6256 mm)</td>
</tr>
<tr>
<td>w4</td>
<td>1.016 mm</td>
<td>l4</td>
<td>0.9652 mm</td>
</tr>
</tbody>
</table>

동가회로를 새롭게 제안하고, SOC 기법을 이용하여 측정 패드에 의한 오차를 제거한 기생 소자를 추출
하는 일련의 과정을 보인다. 그리고 이를 통해 설계
된 라이브러리와 필터 동가회로 간의 효과적인 연결
이 가능하게 하였다.

대역 통과 필터의 시뮬레이션 및 제작은 선행 연
구의 필터와의 비교를 위해 비유전율 7.8, 두께 0.09144 mm의 Dupont 951의 매질과, 도전율이 우수한
두께 0.006 mm의 Silver를 사용하여 수행하였으며, 본문의 구성은 다음과 같다.

2절에서는 기존의 구조를 커뮤니티는 MIM과 VIC 구조로, 인덕터는 단락된 수직 결합 형태의 구조로
나누어 각각에 대해 기생 성분이 고려된 동가회로를
제안하고 SOC를 적용하는 일련의 과정을 보인다. 3
절에서는 2절에서 제안한 동가회로들을 이용하여 2
차 대역 통과 필터를 설계하고 제작을 통해 추출된
소자 값들의 신뢰성을 검증하도록 한다. 결론에서는
본 논문에서 보인 SOC 기법을 이용한 소자 추출 기
법을 LTCC 적층 구조에 적용함으로써 얻는 효과에
대해 논의한다.

II. 기존 구조 분석 및 기생 요소 추출

2-1 덱벨 형태의 커뮤니티가 삽입된 VIC 구조

그림 2는 그림 1에서 공진기의 커뮤니티와 공진기
간의 결합 커뮤니티를 발생시키는 VIC 구조를 나타
낸 것이다. 상하에 절치 면이 위치해 있고, 절차면
하단부에 도체를 위치시킴으로써 도체와 절차면 사
이의 전위차로 인해 C_{sp}, C_{sp}가 각각 발생하고,
layer 1과 layer 3에 위치한 사각 평행 관 VIC 커뮤니티

![LTCC 적층형 대역 통과 필터](image)

Fig. 1. LTCC multi-layer bandpass filter.
그림 2. VIC의 물리적 구조
Fig. 2. Physical structure of the VIC.

그림 3. VIC의 DUT 모델 및 등가회로
Fig. 3. DUT model and equivalent circuit of VIC.

그림 4. 산란 파라미터들의 비교
Fig. 4. Comparison of the scattering parameters.

\[D = 1 + j\omega Cs \pm j\omega Ls + 1/(j\omega Cs) \]

(4)

이들 각 요소에 대해 정리하면, 추출된 \(C_s, C_{s-p}, C_{s-p}, L_s \)의 값들은 SOC를 적용하지 않은 결과 각각 1.143 pF, 2.711 pF, 2.701 pF, 1.168 nH, SOC를 적용한 결과 각각 1.083 pF, 2.582 pF, 2.573 pF, 0.5126 nH이다. 각 요소 값들이 적용된 회로 시뮬레이션 결과와 EM 시뮬레이션 결과를 그림 4에 비교하여 도시하였다. SOC 적용 유무 각각에 대해 진폭, 위상 응답을 살펴보면, 주파수가 증가함에 따라 산란 파라미터 값들이 차이를 보이는 것을 알 수 있다.

이는 주파수가 증가함에 따라 error box에 대한 영향이 점차 증가함을 보여준다. 또한 SOC를 적용하여 추출된 요소들을 포함한 등가 회로 해석과 EM 시뮬레이션 간의 진폭과 위상 오차는 자기 공진 주파수(SRF) 이내에서 1% 이내의 상태 오차를 갖는다.
2.2 MIM 커 피셔터 구조

그림 5는 그림 1에서 입출력 포트와 공진기 간의 결합 커 피셔터를 발생시키는 MIM 구조를 나타낸 것이다. 마찬가지로 상하에 접지 면이 있고 접지면 바로 아래에 도체가 위치함으로써 동등회로에서의 C_{L1}과 C_{L2}가 각각 발생한다. 또한 도체와 도체면 사이에서도 전위차로 인해 $C1$가 발생한다. 그리고 측정 패드와의 연결을 위해 feed line과 via가 추가되었다. 6(a)와 같이 기존선을 경계로 양 단을 error box로 처리하고, SOC를 적용하여 DUT의 행렬을 요소를 구한다. 다음으로, 전자기적 요소들이 고려된 DUT의 동등회로는 그림 6(b)에 의해 이를 최적 해석하여 식 (5)~(8)과 같이 나타내고 DUT의 행렬 요소와 비교한다.

$$A = 1 + jwCl_{p}L_{1}(jwLI_{1} + 1)/(jwCI)$$ \hspace{1cm} (5)

$$B = jwLI_{1} + 1/(jwCI)$$ \hspace{1cm} (6)

$$C = jwCI - p_{1} + jwCI - p_{2}$$
$$+ (jwCI - p_{1})(jwCI - p_{2})/(jwLI_{1} + 1)/(jwCI)$$ \hspace{1cm} (7)

그림 5. MIM 커 피셔터의 물리적 구조
Fig. 5. Physical structure of the MIM capacitor.

각 식은 소자에 대한 값으로 정리하여 추출한 값인 C_{b}, L_{1}, L_{2}, I_{1}의 값들은 SOC를 적용하지 않은 결과 각각 1.005 pF, 0.5538 pF, 1.032 pF, 0.6049 nH이고, SOC를 적용한 결과 각각 0.9847 pF, 0.4694 pF, 0.9707 pF, 0.16 nH이다. 각 소자 값을 동등회로에 대입하여 최적해석한 결과를 그림 7에 도시하였다. 마찬가지로 주파수가 증가함에 따라 SOC를 적용한 경우의 작용하지 않은 경우의 반사, 삽입 손실 그래프는 error box에 의한 오차가 발생할 수 있으며, SOC를 적용한 경우의 시뮬레이션 결과와 추출된 소자가 적용된 회로 해석 결과의 진폭과 위상 오차는 0.5 % 이내의 상태 오차를 보인다.

D = 1 + jwCl_{p}(jwLI_{1} + 1)/(jwCI) \hspace{1cm} (8)
그림 8. 인덕터 결합선의 물리적 구조
Fig. 8. Physical structure of the inductor coupled line.

2.3 인덕터 결합 선

그림 8은 그림 1에서 공진기의 인덕터와 공진기 간의 상호 인덕턴스를 발생시키는 단락된 수직 결합 형태의 구조를 나타낸 것이다. 비아를 통해 상하의 절지 면과 연결된 접속 선로를 삽입한 구조로, 선로를 통해 호르는 시변 전류로 인해 생성된 자기 인덕턴스 효과를 \(L_1, L_2 \) 같은 방향의 전류로 인한 상호 인덕턴스효과를 \(MM \)이라 하였다. 여기에서 결합 선로의 기생 케 ogl서스 효과인 \(C_M \)과 선로의 비연결 성, 프린지 효과 등으로 인한 선로의 기생 케 ogl서스 효과인 \(C_p, C_0 \)를 등가회로에 추가로 고려하였다.

마찬가지로 입력단과의 연결을 위한 길이는 그림 9(a)에서와 같이 error box로 처리하였고, error box의 영향을 제외한 DUT의 등가회로는 그림 9(b)와 같다. 여기에서, DUT의 A, B, C, D의 행렬 값과 등가회로 상의 각 소자들 간의 관계는 식 (9)~(12)와 같다.

\[
A = 1 + \frac{(j\omega C_M + 1)/(j\omega L_2)}{(j\omega C_M + 1)/(j\omega MM)}
\]
\[
B = 1/(j\omega C_M + 1)/(j\omega MM)
\]
\[
C = \frac{(j\omega C_M + 1)/(j\omega L_1) + (j\omega C_M + 1)/(j\omega L_2))}{(j\omega C_M + 1)/(j\omega MM)}
\]
\[
D = 1 + \frac{(j\omega C_M + 1)/(j\omega L_1)}{(j\omega C_M + 1)/(j\omega MM)}
\]

그림 10. 산란 파라미터들의 비교
Fig. 10. Comparison of the scattering parameters.

0.2496 pF, 0.1807 pF이다. 각 소자 값들이 적용된 회로 시뮬레이션 결과와 EM 시뮬레이션 결과를 비교하여 그림 10에 도시하였고, 마찬가지로 SOC가 적용된 소자 값이 적용된 회로 해석과 시뮬레이션 결과의

\[
0.2496 \text{ pF}, \ 0.1807 \text{ pF}
\]
전폭, 위상 오차는 자기 굴절 주파수(SRF) 이내의 주파수에서 0.5 % 이하의 상태 오차를 갖는다.

III. 2차 대역 통과 필터 설계 및 제작

3-1 2차 대역 통과 필터 설계

앞 절의 결과를 바탕으로 새로 구성된 2차 대역 통과 필터의 등가회로는 그림 11과 같다.

그림 2의 등가회로와 비교하면, 기존의 등가 회로 상에 나타난 상호 인덕턴스 효과인 \(M \)은 \(\pi \) 형태로 변환하는 과정을 거치면서\(^{[3]}\), 수정된 등가회로에서는 기존 요소인 \(L_n, C_m, CL_p \)이 추가되었음을 알 수 있다.

그림 11의 각 소자 값들은 표 2에 요약하여 표기하였다. 그림 12는 SOC 적용하지 않은 결과와 SOC를 적용한 결과에 대한 각각의 회로 시뮬레이션 결과와 그림 1의 구조에 대한 EM 시뮬레이션 결과를 함께 도시한 것이다.

![그림 12: 산란 파라미터들](image)

그림 12. 산란 파라미터들

Fig. 12. The scattering parameters.

표 2. LTCC 2차 BPF의 등가회로의 요소 값

<table>
<thead>
<tr>
<th></th>
<th>Without SOC</th>
<th>With SOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M(nH))</td>
<td>8.169</td>
<td>3.79</td>
</tr>
<tr>
<td>(C_m(pF))</td>
<td>0.08383</td>
<td>0.1807</td>
</tr>
<tr>
<td>(C_p(pF))</td>
<td>1.143</td>
<td>1.083</td>
</tr>
<tr>
<td>(L_1(nH))</td>
<td>1.168</td>
<td>0.5126</td>
</tr>
<tr>
<td>(L_2(nH))</td>
<td>1.714</td>
<td>1.479</td>
</tr>
<tr>
<td>(L_3(nH))</td>
<td>1.884</td>
<td>1.364</td>
</tr>
<tr>
<td>(C_1(pF))</td>
<td>2.1011</td>
<td>1.8147</td>
</tr>
<tr>
<td>(C_2(pF))</td>
<td>2.0554</td>
<td>1.8379</td>
</tr>
<tr>
<td>(C_3(pF))</td>
<td>1.005</td>
<td>0.9847</td>
</tr>
<tr>
<td>(CL_p(pF))</td>
<td>0.5538</td>
<td>0.4694</td>
</tr>
</tbody>
</table>

먼저 구조의 시뮬레이션 결과를 보면, 통과 대역이 2.4 ~ 2.8 GHz로 Bluetooth/WLAN 및 위성 DMB 통역을 통과시키고, 하측 IMT-2000 서비스 대역의 효과적인 차단을 위해 전송 영역을 발생시키는 필터 특성을 갖는다. 여기서 전송 영역의 발생은 공집기 사이의 전자기 갈등에 의해 발생한다\(^{[4]}\).

다음으로 SOC 적용 여부에 따른 각각의 회로 시뮬레이션 결과를 보면, 중심주파수뿐만 아니라 통과 대역과 끼의 위치에서 두 그래프가 차이를 보이는 것을 알 수 있다. 이는 각 구조의 top ground에 있는 입출력 포트와의 연결을 위해 생성된 error box의 유무가 적지 않은 영향을 미치는 것으로 사료된다. 또한 SOC를 적용한 결과는 목표했던 통과 대역 2.4 ~ 2.8 GHz를 갖는 필터 특성을 나타내고 있고, 구조의 시뮬레이션 결과와 비교하면 통과 대역과 전송 영역의 위치가 상당히 일치한 결과를 얻을 수 있었다.

3-2 2차 대역 통과 필터 제작

그림 13은 본 논문에서 제작을 위한 LTCC 적층 필터의 층 정보를 보여주고 있다. 기존의 연구에서 수행된 LTCC 기판의 층간 간격은 그림 13(a)과 같이 일정 간격으로 수행되었으나, 실제 제작에서는 그림 13(b)와 같은 복잡한 층 간격의 기판을 사용하였다. 결합 구조의 층 간 간격을 줄여 설계함으로써, 인덕터와 인덕터 결합부의 주요 인덕턴스와 결합 인덕턴
그림 13. 설계 층 정보
Fig. 13. Information of designed layers.

표 3. LTCC 2차 BPF의 특성 비교
Table 3. Comparison of characteristics of the LTCC 2
차 BPF.

<table>
<thead>
<tr>
<th></th>
<th>Simulation</th>
<th>Fabrication</th>
</tr>
</thead>
<tbody>
<tr>
<td>통과 대역 (GHz)</td>
<td>2.44 ~ 2.93</td>
<td>2.41 ~ 2.8</td>
</tr>
<tr>
<td>전송 역량 (GHz)</td>
<td>2.13</td>
<td>2.11</td>
</tr>
<tr>
<td>상실 손실 (dB)</td>
<td>1.5</td>
<td>1.4</td>
</tr>
<tr>
<td>반사 손실 (dB)</td>
<td>17.26</td>
<td>32.3</td>
</tr>
<tr>
<td>사용 서비스 대역</td>
<td>Bluetooth/WLAN 및 Wi-DMB</td>
<td></td>
</tr>
</tbody>
</table>

이로 하여, SOC로부터 추출된 소자 라이브러리와 새로운 층 정보를 이용하여 제작된 LTCC 대역 통과 필터의 측정 결과와 EM 시뮬레이션 결과는 그림 15와 같고, 이에 대한 특성을 표 3에 나타내었다.

EM 해석과 측정 결과간의 오차는 EM 해석은 주파수 독립적인 도체 손실(온의 도전율=6.0×10⁻⁶)과 유전 손실(loss tangent=0.0045)을 고려하여 설계하였지만, 측정된 결과는 주파수 의존적인 손실 특성을 가짐으로써 발생한 것과 각각의 해석 주파수의 modal matching(MM)을 위한 margine에 의한 차이에 의한 것이라 사료된다. 도체 손실과 유전 손실의 경우 주파수가 증가함에 따라 증가하게 되므로, 하층 주파수에서는 더욱 적은 산업 손실을 보이고 상층 주파수에서는 더욱 큰 산업 손실을 의한 오차가 발생함을 유추할 수 있다.

Ⅳ. 결 론
본 논문에서는 SOC 기법을 LTCC 적층 구조에 적용하여 수동 소자들을 추출하고 이를 통해 라이브러리를 구성하여 적층 필터 설계 및 제작에 응용하는 일련의 과정을 보였다. 이를 통해 기존에 반영하기 어려웠던 기성 효과에 대한 효과적인 고려와 신뢰성 라이브러리 구축 및 원하는 성능을 갖는 소형화된 적층 필터 설계 목표를 달성하였다. 본 논문에서 제안된 적층 필터 설계 과정은 필터 설계뿐만 아니라 적층 수동소자와 필요로 하는 소형화된 수동 회로들에 효과적으로 응용될 수 있을리라 기대된다.

참고 문헌

LTCC 적층 필터를 위한 기성 성분 해석 및 필터 설계

임 영석

1980년 2월: 서울대학교 전자공학과 (공학사)
1982년 2월: 서울대학교 전자공학과 (공학석사)
1989년 2월: 전북대학교 전자공학과 (공학박사)
1984년 9월~현재: 전남대학교 전자공학과 교수

[주 관심분야] 전자파 수치 해석, 초고주파 회로 설계 및 해석, RF 소자 설계, 안테나

공학과 교수