Study on Characteristics of the Anaerobic Filter by Nitratre Adding Points

Seung Joo Lim†, Yoon Jin Lee*
Department of Civil, Construction, & Environmental Engineering, Iowa State University
*Department of Environmental Engineering, Cheongju University
(Received November 2, 2006/Accepted October 5, 2006)

ABSTRACT

Characteristics of the upflow anaerobic filter process have been studied with six other conditions. When nitratre was mixed with influent in the bottom of the reactor, removal efficiencies of TBOD and TCOD were lower than those of TBOD and TCOD when nitratre was injected to the side of the reactor. In addition, when nitratre was injected to the side of the reactor the concentration of volatile acids of effluent was not high and ORP of effluent was lower than the mixture when nitratre was mingled with influent. It means that the bottom of the anaerobic filter played an important role in making volatile acids, methane production, and denitrification. Moreover, percentage of methane in the gas increased in accordance with increasing nitratre injection. It was because there were a lot of methane producing microorganisms which would rather use hydrogen than acetate. This reactor condition gets unstable due to provide nitratre. Therefore, higher hydrogen pressure, shorter generation time, and lower standard Gibbs’s free energy gave great portion of methane of gas.

Keywords: anaerobic filter, nitratre, volatile acids, hydrogen, methane

I. 서 론

화기성필터는 이미 수십년 전부터 그 기술이 개발되 어 다양한 분야에서 이미 실용화 단계에 이르고 있으 며, 여기에 따른 상세 설계 자료자까지 갖추어진 기술이 다.1) 이화 같은 고교율 화기성소화기술로서 산학연의 화기성 손서적생물질 공정, 화기성 유동층 공정 등 여러 공정들이 있으며, 이들의 공동점은 고밀도의 화기성 미생물을 반응조에 집적하여 고농도의 유기물을 짧은 체류시간 내에 높은 효율을 유지하면서 처리할 수 있는 능력을 갖추었다는 점이다.2) 이화 같은 고교율 화기성 소화조는 지난 수십년 동안 계속하여 발전해오면서 그 형태를 달리해 왔고, hybrid 방식을 채택하거나 EGSB (expanded granular sludge bed) 방식 등을 이용하여 화기성필터에서 나타나는 단점인 유호차단현상 (clogging) 을 최소화하는데 일조하였다.3) 5)

그러나 이러한 고교율 화기성 반응조가 갖는 근본적 인 한계는 대부분의 화기성 미생물의 에너지원이 substrate phosphorylation을 통하여 생산된다는 점과, 질소와 인 등의 영양소를 규제 및 강화하기 시작하 면서 시스템이 점차 복잡해지고 상호 연결되기 시작했 다는 점에서 화기성공정 역시 점차 복잡하게 변화되고 있다는 것이다.6) 즉, 단순히 처리 대상 유입수만 유입 하지 않고 처리되었던 반응수가 다시 유입되거나, 전혀 다른 곳에서의 제3의 유입수가 유입되는 등 유량이 증 가되고 유기물의 능도가 높아졌다. 반응수 내의 질소 및 인의 능도에 의해 반응조의 영양업체 부하가 높아 집에 따라, 이에 따라 영양업체의 제거를 위해 유입 진 무산소조 추가 설치 및 화기성조 내에서 인충적 미생 물과의 상호 경쟁 등 점차 순수 화기성 미생물의 역할 을 기대하기 어려운 상황이 되었다.

이에 따라 본 연구에서는 화기성필터를 유기물제거
및 영양염류 동시제거 시스템의 주요 공정으로 활용하기 위하여 혜가성반응조 및 무산소조로 동시에 활용할 경우 절산화수의 주입방법과 주입량이 혜가성소화에 미치는 영향에 대하여 고찰하고자 한다.

II. 연구 재료 및 방법

1. 실험장치
본 연구에서 절산화수 유입에 의한 혜가성소화 특성을 알아보기 위해 실험실규모의 혜가성필터를 제작하였고 개략적인 모식도는 Fig. 1과 같다. 본 실험장치는 고농도의 유기를 분해 및 절산성질소를 길소가스로 환원시키기 위해 세라믹튜브여과를 충전한 원형 혜가성 필터를 제작하였으며 처리수의 유출 및 가스포함을 위한 상부와 가스포함기, 하부가 충전되어 있는 중간부분, 유입 및 출수표면을 위한 하부로 구성되었으며, 외형적 규모는 높이 650 mm, 직경 100 mm로 유입 부분은 4.6 ㎡이다. 사용여제의 물리적 특성은 Table 1과 같다.

2. 시료 및 운전방법

연구에 이용된 시료는 일반적으로 분해가 용이한 식

![GAS SAMPLING PORT](image)

![GAS OUT](image)

![FLOATING COVER](image)

![SCALE](image)

![ADJUST SINK SOLUTION](image)

![GAS COLLECTOR](image)

![TEMPERATURE CONTROLLER](image)

Fig. 1. Schematic diagram of the anaerobic filter.

Table 1. Physical characteristics of ceramic tube media

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outer diameter (mm)</td>
<td>95</td>
</tr>
<tr>
<td>Inner diameter (mm)</td>
<td>90</td>
</tr>
<tr>
<td>Height (mm)</td>
<td>110</td>
</tr>
<tr>
<td>Specific surface area (m²/m³)</td>
<td>110-120</td>
</tr>
<tr>
<td>Surface area density (m³/d)</td>
<td>97</td>
</tr>
<tr>
<td>Materials</td>
<td>Phyllosilicate family</td>
</tr>
<tr>
<td>Thickness (mm)</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Table 2. Characteristics of wastewater

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value (Ave. ± Standard deviation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>6.5-8.2 (7.6 ± 0.6)</td>
</tr>
<tr>
<td>ORP (mV)</td>
<td>-287~40 (-142 ± 74)</td>
</tr>
<tr>
<td>VA (mg HAc/l)</td>
<td>33.3~547.6 (233.8 ± 174.0)</td>
</tr>
<tr>
<td>Alkalinity (mg CaCO₃/l)</td>
<td>455.0~695.0 (582.0 ± 58)</td>
</tr>
<tr>
<td>TBOD (mg/l)</td>
<td>943.5~1362.0 (1160.8 ± 149.3)</td>
</tr>
<tr>
<td>TCOD (mg/l)</td>
<td>1531.8~2433.7 (2034.0 ± 245.4)</td>
</tr>
<tr>
<td>TSS (mg/l)</td>
<td>217.0~550.0 (310.5 ± 115.4)</td>
</tr>
<tr>
<td>TKN (mg/l)</td>
<td>47.0~57.5 (52.3 ± 2.2)</td>
</tr>
<tr>
<td>NH₃-N (mg/l)</td>
<td>35.2~35.0 (30.7 ± 1.0)</td>
</tr>
<tr>
<td>NO₂-N (mg/l)</td>
<td>0.0~0.0 (0.0 ± 0.0)</td>
</tr>
<tr>
<td>NO₃-N (mg/l)</td>
<td>0.0~2.9 (1.0 ± 0.9)</td>
</tr>
</tbody>
</table>

품폐수를 선정하였으며 카세인 등 일부 난분해성 단백질 및 지방성분이 함유되었다. 본 연구에서 사용된 폐수의 특성은 Table 2와 같다.

본 연구에서는 일반적인 혜가성공정과는 달리 절산화수가 혜가성필터에 어떠한 영향을 주는지를 알아보기 위해 절산화수의 유입 위치와 주입량을 변화시켰을 때의 ORP와 유기산의 변화, 유기물의 분해 특성, 혜가성 필터의 가스발생 특성에 대해 고찰하였다. 혜가성필터는 신탕유식으로 절산화수 주입방법은 유입수와 혼합하여 주입하는 방법과 혜가성필터의 바닥으로부터 측면 약 1/3지점에서 주입하는 것으로 나뉘어 실시하였으며 주입수량은 유입수량의 1~3배까지 증가시키면서 그 변화를 살펴보았다.

III. 결과 및 고찰

1. ORP 및 유기산 변화

본 연구에서 혜가성필터에 유입된 원수의 성상 및 처리수의 특성은 Table 3과 같다.

유입수는 분해가 용이한 식품폐수를 이용하였으나, 카세인 등의 난분해성 단백질성분이 일부 함유되어 있어 소량의 유기물이 생길할 수 있다. 절산화수의 경우 혜가성필터의 처리수를 혜가성필터로 후처리하는 처리수를 이용하였으며 Table 3은 그 평균 주입 동도이다.

유충수의 ORP는 모든 경우에서 혜가성필터 측면으로 주입하였을 때 더욱 높은 값을 얻을 수 있었는데, 이는 유입수가 절산화수가 주입되는 부분 하부에서 충분한 체류시간을 갖고 혜가성소화가 이루어지고 유기산이 형성된 후 배양 발효 및 발업체에 이용되기 좋은 조건이 형성되어 주입부분 윗부분으로는 산화환경에 가
Table 3. Performances of the anaerobic filter at each condition

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Influent (Ave.)</th>
<th>Added nitrate (Ave.)</th>
<th>Effluent (Average) (removal efficiency, %)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1Q'</td>
</tr>
<tr>
<td>pH</td>
<td>7.6</td>
<td>7.6</td>
<td>7.4</td>
</tr>
<tr>
<td>ORP (mV)</td>
<td>-142.2</td>
<td>-44.6</td>
<td>-130.3</td>
</tr>
<tr>
<td>VA (mg/l)</td>
<td>188.4</td>
<td>0.0</td>
<td>70.1</td>
</tr>
<tr>
<td>TBOD (mg/l)</td>
<td>1160.8</td>
<td>6.1</td>
<td>32.5</td>
</tr>
<tr>
<td>TSS (mg/l)</td>
<td>310.5</td>
<td>7.8</td>
<td>34.5</td>
</tr>
<tr>
<td>NO₃-N (mg/l)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>NO₂-N (mg/l)</td>
<td>1.0</td>
<td>45.3</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Q': the equivalent flow rate of influent.

Fig. 2. Effect of both injection point and ratio on volatile acids in the anaerobic filter (point 1: bottom of the reactor, point 2: side of the reactor).

2. 유기물 분해 특성

철산화수의 유기유량에 대한 유기물의 분해 특성은 Fig. 3과 같다. 혈가성필터 측면으로 철산화수를 유효시
키는 경우 철산화수의 유량을 증가시킴에 따라 유출수의 평균 SCOD 농도가 31.4 mg/l, 31.8 mg/l, 34.6 mg/l로 증가되었다. 이 결과를 Table 3에 있는 TCOD 및
TBOD의 제거효율과 같이 생각해 볼 때, 유출수의 TCOD 성분 중 SCOD가 많이 증가될 양이 있던 다. 즉, 혈가성필터 측면에서 입수하는 경우 유기물이 혈가성
필터 하부에서 긴 체류시간을 갖고 충분히 가수분해 및
산발되어 메탄균과 탄말균에 의한 유기물 공급원으
로 이용되기 좋은 조건이 형성된다.

반면, 철산화수를 유입수와 같은 방향으로 주입하는 경우 33.4 mg/l, 30.0 mg/l, 10.4 mg/l로 점차 유출수의 평균 SCOD 농도가 감소하였다. 특히, 유기유량의
3배로 절산성질소를 주입한 경우 유출수의 평균 SCOD
의 농도가 질산성질소의 주입량에 따라 약 3배 이상 급격히 감소하였다. 이는 협기성질터 내부에서 유산의 증가로 인해 산소가 증가하고 협기 하부에서 충분한 가수해라시간을 갖지 못함과 동시에 산발효시기를 갖지 못함을 의미하며, 미생물종 교란에 의한 불안정한 공정이 이루어졌음을 의미한다. 질산화수를 유입수와 같은 방향으로 주입하는 경우 유기물과 미생물의 농도가 높다 하더라도 전자수용체로서 산소 대용체가 있다면 일반적으로 조건이 향상이 되기 때문에 일차적인 방해를 받는다. 본 연구에서도 ORP 역시 협기를 기준으로 하는 -240 mV 이상으로 유지되었다. 유기물과 질산성질소가 같은 방향으로 주입되면 미생물은 그 종과 억할이 각각 다르더라도 같은 지역에서 같은 유기물에 대해 경쟁하게 된다. 본 공정에서도 유기물을 에너지원으로 이용하는 미생물로서 산생생균과 메탄생성균의 조화가 이루어지며 산생생균에 의해 생성된 유기물의 원천은 탈색 및 탈질의 경쟁에서 이득을 얻는다. 그 럼으로 보다 효율성이 고정적인 응용을 생성시키기 위해 미생물의 질산화수를 주입하는 협기성질터 하부보다 축면으로 질산성질소를 유입시키는 것이 바람직할 것으로 판단된다.

질산화수 주입량에 따른 유출수의 TBOD 및 TCOD 특성은 Fig. 4와 같다. 유출수의 TBOD 농도를 살펴보면 질산화수를 유입수와 같은 방향으로 주입할 때보다 축면으로 주입한 경우 TBOD가 현저히 낮게 배출되었으며, 질산화수의 주입량 증가시켰을 경우 TBOD의 유출수 농도도 감소하였고 유입방향에 따른 차이도 감소하였다. 이러한 차이는 유산이 증가함에 따라 화학효과와 동시에 협기성질터 하부에서 생물학적으로 분해 가능한 물질들이 화학산으로 먼저 분해되고 이후 탄산 및 메탄으로 발효되었음을 의미한다. 즉, TBOD가 낮은 질산화수가 점차 증가하면서 유출수의 TBOD가 향상되는 효과가 함께 분해 가능한 유기물이 제거되었음을 의미한다. 한편 TCOD는 질산화수의 주입량 증가시킬수록 유출수의 그 농도가 감소하였으나, 협기에질터로 질산화수를 주입하는 방법에 있어서는 그 차이가 점차 증가하는 경향을 보였다. 이는 질산화수를 유입수와 같은 방향으로 유입하는 경우 협기성질터 하부의 유산이 증가하여 난분해성 유기물이 분해될 수 있는 충분한 시간이 제공되지 못하지만, 질산화수를 협기성질터 축면으로 유입하는 경우 협기성질터 하부에서 난분해성 유기물을 충분한 체류시간을 갖고 분해할 수 있기 때문에 질산화수의 유량에 관계없이 안정적인 처리가 가능할 수 있기 때문에 판단된다.

3. 가스발생량 및 조성의 변화
전체 운전기간 동안 발생된 가스발생량은 Fig. 5와 같다. 협기성질터의 하부 슬러지층은 전체 질산화수에 매우 중요한 역할을 한다. 전체 운전기간 동안 발생된 가스는 유기물 제거효율이 높았음에도 불구하고 매우 낮게 유지될 수 있다. 이는 야절산성질소와 질산성질소가 존재할 때 산생생균이 저해를 받는다는 연구결과와 매우 일치한다.12)

Fig. 5. Gas production rate for the operation period.
Fig. 6. Effect of both injection point and ratio on gas composition in the anaerobic filter (point 1 : bottom of the reactor, point 2 : side of the reactor).

정상적인 소화가의 조절은 배탄 55-65%, 이산화탄소 35-45%로 배탄과 이산화탄소가 대부분을 차지하고 1% 이하의 수소 및 황화수소로 이루어진다. 본 연구에서 절산화수 수입에 따른 가스 조성의 변화는 Fig. 6과 같다.

가스 조성은 절산화수의 주입량과 주입 위치에 따라 약간씩 차이를 띠고 있었다. 가스 중 베탄함량은 절산화수 수입량과 같은 방향으로 유일하는 경우 유입량과 주입량이 같을 때 70.8%, 주입량이 유입의 3배일 때 93.3%로 증가하였으며, 협기성립판 측면으로 주입하는 경우 주입량이 유입량과 같을 때 83.6%, 절산화수가 3배로 유입되어서 93.6%로 증가하였다. 베탄 함량 증가 경향은 절산화수량이 증가함에 따라 그 증가 폭이 점차 작아지고, 또한 주입 위치에 따른 차이도 작아졌는데 이는 절산화수량이 점차 증가함에 따라 고농도의 산소 및 절산항성소가 유입되고 이에 따른 영향으로 생긴 협기성립판의 변화로 판단된다. 즉, 많은 양의 절산화수가 협기성립판으로 유입되면 전자수용체의 변화와 체류시간이 급격하게 변함으로써 이에 따른 협기성립판 내부의 미생물 성 변화가 되는 등 반응조건의 환경 조건 변화를 생각할 수 있다. 일반적으로 협기성립판은 유입이 매우 크거나 고밀도로 불안정하게 유지될 때 협기성립판 내부에서 수소가 크게 유지된다. 베탄의 30%는 수소와 이산화탄소에 의해 발생한다고 알려져 있는데 35°C에서 협기성립판의 세대시기에 일반적인 산생성균은 30% 수소를 이용하여 배탄을 형성하는 배탄 형성균이 6시간이면 배탄 형성으로 사용되어 배탄을 형성하는 배탄형성균은 2.6일, 평균 이상 차이가 난다. 협기성립판에서는 주로 원료와 함께 배탄을 형성하는 배탄 형성균을 사용하고 배탄을 형성하는 배탄형성균은 2.6일로 4배 이상 차이가 난다. (1,2) 정상적인 협기성립판 과정에서 수소는 단수화물 이 발효되거나 프로피온산이 분해될 때, 아세트산이 생성될 때 주로 생성되지만 이산화탄소와 반응하여 배탄으로 전환된다. (3) 아세테일화와 수소 및 이산화탄소에서 각각 생성되는 배탄의 자유에너지식은 다음과 같다. (4)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetat</td>
<td>CH₃COO⁻ + H₂O → CH₄ + HCO₃⁻</td>
</tr>
<tr>
<td>ΔG</td>
<td>-30 kJ/mole</td>
</tr>
<tr>
<td>H₂ + CO₂</td>
<td>4H⁺ + HCO₃⁻ → CH₄ + 3H₂O</td>
</tr>
<tr>
<td>ΔG</td>
<td>-136 kJ/mole</td>
</tr>
</tbody>
</table>

위 식과 같이 수소와 이산화탄소에 의해 배탄을 생성하는 것이 보다 수월하다는 것을 알 수 있다. 또한 수소의 축적은 독성물질 또는 축적부가 가해질 경우 나 영양소가 부족하여 배탄생성균이 저해를 받을 경우에만 가능하나 기술적인 한계로 오래 지속되지 못하여 협기성 공정의 운전지표로 삼는 경우가 많다. (5,6) 그러므로, 본 협기성립판에서는 절산화수의 유입으로 완전한 협기성립판을 유지할 수 없었는데, 이로 인해 절산화수의 유입유량이 증가함에 따라 수소가 발생하여 배탄으로 전환되었다고 판단된다.

IV. 결론

본 연구에서는 협기성립판을 협기성립판 및 무산소 조로 동시에 활용한 경우 절산화수의 주입방법과 주입량과 협기성립판에 미치는 영향에 대하여 고찰하고자 하였고 다음과 같은 결론을 도출할 수 있었다.

1. 절산화수 주입방법에 있어서 수입량과 같은 방향으로 주입하는 경우 협기성립판 측면으로 주입하는 경우보다 높은 ORP를 나타내며 협기성립판 하부에서 안정적인 산발효가 이루어지기 어려움을 알 수 있었으며 절산화수를 측면으로 공급하는 경우 안정적인 협기성립판 공정이 이루어질 수 있을음을 알 수 있었다.

2. 절산화수를 협기성립판 측면으로 주입하는 경우 수입량과 같은 방향으로 주입하는 경우보다 유입물의 재켜효율이 높았고, 협기성립판 하부에서 충분한 체류시간을 갖고 용해성 성분으로 되어 입실 및 배탄화가 용 이한 상태로 변화되었다.

3. 소화가의 경우 유입량과 같은 방향으로 주입할 때보다 협기성립판 측면으로 주입할 때 배탄생성비가 더 높게 나타났으며, 절산화수량이 증가함에 따라 배탄생성 비도 증가하는 관계를 보였다.

참고문헌

