Characteristics of Incheon Aerosol during Asian Dust Period in 2004 using Optical Particle Counter (OPC)

Chang-Hoon Jung, Yong-Sung Cho* and Jong-Tae Lee**
Department of Environmental Health, Kyungin Women’s College, Incheon 407-740, Korea
*Indoor Environmental Research Board, National Institute of Environmental Research, Incheon 404-708, Korea
**Department of Health Management, Hanyang University, Seoul 133-791, Korea
(Manuscript received 8 April, 2005; accepted 22 June, 2005)

The characteristics for the aerosol number distribution was studied during spring, 2004 in Incheon. Optical Particle Counter (OPC, HIAC/ROYCO 5230) was used in order to measure the number concentration of aerosol in the range of 0.3~25 μm. The obtained results were compared with PM10 and PM2.5 data during Asian dust events. The results show that the size resolved aerosol number concentration from OPC measurement has a similar tendency with PM10 and PM2.5 mass concentration. During Asian dust periods, the number concentrations in large particle (CH5~CH8) increase more than small particles which diameter is less than 2.23 μm(CH5) and the same results were shown when PM10 was compared with PM2.5 data compared with non-dust days. Consequently, this study shows that size resolved aerosol number concentration from OPC measurement can be used as a useful tool in comparison of mass concentration data.

Key Words : Aerosol number concentration, Optical Particle Counter, PM10, PM2.5, Asian dust, Incheon

1. 서 론

대기 에어로졸은 크기, 지역과 시간, 생성요인, 그리고 입자와 화학적 성질 등에 의해 그 특성은 크게 변화한다. 특히 입자크기와 농도 변화는 에어로졸의 가장 중요한 특성으로 대기 에어로졸의 크기 분포의 측정결과에 대해 많은 연구가 진행되어 왔다[12]. 도시대기 중 분진의 입자밀도 농도분포는 크기 공기 역학적 직경 2.5 μm를 기준으로 조대입자와 미세입자로 구분한다[3]. 직경 2.5 μm 이하의 미세입자(fine particle)는 주로 자동차, 트럭, 버스와 같은 이동오

Corresponding Author: Chang-Hoon Jung, Department of Environmental Health, Kyungin Women’s College, Incheon 407-740, Korea
Phone: +82-32-540-0166
E-mail: jch@kie.ac.kr
결의 장거리 이동현상이 매년 발생하고 있다. 장거리 이동되는 화자의 성인은 발병지에서의 토양성분 이외에도 이동과정 중에서 오염된 지역의 가스성 물질들이 추가되고 가스와 입자의 상호작용에 의해 환산염이나 결산염 등이 많이 생성된다. 화시 중 가하는 입자 중 적경 2.5 μm 내외의 입자는 호흡기에 침착되거나 기관지, 척막, 알면 등의 절단을 일으킬 수 있고 폐기능의 저하나 갑상 호흡 및 토양에의 영향 등 많은 피해를 발생 시킨다. 또한, 자연적 토양발생원으로서는 화자는 그 입정분포가 주로 10 μm 이상의 조밀입자 군에 속하지만 대기분진의 중요한 성분인 미세입자(PM2.5 : dp≤2.5 μm로서 fine particulate matters)도 다양 포함하고 있어 헐 septembre → 산소, 혈소 등에 의한 심장 약화의 현상에 중요한 역할을 한다. 최근 대기오염과 사망간의 관련성을 조사한 다양한 역학연구의 결과, 대기분진과 오존이 사망에 가장 큰 영향을 미치는 것으로 규명되었으며, 특히 대기분진의 경우 입자 크기가 작 은 미세먼지가 인체에 더 해로운 영향을 준다는 점에서 주목을 받고 있다. 이는 대기분진 관련에서는 환경오염, 질산염, 산, 각종 중금속 등 다양한 유해 물질이 표면에 불려 있어 동일한 농도일 경우 전체 표면적이 상대적으로 큰 미세먼지가 건강에 더 큰 영향을 주기 때문인 것으로 해석된다. 따라서 대기분진의 개수 농도가 생리학적 기전 상 저농도로 가장 많이 사용되고 있는 간간 농도보다 더 중요한 지표로 인식되고 있다.

이러한 대기 중 에이로졸의 개수 농도의 측정 연구는 많이 진행되어 있으며, 특히 화시 시 에이 로졸 수 농도에 관한 연구 등이 진행된 바 있다. 국내에서는 서울지역 대기 에이로졸의 대형 대기 복사에 의한 연구(14), 서울지역에서 0.01~1 μm 입정 병위의 에이로졸의 개수농도 및 체적농도의 변화 경향에 관한 연구(15)등과 안면도, 제주 고산 등 정상 지역에서의 입자 특성에 관한 연구 등(16)이 수행되었다.

최근에는 외화학적 입자 계수기(Occipital Particle Counter, OPC)를 이용한 대기 중 부유하는 입자의 측정이 진행된 바 있다. 외화학적 입자계수기의 경우 대기 중 에이로졸의 개수 농도 분포를 실시간으로 측정할 수 있는 장점을 가지고 있으나 외화학적 방법으로 입자의 크기를 예측함으로써 일부 입자의 크기 보정 문제가 해결되지 않는 문제로 남아 있고 측정 가능한 크기 분포가 약 0.3 μm이상으로 한정되어 있는 단점이 있다.

수도권에 위치한 인천 지역은 수송량이 많고 산업 공단이 많이 위치해 있으며, 화시와 같은 원경성 대기 오염물질이 우리나라로 유입되는 관문과도 같은 곳이다. 그러나 입자와 오염물질에 관한 규제 분포에 관한 연구는 매우 부족한 상황이며 최근 인천 지역을 포함한 수도권 지역 전반의 시장경기에서 에어 콜의 폐화적 특성 등에 대한 연구 및 미세먼지의 입정분포에 관한 연구가 진행되고 있다. 인천지역에서 폐화적 입자계수기를 이용한 개수 농도에 관한 분포나 화시의 에이로졸의 크기 분포 등의 관계를 제시하고 보고된 바 없다.

따라서, 본 연구에서는 2004년 불철 인천에서 측정한 외화학적 입자 계수기(Optical Particle Counter: HIAC/ROYCÔ 5230)와 미세먼지 연속측정기(PM2.5 Mass Concentration: FH95SEQ) 및 환경부 자동측 정장치를 이용하여 이 기간동안의 인천지역 대 기 에이로졸 특성을 파악하려 하였다. 자료는 2004년 2월 24일부터 5월 17일까지 OPC로 측정한 크기별 에이로졸 개수농도의 시간별 자료와 미세먼지 연속측정기로 측정한 PM2.5 자료로 이 기간동안 측정한 에이로졸의 크기 분포의 특성과 입자의 질량농도를 합시의 비합비, 화시의 비합비를 중심으로 비교, 다도, 추적 기간동안의 자료 자료 간 상관계계 및 기상자료와의 상관계계 등을 분석하였다.

2. 연구방법

2.1. 개수농도 측정을 위한 포집방법

본 연구에서는 인천지역의 화시기간을 포함한 불철 대기 에이로졸 특성을 분석하기 위해 2004년 2월 24일부터 5월 17일까지 인천광역시 계양구 계산길 에 위치한 경인여자대학 5층에서 동영상 입자 계수기(미국 HIAC/ROYCÔsa, Model: 5230)를 이용하여 대시간별 에이로졸의 개수 농도를 측정하였다. 외화학적 입자계수기는 개개의 입자에 대한 산란광의 강도를 측정하여 그 강도와 미리 정해진 강도와의 판계에 의해 입자의 크기를 추정하는 방법이다. 즉, 펄 프로 홀린된 시료 공기에서 입자 개개의 산란광의 강도를 특정한 산란각에 대해 측정하고 산란광은 산 란각의 양에 비례하는 퍼스 형태의 전기식 신호로 변환된다. 이때 전기적 신호의 크기는 입자의 크기와 관계되며, 퍼스 수는 입자수와 관계되어 에이로 줄 입자의 크기별 수 농도를 측정할 수 있게 하는 원리이다.

본 연구에서는 국내 중화로 잔공포로에 의해 1 ft³/min의 공기를 흡입시키고 단기가 수 농도를 2회 측정한 후 그 평균값을 이용하였다. 측정구간은 0.3~25 μm의 에이로졸을 저속 착도로 동일한 8개 구간으로 나누었다. 측정 구간 및 채널은 표 1과 같다.

566
Table 1. The channel and size range of an optical particle counter (OPC)

<table>
<thead>
<tr>
<th>Channel</th>
<th>Size Range (Geometric mean diameter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH1</td>
<td>0.3~0.5 μm (0.39 μm)</td>
</tr>
<tr>
<td>CH2</td>
<td>0.5~0.82 μm (0.64 μm)</td>
</tr>
<tr>
<td>CH3</td>
<td>0.82~1.35 μm (1.05 μm)</td>
</tr>
<tr>
<td>CH4</td>
<td>1.35~2.23 μm (1.74 μm)</td>
</tr>
<tr>
<td>CH5</td>
<td>2.23~3.67 μm (2.86 μm)</td>
</tr>
<tr>
<td>CH6</td>
<td>3.67~6.06 μm (4.72 μm)</td>
</tr>
<tr>
<td>CH7</td>
<td>6.06~10.00 μm (7.79 μm)</td>
</tr>
<tr>
<td>CH8</td>
<td>10.00~25.00 μm (15.81 μm)</td>
</tr>
</tbody>
</table>

2.2. 질량농도 측정을 위한 포집방법

질량 농도의 측정을 위해 양식 및 인 서비스 대학 목상에서 미세먼지 연속측정기를 설치하여 24시간 간격으로 질량농도를 관측하였다. 측정 기간은 2004년 4월 9일부터 5월 15일까지며 측정 장비는 장기언에 걸쳐 연속적으로 PM2.5 시료를 측정할 수 있도록 설계된 FH55SEQ(ESM Andersen Instruments)를 이용하여 포집하였으며, 여기(Quartz filter: 46 mm dia, 2.0 μm pore size, Gelman Sciences)는 포집 전과 포집 후에 걸쳐 48시간 갑은·습류하여 16.7 l/min의 유량으로 시료를 포집하였다.

3. 측정 결과 및 고찰

3.1. 광학적 입자 계수기로 측정한 대기 분진 농도 분포

그림 1은 광학적 입자 계수기로 측정한 대기 에어로졸의 개수 농도를 보고주고 있다. 2004년 2월 24일부터 5월 17일까지의 측정 기간 동안의 평균 농도와 표준편차는 각 채널별로 29.3903 ± 8.5726/㎝³ (CH1), 13.1034 ± 8.6908/㎝³ (CH2), 2.2369 ± 2.0213/㎝³ (CH3), 1.3027 ± 1.2055/㎝³ (CH4), 0.5419 ± 0.5490/㎝³ (CH5), 0.1290 ± 0.2171/㎝³ (CH6), 0.0252 ± 0.5779/㎝³ (CH7), 0.0186 ± 0.5919/㎝³ (CH8)로 나타났다.

평균값에 대한 표준 편차의 범위를 구하여 보면 29.17 % (CH1), 66.32 % (CH2), 90.36 % (CH3), 92.53 % (CH4), 101.39 % (CH5), 168.39 % (CH6), 198.01 % (CH7), 318.69 % (CH8)로 입자의 크기가 증가할수록 입자의 변동폭은 크게 증가하는 것을 알 수 있다. 특히, CH7와 CH8 크기 영역의 입자의 변동폭이 매우 크게 나타나는 것을 알 수 있다. 이는 황사에 의한 조대입자의 유입량 증가 혹은 자르기, 의도한 조대 입자의 배출물, 기타 외부 요인들에 의한 조대 입자의 변화폭이 다른 미세입자크기의 영역보다 크게 변하고 있음을 보여준다.

2004년 황사일수는 2월에 1차례 1일, 3월에 2차례 4일, 4월에 1차례 1일로 총 6일이 관측되었다. 황사의 발생일수는 2월 24일, 5월 17일에 있었다. 그림 1에서 보는 것처럼 황사 발생시 대기 에어로졸의 개수 농도는 크게 증가하는 것을 알 수 있다. 특히, 채널의 수가 증가할수록, 즉, 입자의 크기가 클수록 조대 입자의 개수의 평균 개수 농도에 비해 크게 증가하는 것을 볼 수 있었다. 이는 황사 발생시 토양정부를 유입한 조대입자의 농도가 증가하는 것으로 나타난 일반적인 연구 결과와 일치한다.12)

에어로졸 입자의 크기 분포형태로 측정 기간 동안의 농도를 살펴보면 그림 2와 같이 표현될 수 있다. 그림에서 실선은 측정 기간의 평균 에어로졸 분포를 나타내고 있고 점선은 몇몇 황사 발생시의 에어로졸 분포를 나타내고 있다. 그림 2에서 보듯이 황사가 발생하였을 때 주로 직경 1 μm 이상의 조대
입자 구간의 입자가 증가하는 것을 볼 수 있다. 직경 1 μm 이하의 미세 입자들은 변화가 없거나 약간 감소하는 것을 볼 수 있다.

그림 3은 2004년 4월 23일 발생한 황사의 농도변화를 시간별로 살펴본 것이다. 광학적 입자계수기로 측정한 입자계수의 농도화 동일시간 인천 구암동에서 측정한 환경부점검과 PM10 자료를 비교하였다(환경부, 2004)⑨. 그림 3에서 보듯이 입자가 발생한 시점에서 광학적 입자계수기의 농도와 PM10의 장애농도가 급격히 증가하는 것을 볼 수 있다. 또한 광학적 입자계수기의 측정 자료의 경우 임계 조건이 높을수록 그 증가폭은 더 커지는 것을 알 수 있다. 이는 그림 1에서 설명한 바와 같이 활성생성이 상대적으로 크기가 큰 조대입자의 수가 증가하는 것을 보여주는 것이다. 그림 3으로부터 광학적 입자계수기로 측정한 자료와 PM10 자료가 상관적으로 적용될 수 있을음을 알 수 있다. 이러한 경향은 측정기간 동안 농도 변화를 조사함으로써 보다 정량적으로 확인할 수 있다. 그림 4는 광학적 입자계수기로 측정한 입자계수의 농도를 측정기간의 평균치로 나눈 입자계수 농도비이다. 즉 측정 기간 중 평균 입자 농도를 1로 보고 각 관측 시점에서의 대기부전 입자의 계수 농도가 얼마나 증가하는지를 나타낸다. 입자 계수 농도비가 2라고 하면 평균 2배 정도 증가한 입자 계수 농도임을 보여주는 것이다. 그림 3에서 화살표는 황사 발생일을 나타내고 있다. 그림 4에서 볼 수 있듯이 CH1과 CH2의 농도비에 있어서 황사 기간을 보여주는 뚜렷한 시그널이 확인되지 않았다. CH3과 CH4에는 이르러서는 황사 기간 중 평소보다 2~4배 이상의 농도가 증가하는 경향을 확인할 수 있으나 이는 다른 외부 환경조건에 의한 변동의 폭과 비슷하여 황사 기간에만 이 크기 구간의 개수 농도가 증가하는 것이 아님을 알 수 있다. 직경 2.23 μm 이상인 CH5에 이르러서야 황사에 의해 증가하는 수이론과 농도의 경향이 뚜렷이 나타나고 있음을 알 수 있다. 이러한 경향은 채널수가 증가함수록 뚜렷이 증가하여 4월 23일 발생한 황사의 경우 CH5에서 6.53배, CH6에서 12.09배, CH7에서 15.79배 그리고 CH8에서는 29.95배로 증가하고 있음을 볼 수 있다. 이러한 조대입자의 개수 농도 증가비로 확인해 볼 때, 3월 10일 발생한 강도가 3월 30~31일에 발생한 황사의 강도에 비해 다소 큰

Table 2. Asian dust periods in Incheon, 2004

<table>
<thead>
<tr>
<th>Number</th>
<th>Asian dust days(End) (Julian day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25th Feb.(56)</td>
</tr>
<tr>
<td>2</td>
<td>10th March(70)</td>
</tr>
<tr>
<td>3</td>
<td>30th March(90)</td>
</tr>
<tr>
<td>4</td>
<td>23rd April(114)</td>
</tr>
</tbody>
</table>

Fig. 2. Comparison of the aerosol size distribution between dust and non-dust days in Incheon during spring, 2004.

Fig. 3. Comparison of the number concentration from OPC measurement and PM10 mass concentration.
Fig. 4. Size resolved aerosol number concentration ratio using OPC measurement during Asian dust in Incheon, 2004.
Fig. 5. Size resolved aerosol number concentration ratio using OPC measurement during precipitation in Incheon, 2004.
것을 볼 수 있고, 4월 23일 발생한 황사의 강도가 가장 큰 것을 볼 수 있다. CH4 이하의 미세입자의 중가 비는 조례 입자의 증가비에 비해 상대적으로 미약한 증가를 보임을 알 수 있다.

강수량에 의한 에어로졸의 세정효과를 파악하기 위해 동일 기간 중 개수 농도비를 강수량에 걸쳐 조사하여 보았다. 그림 5는 강수시 세정된 에어로졸의 농도 변화를 보여 주고 있다. 표 3은 측정 기간 중 발생한 강수량과 강수량을 나타낸 것이다. 표 3에 보이듯이 측정 기간 중 크고 작은 강수 사례가 18회 존재하였다. 그림 5에서는 이중 강수량이 10 mm 이상인 6차례의 강수 사례에 대하여 에어로졸의 개수 농도가 크기별로 어떠한 변화를 보이는지 살펴보았다. 이론적으로 볼 때 강수 과정동안 직경이 큰 에어로졸 입자가 한정 충돌 및 통학의 영향을 받아 더욱 세정될 것으로 예측된다. 그러나 그림 5에서 볼 수 있듯이 강수에 의한 에어로졸의 감소비는 빠르지 증가할수록 증가하는 반면에 매우 큰 차이를 보이지 않았다. 강수에 의한 에어로졸의 세정과정은 강수입자의 크기분포, 강수량, 그리고 에어로졸의 크기 분포 등 다양한 요소의 영향을 받게 되므로 보다 정량적인 해석을 위해서는 강수 입자의 측정 등을 포함한 실험이 요구된다.

3.2. PM2.5 측정 자료의 비교
측정 기간 중 2004년 4월 19일에서 5월 15일까지

<table>
<thead>
<tr>
<th>Table 3. Precipitation days and amount during measurement periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitation days (Julian day)</td>
</tr>
<tr>
<td>--------------------------------</td>
</tr>
<tr>
<td>February</td>
</tr>
<tr>
<td>26th (57)</td>
</tr>
<tr>
<td>4th (64)</td>
</tr>
<tr>
<td>16th (76)</td>
</tr>
<tr>
<td>17th (77)</td>
</tr>
<tr>
<td>24th (84)</td>
</tr>
<tr>
<td>March</td>
</tr>
<tr>
<td>1st (92)</td>
</tr>
<tr>
<td>2nd (93)</td>
</tr>
<tr>
<td>6th (97)</td>
</tr>
<tr>
<td>18th (109)</td>
</tr>
<tr>
<td>19th (110)</td>
</tr>
<tr>
<td>26th (117)</td>
</tr>
<tr>
<td>27th (118)</td>
</tr>
<tr>
<td>April</td>
</tr>
<tr>
<td>2nd (123)</td>
</tr>
<tr>
<td>3rd (124)</td>
</tr>
<tr>
<td>4th (125)</td>
</tr>
<tr>
<td>8th (129)</td>
</tr>
<tr>
<td>9th (130)</td>
</tr>
<tr>
<td>10th (131)</td>
</tr>
</tbody>
</table>

3.3. 측정 자료 간 상관성 비교
이와 같이 측정된 자료의 보다 정량적인 비교를 위하여 측정 자료 간 상관도를 조사하여 보았다. 표 4는 37일의 측정 총계가 PM2.5 및 PM10과 동시에 측정된 연구기간(2004년 4월 9일부터 5월 15일) 동안의 측정 자료의 분포를 통계적으로 비교한 것이다. 평균적인 에어로졸의 개수농도와 FH95SEQ(ESM Andersen Instruments)로 측정한 PM2.5 질량농도, 환경부 측정의 PM10 자료 및 기상요인에 대한 평균값, 표준편차 및 분포를 나타내었다. 현행 대기환경기준이 시행되고 있는 PM10의 경우 일평균 농도가 35.5 µg/m3로 대기기준을 만족하고 있으나 일평균 최고 210.28 µg/m3까지 기록된 것을 보았을 때 단기기준 (150 µg/m3)를 초과하는 날이 많음을 알 수 있다. PM2.5와 PM10간의 비율은 약 50%로써 기존의 연구결과와 유사한 결과를 나타내었다. 에어로졸의 질량농도 분포를 살펴보면 기존의 보고와 마찬

Fig. 6. Comparison of the OPC and PM2.5 measurement data.
<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Mean±SD</th>
<th>Min.</th>
<th>10%</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
<th>90%</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPC data (number/cm³)</td>
<td>37</td>
<td>29.19±4.73</td>
<td>12.00</td>
<td>23.39</td>
<td>27.17</td>
<td>31.08</td>
<td>32.19</td>
<td>33.01</td>
<td>34.56</td>
</tr>
<tr>
<td>CH1 (0.30~0.50 µm)</td>
<td>37</td>
<td>14.43±5.87</td>
<td>2.01</td>
<td>5.40</td>
<td>10.80</td>
<td>14.45</td>
<td>18.04</td>
<td>23.28</td>
<td>24.91</td>
</tr>
<tr>
<td>CH2 (0.50~0.82 µm)</td>
<td>37</td>
<td>2.71±1.83</td>
<td>0.20</td>
<td>0.66</td>
<td>1.67</td>
<td>2.45</td>
<td>3.42</td>
<td>5.61</td>
<td>7.51</td>
</tr>
<tr>
<td>CH3 (0.82~1.35 µm)</td>
<td>37</td>
<td>1.57±1.07</td>
<td>0.11</td>
<td>0.43</td>
<td>0.93</td>
<td>1.47</td>
<td>1.90</td>
<td>2.61</td>
<td>4.77</td>
</tr>
<tr>
<td>CH4 (1.35~2.23 µm)</td>
<td>37</td>
<td>0.62±0.41</td>
<td>0.04</td>
<td>0.18</td>
<td>0.36</td>
<td>0.59</td>
<td>0.73</td>
<td>1.36</td>
<td>1.86</td>
</tr>
<tr>
<td>CH5 (2.23~3.67 µm)</td>
<td>37</td>
<td>0.14±0.12</td>
<td>0.01</td>
<td>0.05</td>
<td>0.12</td>
<td>0.17</td>
<td>0.24</td>
<td>0.57</td>
<td>0.57</td>
</tr>
<tr>
<td>CH6 (3.67~6.00 µm)</td>
<td>37</td>
<td>0.04±0.18</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>CH7 (6.00~10.00 µm)</td>
<td>37</td>
<td>0.03±0.18</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>1.10</td>
</tr>
<tr>
<td>Surrogate (number/cm³)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH1.4 (0.30~2.23 µm)</td>
<td>37</td>
<td>47.89±10.42</td>
<td>14.32</td>
<td>33.18</td>
<td>45.27</td>
<td>50.62</td>
<td>53.52</td>
<td>60.25</td>
<td>63.10</td>
</tr>
<tr>
<td>CH2.4 (0.50~2.23 µm)</td>
<td>37</td>
<td>18.70±8.50</td>
<td>2.32</td>
<td>6.40</td>
<td>13.03</td>
<td>18.53</td>
<td>23.05</td>
<td>31.82</td>
<td>36.97</td>
</tr>
<tr>
<td>CH1.7 (0.30~10.00 µm)</td>
<td>37</td>
<td>48.70±10.74</td>
<td>14.38</td>
<td>33.41</td>
<td>45.61</td>
<td>51.17</td>
<td>54.29</td>
<td>61.33</td>
<td>64.82</td>
</tr>
<tr>
<td>CH2.7 (0.50~10.00 µm)</td>
<td>37</td>
<td>19.51±8.97</td>
<td>2.38</td>
<td>6.64</td>
<td>13.52</td>
<td>19.09</td>
<td>25.03</td>
<td>32.60</td>
<td>39.48</td>
</tr>
<tr>
<td>Mass data (μg/m³)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM1.0 (less than 2.5 µm)</td>
<td>37</td>
<td>41.36±19.28</td>
<td>12.48</td>
<td>20.79</td>
<td>29.11</td>
<td>37.43</td>
<td>49.90</td>
<td>62.38</td>
<td>91.48</td>
</tr>
<tr>
<td>PM2.5 (less than 10 µm)</td>
<td>32</td>
<td>83.55±33.62</td>
<td>37.06</td>
<td>49.65</td>
<td>59.17</td>
<td>68.72</td>
<td>78.83</td>
<td>116.42</td>
<td>201.28</td>
</tr>
<tr>
<td>Weather data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature (℃)</td>
<td>37</td>
<td>14.28±2.18</td>
<td>7.68</td>
<td>11.79</td>
<td>13.20</td>
<td>14.36</td>
<td>15.73</td>
<td>16.92</td>
<td>18.54</td>
</tr>
<tr>
<td>Humidity (%)</td>
<td>37</td>
<td>63.75±15.80</td>
<td>32.00</td>
<td>42.00</td>
<td>53.75</td>
<td>61.08</td>
<td>77.79</td>
<td>84.17</td>
<td>90.67</td>
</tr>
</tbody>
</table>

a. Number of day; b. Standard deviation; c. Minimum; d. Maximum; e. Optical particle counter

가지고 오른쪽으로 치우친 분포(right skewed)를 보인 반면, 개수농도의 경우에는 왼쪽으로 치우친 분포(left skewed)를 나타내였는데 이는 개수 농도의 경우 크기의 작은 입자들이 많이 분포하고 있기 때문이며 절량 농도의 경우 입자의 크기가 클수록 절량이 더 크기 때문에 보인 것으로 판단된다. 한편, 온도 및 습도와 같은 기상요인은 정규분포를 가지고 있는 것으로 나타났다.

측정 자료간의 상관관계를 보다 정확하게 알아보기 위하여 OPC의 측정 자료와 본 연구에서 PM2.5 자료 그리고 환경부 측정망의 PM10자료사이의 상관도를 기온, 습도 등의 기상 자료와 연관하여 조사하였다.

표 5는 일평균 에어로졸의 개수농도와 절량농도 및 기상요인간의 상관관계를 나타낸 것이다. 표에서 볼 수 있듯이 절량농도와 개수농도간의 상관관계는 모두 0.70 이상의 높은 상관성을 나타내었다. 이는 절량농도자료의 대체(surrogate)로서 개수농도가 적합한 것임을 보여 주는 것이다. 개수농도자료는 절량농도 자료와 달리 입자의 크기에 따라 개수농도를 알 수 있다. 따라서 에어로졸 입자의 크기 분포를 파악할 수 있게 해 주는 장점이 갖게 된다. 절량 농도 자료 중 PM2.5와 PM10도 상관관계가 0.71로 높은 상관관계를 보였다. 측정범위 개수 농도와 이와 절량농도(PM2.5 및 PM10)와의 상관관계를 살펴보면 먼저 PM2.5의 경우 예상했던 대로 CH2~CH4까지 0.7이상의 높은 상관관계를 갖고 있으나 CH6 이상, 즉 입자 3.67 µm 이상의 조밀입자와의 상관관계는 상대적으로 작은 것으로 나타났다. PM10 자료와 평균적 입자 수계구의 채널별 개수 농도와의 상관도는 PM2.5 자료와의 상관도에 비해는 다소 떨어지는 값을 보이고 있으나, CH5~CH6까지의 조밀입자와 PM10기는 상관관계 값이 미세입자 가 갖는 상관도와 비슷한 경향을 보이는 것을 알 수 있다. 이는 측정 지점이 PM2.5와 평균적 입자수계구의 경우 동일한 지점에서 측정하였으나 PM10자료의 경우 환경부 측정망을 사용한대에 오는 차이인 것으로 해석된다.

개수농도 중 첫 번째 채널(CH1)의 경우에는 절량농도 자료와 비교하여 낮은 상관관계와 일반되지 않은 상관성을 나타내었다. 이는 측정오차로 인한 것으로 판단되며 정성훈 등(2003)은 이러한 측정오차의 원인으로서 0.30~0.50 μm 구간의 미세한 입자가 OPC의 측정가능성을 벗어나며 입자의 개수 검출 한계와 관계가 있다고 보고하였다(25).

일반적으로 기상조건 역시 에어로졸의 농도와 밀접한 관계를 갖는 것으로 알려져 있다. 본 연구에서 는 기상에서 측정한 안전 지역의 기온 및 상태 습도자료를 각 채널별 개수 농도 자료와 절량 농도 자

572
표 5. Pearson 상관 관계 계수들에 대한 일일 평균 압축 및 지표 변수들 (N=37)

<table>
<thead>
<tr>
<th>variable</th>
<th>PM10</th>
<th>CH1,4</th>
<th>CH2,4</th>
<th>CH5,7</th>
<th>CH1,2</th>
<th>CH2,3</th>
<th>CH4</th>
<th>CH5</th>
<th>CH6</th>
<th>CH7</th>
<th>CH8</th>
<th>TEMP</th>
<th>HUMID</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>0.70</td>
<td>0.75</td>
<td>0.71</td>
<td>0.72</td>
<td>0.75</td>
<td>0.21</td>
<td>0.73</td>
<td>0.72</td>
<td>0.72</td>
<td>0.65</td>
<td>0.44</td>
<td>0.44</td>
<td>0.31</td>
</tr>
<tr>
<td>CH1,4</td>
<td>0.89</td>
<td>0.51</td>
<td>0.99</td>
<td>0.88</td>
<td>0.60</td>
<td>0.93</td>
<td>0.78</td>
<td>0.71</td>
<td>0.58</td>
<td>0.28</td>
<td>0.20</td>
<td>0.20</td>
<td>0.35</td>
</tr>
<tr>
<td>CH2,4</td>
<td>0.61</td>
<td>0.91</td>
<td>0.99</td>
<td>0.17</td>
<td>0.99</td>
<td>0.95</td>
<td>0.92</td>
<td>0.81</td>
<td>0.54</td>
<td>0.36</td>
<td>0.35</td>
<td>0.36</td>
<td>0.43</td>
</tr>
<tr>
<td>PM10</td>
<td>0.53</td>
<td>0.62</td>
<td>0.12</td>
<td>0.63</td>
<td>0.49</td>
<td>0.56</td>
<td>0.63</td>
<td>0.57</td>
<td>0.22</td>
<td>0.18</td>
<td>0.18</td>
<td>0.17</td>
<td>0.07</td>
</tr>
<tr>
<td>CH1,4</td>
<td>0.90</td>
<td>0.56</td>
<td>0.94</td>
<td>0.80</td>
<td>0.74</td>
<td>0.62</td>
<td>0.32</td>
<td>0.24</td>
<td>0.24</td>
<td>0.58</td>
<td>0.34</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td>CH2,4</td>
<td>0.15</td>
<td>0.96</td>
<td>0.96</td>
<td>0.93</td>
<td>0.83</td>
<td>0.57</td>
<td>0.39</td>
<td>0.38</td>
<td>0.36</td>
<td>0.42</td>
<td>0.15</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>CH1,4</td>
<td>0.27</td>
<td>0.01</td>
<td>0.08</td>
<td>0.18</td>
<td>0.35</td>
<td>0.20</td>
<td>0.18</td>
<td>0.63</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH1,4</td>
<td>0.89</td>
<td>0.84</td>
<td>0.74</td>
<td>0.47</td>
<td>0.28</td>
<td>0.27</td>
<td>0.40</td>
<td>0.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUMID</td>
<td></td>
</tr>
</tbody>
</table>

a. Temperature; b. Humidity; * Correlation is significant at the 0.05 level (2-tailed).

4. 결론

본 조사에서는 홍학적 입자세계와 PM2.5 측정을 통하여 2004년 월철 인천지역의 대기 에어로졸의 측정일, 특성을 살펴보았다. 측정한 자료는 PM10 환경부 측정망 자료 및 동일 시설에서 측정한 PM2.5 자료들과 비교해 보았다. 비교 결과 홍학적 입자에 의한 개수 농도의 변화 양상이 PM10 및 PM2.5 자료와 경향이 있어 잘 일치하고 있음을 알 수 있었다.

2004년 발생한 4차례의 환사 발생 일들을 살펴본 결과 환사의 발생시 채널의 수가 증가할수록, 즉, 입자의 크기가 클수록 조례 입자에 개수 농도의 평균 개수 농도에 비해 크게 증가하는 것을 볼 수 있었다. 작정 0.82~2.23 μm에 해당하는 CH3와 CH4에 이르러 환사 기간 중 평소보다 2~4배 이상의 농도가 증가하는 양상을 확인할 수 있으나 다른 조건에 의한 개수 농도의 변동 폭과 비슷한 것은 비해 작정 2.23 μm이상인 CH5에 이르게 되면 환사 시 에어로졸 개수 농도의 증가가 다른 변화 폭에 비해 두드러짐을 확인할 수 있었다. 이러한 결과는 입자 크기에 따른 개수 농도가 변경을 통하여 기존 양상 측정가능 분
אות 다이어로울 표면의 황산염, 질산염, 산, 각종 중금속 등 다양한 유해물질은 입자의 표면에 붙어 있어 동일한 농도일 경우 전체 체표면적이 상대적으로 큰 미세먼지가 건강에 더 큰 영향을 줄 것으로 보고되고 있어, 현재 대기 에어로졸의 지표농도로 가장 널리 사용되고 있는 질량 농도보다는 개수 농도가 생리학적 기전상 상대적으로 더 중요한 지표 농도로 여겨지고 있는 추세이다. 따라서 본 연구 결과는 이를 토대로 할 수 있는 연구결과에 관한 연구 결과를 탐색한 결과, 황후 개수 농도와 질량 농도의 관리관 계 보정에 관한 연구가 지속적으로 진행되어야 할 것으로 보이며 이를 통해 결과를 보정 및 보다 정기 적인 종합 관측이 진행되어야 할 것이다.

감사의 글

본 연구는 환경부 차세대 핵심환경기술개발사업 지원(Eco-technopia 21 Project)에 의해 수행된 연구결과의 일부입니다.

참고 문헌
2) 김영진, 최병철, 2002, 황사안면에서 측정한 에어로졸의 크기 분포와 지역별 특성, 한국기상학회지, 38(2), 95-104.
6) 윤용화, 1990, 황사한국산과 수송되는 황사의 특성에 관한 연구, 한국기상학회지, 35, 111-120.
15) 김필수, 김용진, 이영호, 조성규, 안승태, 1986, 도시대기 Aerosol의 입자직경 0.01 1.0 μm 범위 의 농도변화 특성, 한국기상학회지, 2, 41-50.
18) 정영준, 이병옥, 정희복, 김든규, 김영민, 김신도, 한진석, 2004, 서울·인천 지역 시정장에 에어로졸의 광·화학적 특성, 한국대기환경학회 추계 학술대회 논문집, 217-218.
21) 조용성, 이종태, 김용진, 김승철, 김효, 하은희, 박혜숙, 이보은, 2003, 서울시 대기오염과 임별
광학적 입자계수기를 이용한 2004년 황사기간 인천지역 에어로졸 특성

22) 조용성, 이홍석, 김용신, 이종태, 박진수, 2003, 서울 성동구 지역 미세먼지의 화학적 조성에 관한 연구, 한국환경과학회지, 12(6), 665-676.
23) 정창훈, 전영신, 최병철, 2003, OPC(광학적 입자계수기)로 측정한 2001년 서울지역 에어로졸의 입적 분포, 한국대기환경학회지, 19(5), 515-528.