연구노트

영양염 용출 측정에 관한 고찰

김도희
목포해양대학교 해양환경공학전공
(2002년 7월 5일 접수; 2002년 11월 16일 채택)

A study on the measurement of nutrients release from sediment

Do-Hee Kim
Dept. of Marine Environmental Engineering, Mokpo National Maritime University, Mokpo 530-729, Korea
(Manuscript received 5 July, 2002; accepted 16 November, 2002)

A significant fraction of nutrients, such as nitrogen and phosphorus released from sediment are utilized by primary production in the shallow water of coast and lake. The purpose of this study is to introduce the mechanism of nutrients release from sediment and to introduce the methods of the measurement of nutrient released from sediment. One approach is to calculate nutrients released from sediment by a concentration gradient between sediment pore waters and overlying water based on the Fick’s law. The other approaches of measurement are the undisturbed sediment core experiments and measurement of nutrient released from sediment by the in situ chamber equipment.

Key words: In situ chamber, Fick’s law, Nutrients release, Sediment core experiment

1. 서 론

연안해역과 호소 등과 같은 수역에서는 보통 육상으로부터 많은 유기물이 유입되고 있다. 이와 같은 수역에서는 일반적으로 영양염의 농도가 높기 때문에 수중에서 생산되어진 임자성 유기물이 저축으로 퇴적된다. 저축에 퇴적된 임자성 유기물이 분해, 무기화되어 생성된 유존성 무기질소와 인과 같은 영양염 그리고 비타민류와 증류성 등의 생물활성 물질들이 저축 퇴적물에 고농도로 존재한다. 특히 저축에 퇴적된 영양염의 일부는 퇴적물의 환경 조건에 따라서 수중으로 재 용출될 수 있다. 특히 수심이 깊은 연안이나 호소에서는 단위면적당 수용량이 적기 때문에 저축 퇴적물로부터 용출되는 영양염이 수계의 1차 생산과 수질변화에 큰 영향을 미칠 것으로 생각된다.

질소의 경우, 수역으로 유입된 유기물은 해저에 퇴적되어 퇴적물 내에서 NH₄⁺-N로 변환되고 이 NH₄⁺-N는 질산화 박테리아에 의하여 NO₂⁻-N와 NO₃⁻-N로 산화된다. 이와는 반대로 폐기성 조건에서는 NO₂⁻-N가 다시 환원되어 일부는 N₂ 가스상태로 대기중으로 이동하고 일부는 NH₄⁺-N로 다시 환원되어 저축 퇴적물에 존재한다. 이와 같이 질소는 저축의 퇴적물 내에서 그 형태를 변환하면서 대부분이 NH₄⁺-N로 존재하면서 저축의 환경 조건에 따라서 수중으로 용출된다.

현관, 자립수 중의 인은 해양염의 인산염 또는 비용해성으로 부유된 유기인 화합물의 형태로 존재한다. 인은 기체로 변하지 않기 때문에 수계로의 유입은 주로 하천을 통해서 이루어진다. 수계로 유입된 인산염은 조류의 체내로 흡수되고 일부 임자성 인은 그대로 흡수되며, 강수 또는 젖과 결합된 인산염은 부유성 클로이드 형태로 퇴적물 속에 흡수되어 폐기성 상태에서는 수중으로 재용출되고 나
미지 일부는 저층 퇴적물에 영구히 퇴적된다.

절, 평가 등의 중급층류 또는 비타입과 같은 식물플랑크톤의 중심에 중요한 식물 활성물질들이 일치적으로 저층수에 비해 퇴적물의 수준을 유지하는 데 도움이 아주 높다. 따라서 질소와 인과 같이 퇴적물과 수중물의 농도 차이와 확산에 의해서 저층의 퇴적물에서 수중으로 운출된다. 절과 평가의 경우 도 질소와 인과 같이 퇴적물 공극수 중에 유온하고 있는 양이 종양의 수 % 이하이며, 퇴적물내의 유온성의 함량은 퇴적물공극수의 온도, pH, 산화환원 전위에 의해 주로 좌우된다. 주변의 그tensorflow 코드를 이용하여 수단의 영향을 수지에 중요한 역할을 담당하고 있다고 보고하였다. 또한 강은 흐르는 방향에서 절, 인수지의 연구에서 저층 퇴적물로부터 운출되는 질소량이 외부에서 유입되는 질소 양의 40 %에 달한다고 보고하였다.

이와 같은变了은 수역에서 질소, 인, 중금속, 비타민 등이 퇴적물의 환경 조건에 따라서 저층 퇴적물로부터 수중으로 운출되어 식물성 플랑크톤의 증식을 촉진시키는데 수역의 생물생산과 수질의 변화에 중요한 역할을 담당하고 있다. 따라서 수역의 생물생산과 수질변화를 위해서는 외부로부터의 오염물질의 유입을 조사하고 세력하는 동시에 영양소의 운출과 같은 수력 자원에서 발생하는 오염물질의 조사도 중요하다. 또한 현안과 호소의 수질 예측 모델에서 있어서도 영양소 운용량의 과도한 적수로도 요구되고 있기 때문에 영양소의 운용량 측정이 자주 요구되고 있다. 따라서 본 연구의 경우에는 영양소의 운용량과 측정치를 개선하고 현안 또는 실험실에서 이루어지는 영양소 운용량을 측정하고자 할 수 있겠고, 하여 해당할 수 있는 방법들을 개선하고자 한다.

2. 영양소 운용 과정

2.1. 암모니아질소 운용과정

저층 퇴적물에 존재하는 질소화합물은 그 대부분이 인자성 유기질소에 의해 파괴되거나 저층으로부터 유출 즉, 물리적인 확산과정에 의해 수중으로 이동되는 질소는 수용성이기 때문에 암모니아질소가 대부분이다. 암모니아질소의 운용 과정은 다음과 같다.

1. 인자성 유기질소의 저층으로 퇴적
2. 저층에서의 입자성 유기물의 분해, 무기화에 따른 암모니아질소의 생성
3. 암모니아질소의 이착(흡착) 및 퇴적물 공극수(영온성)로의 분해
4. 암모니아질소의 농도 차이에 따른 공극수증으로 이동
5. 퇴적물 표층부 공극수로부터 암모니아질소의 적십수로 이동

퇴적물에서 생성되는 암모니아질소는 그 일부가 공극수 중에 유온하지 않고 그 양은 퇴적물에 존재하는 총 암모니아질소 양에 비해 미소한 양에 지나지 않으며 대부분은 퇴적물 입자에 축적되어 존재한다. 축적요인은 공극수 중의 염분 농도가 높은 경우 또는 온도가 상승할 때 유온이 크며 퇴적물의 조성에 의해서도 좌우된다. 만약 유온에 의해서 유온성의 농도가 감소하고 그 비율이 변화하게 되면 균바로 퇴적물 내의 화학적 구조가 달라져서 퇴적물의 이동으로 이동되어 평형으로 회복된다 (Fig. 1).

\[
\text{Particulate} \quad \text{Dissolved} \quad \text{Nitrogen} \quad \text{Decomposition} \quad \text{Nitrogen} \\
\text{Deposition} \quad \text{Water} \quad \uparrow \quad \uparrow \quad \text{Release} \\
\downarrow \quad \text{Particulate} \quad \text{Dissolved} \quad \text{Nitrogen} \quad \text{Diffusion} \\
\text{Nitrification} \quad \text{Nitrogen} \quad \text{Reduction} \\
\]

Fig. 1. Transformation and flux of nitrogen in water and sediment.

2.2. 인산인 운용과정

저층 퇴적물 내의 인산은 주로 퇴적물 입자에 포함되어 있으며 표면에 흡착되어 있는 불용성인 부분과 퇴적물 공극수에 포함되어 있는 유용성인 부분으로 구분된다. 퇴적물 중의 질소는 인과 유기질소가 대부분이나 인은 유기인 형태보다는 주로 무기인 형태로 존재한다. 수중과 퇴적물간의 인의 교환 기구는 다음과 같다.

1. 첨전-퇴적: 수중에서 생성되어진 유기물과 유입된 무기물이 저층으로 전하여 저층에서 퇴적물 입자로서 퇴적된다.
2. 분해-퇴적: 속출되어 가는 과정에서 유기물의 일부는 분해되는 동시에 무기물도 생물화학적 작용을 받는다. 그 결과 퇴적된 퇴적물 입자와 퇴적물 공극수 간에 교환이 이루어진다.
3. 이동: 저층 퇴적물 공극수와 저층수 간에 확산에 의해 이동된다. 그 외에는 종파에의
영양염 용출 측정에 관한 고찰

해석 수행으로서 저생생물의 활동에 의해서도
이동된다.

침전, 퇴적, 암착에 의한 퇴적물 입자 및 퇴적물
공극수여의 이동과정과 퇴적물 내의 불용성과 용해
성 인의 변화 과정을 포함한 인의 용출 과정을
Fig. 2 에 나타냈다. ⑥

일반적으로 각종 퇴적물과 저생수의 관계에서
저생 수의 적당수와 화학적 상태가 되면 상화환성
인후인 철이나 망간은 3가정, 4가정간의 수화물로
형성하여 인과 함께 공급된다. 또한 퇴적물은 활
성이 황현한 이방물 굴절 상이 존재하여 화학적 세
균의 활성에 의해서 유기물 분해가 이루어지 험기
성 상태로 변하여 퇴적물은 환원상태가 되고 험기
성 세균의 활성도는 감소되고 각종 발효항성이 발
생하여 결합된 Ion들이 용출된다. 따라서 이러한 상
화환성 반응으로 인해 퇴적물과 저생수 사이에 인
의 교환이 이루어진다. 상화환성 과정에 따라서
PO4 3-, Fe, S의 작용은 다음 반응식과 같다.

① 상화반응(환석 및 환전) ⑧
\[Fe^2+ + 1/4O_2 + 2OH^- \rightarrow \text{Fe(OH)}_4^- \]
\[MnO_2 + \text{Fe(OH)}_3 \rightarrow \text{Mn}^{2+} + \text{Fe}^{3+} \]
\[\text{Fe(OH)}_3 \rightarrow \text{Fe(OH)}_2 + \text{H}_2\text{O} \]
\[\text{Fe(OH)}_3 + \text{H}_2\text{O} \rightarrow \text{Fe(OH)}_2 + \text{H}_2\text{O} \]
\[\text{Fe(OH)}_2 + 2\text{H}_2\text{O} \rightarrow \text{Fe(OH)}_3 + \text{H}_2\text{O} \]
\[\text{Fe(OH)}_3 + \text{H}_2\text{O} \rightarrow \text{Fe(OH)}_2 + \text{H}_2\text{O} \]

3. 영양염 용출 측정 방법
저생 퇴적물로부터 용출되는 각 영양소의 용출량
은 단위시간당 퇴적물의 단위 면적 당 각 영양소가
수용으로 이동하는 양으로 나타내며 mg/m²/day 또는
μmol/cm²/sec으로 표현한다. 영양염의 용출 측정
방법을 요약하면 Table 1과 같다. ⑨

\[J = \Phi \cdot D(\Delta C/\Delta Z) \] ①

여기서 \(J \)는 용출량 (μg-at/cm²/sec), \(\Phi \)는 공극률,
\(D \)는 분자확산계수 (cm²/sec), \(\Delta C/\Delta Z \)는 퇴적물내
의 영양염의 농도와 적당수 중의 농도가 (μg-at/
cm³), \(\Delta Z \)는 퇴적물 두께 (cm)이다.

공극률 \(\Phi \)는 식 (2)으로부터 구해진다.

\[\Phi = \rho / (\rho + (1-w)/w) \] ②

여기서 \(\rho \)는 건조중량의 밀도 (g/cm³), \(w \)는 암
수율이다.

또한 분자확산계수 \(D \)은 순수, 공극수(해수), 퇴적
물에 대한 확산계수로 구분되며, 해수에서는 약 0-8%증도가 감소하며 온도에 따라 변하며 식
(3)으로부터 구해진다. ⑩

\[D_i = D_w(1 + a_i + 8\% \text{ 증도}) \]

여기서 \(D_i \)는 1°C에서의 분자확산계수(cm²/sec),
\(D_w \)는 0°C에서의 분자확산계수(cm²/sec)이다. 양이
온 및 음이온의 계수 \(a \)는 각각 0.048와 0.040을 적
용한다. ⑩

3.2. 물질수지에 의한 용출량 측정
영양염의 생물적인 심취와 영양염 자체의 변화과

<table>
<thead>
<tr>
<th>Table 1. Methods of nutrients release from sediment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculated method</td>
</tr>
<tr>
<td>in situ method</td>
</tr>
<tr>
<td>In laboratory method</td>
</tr>
<tr>
<td>Estimate to the N, P fluxes from sediment by extracted concentrations of N, P in sediment</td>
</tr>
</tbody>
</table>

1335
정을 무시하고 어느 시간에서의 평균상태로 생각한다면 어느 수학적에서의 특정한 영역의 농도가 증가하는 원인은 유입량과 용출량이다. 아울러 감소하는 향후은 유출량과 침강량이다. 따라서 이 경우 영양염의 용출량은 간단히 식 (4)와 같은 물질 고정에서 추정하여 구할 수 있다.

\[
\text{용출량} = \text{원존량의 증가} - \text{유입량} + \text{유출량} + \text{침강량}
\]

3.3. 전 수위 격리 실험

일반 5m x 5m, 높이 6m의 Chamber를 이용하여 수중에서 적층지를 격리하여 실험한다. 이 때 하나의 적층물을 포함하고 다른 하나는 적층물을 제외한 채 관측한다. 여기에서는 실험대상 적층물과 수중이 격리된 상태로 위해 식 (4)의 유입량과 유출량이 무시되어 임상면은 각 영양염의 원존량의 변화와 침강량의 합으로부터 구해진다.\(^{10}\)

3.4. 적층물 Chamber 실험

알씨의 전 수위 격리 실험과 유사하나 여기서는 현장에서 적층물과 적층수의 일부를 Chamber로 제거하고 현장에서 적층수가 되어있도록 농도변화를 측정하는 방법이다. 각 영양염의 용출량은 식 (5)로부터 구한다 (Fig. 3).\(^{10}\)

\[
\text{용출량} \left(\text{m}^3/\text{m}^2/\text{hr} \right) = (\Delta C - \Delta C') / V / tA
\]

여기서, \(V \)는 Chamber의 용적(\(\text{m}^3 \)), \(C \)는 t시간에서의 Chamber내의 농도(\(\text{m}^3/\text{m}^3 \)), \(C' \)는 t시간에서의 비교 창치내에서의 농도(\(\text{m}^3/\text{m}^3 \)), A는 Chamber의 면적(\(\text{m}^2 \))이다.

현장에 Chamber를 설치할 때 적층 다이버가 설치하는 등 설치 시 현장의 적층물이 고정되지 않도록 주의한다. 이를 위해 상부에 투명한 붉어하여 Chamber를 투하할 때 적층수가 유출되도록 한다등 지속적으로 붉어하여 적층물의 교환이 이루어지지 않도록 하여 적층물과 침강량의 관계를 구할 수 있다. 또한 Chamber가 침강 또는 이상되지 않도록 잘 고정한다.

세수 간격은 0, 4, 8, 12시간 또는 1, 2, 4, 6일 간격으로 세수한다. 세수량은 측면 적층수가 유입되도록 고무벨트를 설치한다. 건저는데 적층수 만큼 Chamber를 더 철물시킨다. 또한 적층수의 응존산소의 농도를 조절하기 위해 적층수를 이용하여 기포가 발생되지 않도록 주의하며 실험 전에 따르는 선상에서 건조한 청소를 이용하여 적층수의 유동이나 응존산소의 농도를 조절할 수 있다.

이 방법은 적층수가 적층물을 압력적으로 차단하기 때문에 적층수의 유동유형이 매우 간결한 점점이 있다. 정기간 조사가 이루어질 경우에는 저질의 상태가 변할 우려가 있기 때문에 것으로 1, 2일 내에서 이루어지는 것이 바람직하다.

3.5. 실험 용출 실험

체외의 적층물을 분리하여 흡착한 영양염을 용출량을 구하는 경우가 있으나 되도록 적층물의 연속 측정을 그대로 보존한 상태에서 측정하는 것이 좋다 (Fig. 3). 이를 위해 코아 채인기 내 아크릴 원통관을 이용하여 현장에서 적층물을 채취할 때 유안으로 적층물의 교환을 확인한 후 실험에 이용한다. 현장에서 채인한 적층물을 아크릴 코아 내에 서 적층물의 체계를 조절하고 적층수와 함께 실험 실험을 옮긴다. 장치 전체를 압수 및 펑크조에 음도와 침강량을 현장 조건과 유사하게 조절하고 공기 질소 가스를 이용하여 적층수를 순환시키는 동시에 혼가 또는 혼기 조건으로 조절할 수 있으며, 현장의 상태 그대로 적층수를 순환시키면서 일정 시간 간격으로 적층수를 채취하여 영양염의 농도를 측정하여 식 (6)로부터 용출량을 구한다.\(^{12,13}\)

\[
\text{용출량} = V \left(C_0 - C_r \right) / A
\]

여기서, \(V \)는 유량(\(\text{L/day} \)), \(C_0 \)는 유입수 중의 농도(\(\text{mg/L} \)), \(C_r \)는 유입수 중의 농도(\(\text{mg/L} \)), A는 면적(\(\text{m}^2 \))이다. 본 실험에서는 현장 적층수를 이용한 후 사용하지 않아만 적층물을 제외한 적층수만을 병도에 동시에 실험하여 적층수에서의 농도 변화를 보정하여 준다.

이중에는 적층물 Chamber 실험과 실험에서 양모나이와산의 용출량 결과를 비교한 결과로 보이는데 약간 다소 유사한 결과를 얻었으며, 수의 격리 실험에서의 응존무기질소의 용출속도는 실험실에서 보다 작았다고 보고하였다.\(^{12} \) 또한 그는 NH\(_4\)-N의 용출은 음도에 크게 영향을 받는다고 보고하였으며, PO\(_4\)-P의 용출은 산소 조건에 따라서 크게 영향을
영양염 풍출 측정에 관한 고찰

받는다고 보고하였다.

국내에서는 김과 백미 양 Morma에서 농도와 화합
계수에 의한 NH₄⁻N 풍출량의 추정치와 실험실
을 이용한 NH₄⁻N 풍출 실험 결과 실제실험치가
추정치보다 4-7배 정도나 높았다고 보고하였다.⑮

3.6. 추출 실험

현장의 풍적물을 채취한 후 먼저 풍적물 공급수
중의 영양염의 농도를 측정한다. 다음으로 풍적물
을 증류수 또는 해수 용으로 추출해서 그 추출액
중의 농도를 분석한다. 이때 혼합액 중에 포함된
풍적물의 종량과 혼합액의 체적비 (g/ml)가 3/100
가 되게 하고 혼합액의 양이 500 ml 이상이 되도록
분석시료 (수 풍적물)를 취해서 증류수를 가하여
혼합액을 조절하고 실온에서 4시간간 인공박으로
혼합시키다. 약 30분간 방치 후 여과하여 여러
중의 농도를 분석한 후 식 (7)로부터 영양염의
풍출을 구한다.

풍출량 = 수중으로 이동되는 양 / 최초 풍적물에
포함된 양 ⑼

이와 같은 풍출 실험은 풍출에 의한 수질의 영향
과 이들에 미치는 영향을 예측하고 경우에 따라서
는 모델의 풍적물의 제거를 위한 수단으로 측정된
다.

4. 결 약

이기서 소개한 영양염의 풍출 측정방법은 그 특
성과 장단점을 갖기 때문에 조사목적에 따라서 그
리고 조사현장과 시간과 경비 그리고 장정과 등에
따라서 선택한다. 또한 풍출량의 결정은 변
하게 바뀌기 때문에 양의 여 Ukr에도 되도록 많은 사
료 수를 채취하여 수공 조사 한 후 그 결과치를 정
립할 필요가 있다. 또한 저기서 소개한 영양염의
풍출 측정은 많은 시간동안 진행되며 어느 시점
에서의 농도차이에 기초한 풍출 수도를 계산하거나
현장에서 또는 실험실에서 인위적으로 풍적물과 저
수층을 격리한 체 저수층을 유동시켜서 어느 시
간동안 풍적물에서 수중으로 풍출되는 영양염의
풍출을 구하는 방법이다.

그러나 현장에서는 파장, 조류 등에 의한 저수층
의 유동으로 화합계수가 변동하고 부류, 계획, 저
생물의 활동에 따라 각 영양이 수중으로 이동되
고, 시간의 경과와 함께 풍적물과 수중의 불리적,
생화학적 상이 현상과 다르기 때문에 현장과 같은
풍출 과정을 재현하기에는 어느 정도의 한계가
있을 수 있다. 따라서 영양염의 풍출실험에 있어서
가장 중요한 것은 풍적물과 저수층의 측정을 최대
한 현장과 동일한 조건으로 재현하는 것이 중요하
다는 것을 지적하고 있다.

감사의 글

본 논문은 목포해양대학교의 교내 연구비에 의해
수행되었음.

참 고 문 헌

1) 中島光昭・西村, 1978, 内海湖沼における底泥의
影響について, 1978年度日本海洋学会春季大会講演
要旨集, 134-137.

2) 福原泰夫・田中哲郎・中島光昭, 1981, 底泥からの
栄養塩の溶出 II, 趣験湖沼水域生態系研究報告
第7冊, 44-54.

3) 金牌, 1966, 水産研究の基礎と問題, 生物研究
第7, 106-111.

4) Leman, A., 1973, Geochemical processes water
and sediment environments, Jon Wiley and Sons.,

5) 河合晃, 1981, 水面底泥からのアンモニア発生
素などの溶出, 沿岸海岸研究, 18(2), 106-111.

6) Masaki Hosomi, 1953, Nitrogen and phosphorus
release from bottom sediments and its control,
Japan Wat. Sci. Technol. (in Japanese),
16(2), 23-27.

7) Werner Stum, 1985, Chemical processes in
lakes, John Wiley & Sons, 31-53 and 189-
205pp.

8) 佐藤, 1980, 東京大海洋の研究者・実験
を行う実験, 東京大海洋研究者実験報告
第1冊, 19-30.

9) 日本海洋学会, 1985, 沿岸環境調査マニュアル(底
質・生物編), 恒成社厚生生, 東京, 79-91pp.

10) 田中哲郎・西村, 1980, 水槽実験実験による湖
の物理循環過程の解説, 化学工学協会 第11回秋
季大会講演会要旨集, 35-38.

11) 福原泰夫・田中哲郎・中島光昭, 1981, 底泥か
らの栄養塩の溶出 II, 趣験湖沼水域生態系研究
報告書 第4号, 47-54.

12) Sybil, P. S., 1993, Handbook of Methods in
Aquatic Microbial Ecology., Lewis publisher,

13) 田中哲郎, 1981, 河川機構分類のための一連の
実験とその結果について, 地理学会研究所調査報
告書 16, 107-110.

14) 金子, 1988, 鹽分바른 풍작물로부터 영
양염 풍출 평가, 한국수산학회지, 7(4), 425-431.

1337